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Abstract: The capsule network (Caps) is a novel type of neural network that has great potential
for the classification of hyperspectral remote sensing. However, the Caps suffers from the issue
of gradient vanishing. To solve this problem, a powered activation regularization based adaptive
capsule network (PAR-ACaps) was proposed for hyperspectral remote sensing classification, in
which an adaptive routing algorithm without iteration was applied to amplify the gradient, and the
powered activation regularization method was used to learn the sparser and more discriminative
representation. The classification performance of PAR-ACaps was evaluated using two public
hyperspectral remote sensing datasets, i.e., the Pavia University (PU) and Salinas (SA) datasets.
The average overall classification accuracy (OA) of PAR-ACaps with shallower architecture was
measured and compared with those of the benchmarks, including random forest (RF), support
vector machine (SVM), 1-dimensional convolutional neural network (1DCNN), two-dimensional
convolutional neural network (CNN), three-dimensional convolutional neural network (3DCNN),
Caps, and the original adaptive capsule network (ACaps) with comparable network architectures.
The OA of PAR-ACaps for PU and SA datasets was 99.51% and 94.52%, respectively, which was
higher than those of benchmarks. Moreover, the classification performance of PAR-ACaps with
relatively deeper neural architecture (four and six convolutional layers in the feature extraction
stage) was also evaluated to demonstrate the effectiveness of gradient amplification. As shown in
the experimental results, the classification performance of PAR-ACaps with relatively deeper neural
architecture for PU and SA datasets was also superior to 1DCNN, CNN, 3DCNN, Caps, and ACaps
with comparable neural architectures. Additionally, the training time consumed by PAR-ACaps was
significantly lower than that of Caps. The proposed PAR-ACaps is, therefore, recommended as an
effective alternative for hyperspectral remote sensing classification.

Keywords: capsule network; hyperspectral remote sensing; adaptive routing algorithm; deep learning

1. Introduction

Land use is essential to global climate change, urban planning, and management [1].
With the appearance of remote sensing, large-scale land-use mapping has become practi-
cable and economical. However, it is difficult to extract accurate land use from low- and
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medium-resolution remotely sensed imagery. With the development of imaging technol-
ogy, remote sensing images with fine spatial resolution (FSR), such as RapidEye, IKONOS,
WorldView, and uninhabited aerial vehicle synthetic aperture radar images, have been
widely used in the field of urban land-use information extraction. However, many FSR
images consist of four bands. The low spectral resolution leads to overlaps among the
reflected signals of different ground objects, and then many land-use types cannot be
distinguished in detail.

The hyperspectral remotely sensed image (HSI) captures the ground objects’ spectral
signals with hundreds of narrow bands and provides abundant spectral information [2].
Simultaneously, the spatial information (e.g., textures) provided by HSI becomes more
detailed with the improvement of spatial resolution [3]. Therefore, the information pro-
vided by HSI is sufficient for the extraction of detailed land-use information. However, the
massive bands often lead to the curse of dimensionality [4]. The classification performances
of the commonly used classifiers (e.g., support vector machine (SVM) and random forest
(RF)) for HSI were often limited without the reduction of feature dimensionality (e.g.,
feature extraction and feature selection).

Deep learning (DL) has been a significant research breakthrough in the field of artificial
intelligence in recent years. Inspired by human vision, it introduces hierarchical structure
to extract and learn features for completing various tasks [5]. In recent years, DL has
yielded promising performance in many fields [6]. Deep convolutional neural network
(CNN) is a representative “end to end” feature-learning algorithm in the field of DL. Due
to its outperformance and robustness, CNN has been widely used in diverse fields such as
object recognition, image classification, and speech recognition [7]. In the field of remote
sensing, CNN has also been widely used for the accurate classification of crop, urban land
use, wetland, and so on [8–11]. For the classification of hyperspectral remote sensing,
CNN-based methods including 1D, 2D, 3D-CNN, multiscale CNN, residual CNN, and
object-based CNN have been proposed [12–15]. However, CNN failed in learning the
spatial hierarchies between features and lost some spatial information (e.g., location) in the
pooling layer. Thus, the performance of CNN remains to be improved [16].

Sabour et al. [17] proposed a novel type of neural network called capsule network
(Caps) (Figure 1). Caps stacks the features of the feature map into vectors, namely capsules.
The orientation and the overall length of the capsule represent the properties and the
existence of entity, respectively. The relationship between the partial and the whole is
obtained by updating the coupling coefficient between the low-layer capsule and the high-
layer capsule through the dynamic routing algorithm [18]. So far, the outperformance of
Caps has been demonstrated in many fields such as image segmentation, object recognition,
and action detection [19–22]. In the field of remote sensing, Caps was initially used for the
classification of hyperspectral remote sensing, and its performance is superior to that of
CNN [23–25].
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Figure 1. Capsule network with three layers for the classification of MNIST dataset [11]. Figure 1. Capsule network with three layers for the classification of MNIST dataset [11].

Although Caps has better performance on some datasets, the robustness of Caps is
limited for the classification of complex datasets. One of the most important reasons is
gradient vanishing caused by the sparsity of coupling coefficient [18]. To improve the dis-
tribution of the values of the coupling coefficients, some normalization techniques, such as
Max-Min and sigmoid, were used to obtain better performance on complex datasets [26,27].
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To further improve the performance of Caps, the capsule network with k-means was pro-
posed [28]. However, these modified routing algorithms could not effectively speed up
the training process due to the inner loop. Thus, the number of parameters of Caps cannot
be reduced effectively. What is worse, the depth of the Caps is thus limited; namely, only
a few convolutional layers can be used to extract the features from HSI. Thus, high-level
semantic features are absent in the Caps.

To overcome the shortcomings of Caps, an adaptive routing algorithm is presented
in [18]. In this routing algorithm, the gradient coefficient γ, instead of coupling coefficient
cij, is used to amplify the gradient. Thus, the capsule network based on adaptive routing
algorithm (ACaps) can stack multiple convolution layers for high-level semantic feature
extraction because the amplified gradient can be better transmitted to the layers in the
front of the model. However, the performance of the ACaps for complex dataset (CIFAR10)
is also far from satisfactory. An important reason for the poor performance of capsule
network on complex datasets is that the original squash function encourages the capsules
with low energies to have large activation values [29]. This leads to an unreasonable higher
distribution of activation values. Thus, many capsules encode irrelevant information which
causes disturbance and then leads to poor performance.

With the inspiration of the adaptive routing algorithm, a kind of hyperspectral remote
sensing classification method based on ACaps was proposed. Unlike the original ACaps,
the powered activation regularization (PAR) method was proposed to repress the strength
of connections of capsules in adjacent capsule layers. PAR can force the net to learn a
sparser and more discriminative representation to improve the classification performance.
For the convenience of expression, the classification method is called PAR-ACaps. The
performance of the proposed classifier with shallow architecture was compared with
those of the benchmarks, including SVM, RF, 1DCNN, CNN, 3DCNN, Caps, and ACaps.
Likewise, the effectiveness of PAR-ACaps with relatively deeper architecture was also
demonstrated.

The rest of the paper is organized as follows: Section 2 presents the HSI datasets and
introduces the Caps and the proposed PAR-ACaps in detail. The experimental results are
provided in Section 3, followed by a discussion in Section 4. The conclusions are drawn in
Section 5.

2. Materials and Methods
2.1. Data Source

In our experiment, two public hyperspectral datasets were employed to test the per-
formance of the proposed PAR-ACaps, including Salinas-A and Pavia University datasets.

Salinas-A dataset (SA dataset): The data were acquired by AVIRIS sensor over the
Salinas Valley, California (Figure 2a). The dataset consists of 224 bands over a spec-
trum range of 400–2500 nm. It has a spatial extent of 86 × 63 pixels with a spatial
resolution of 3.7 m. A total of 204 bands were reserved after discarding the bands
(i.e., 108–112, 154–167, and 224) that were adversely influenced by moisture absorp-
tion. There were 6 land-use/cover types in the ground truth (Figure 2b), including Bro-
coli_green_weeds_1, Corn_senesced_green_weeds, Lettuce_romaine_4wk, Lettuce_romaine_5wk,
Lettuce_romaine_6wk, and Lettuce_romaine_7wk. The number of training, validation, and
testing samples for each of the 6 classes collected from the ground truth map is shown in
Table 1.

Pavia University dataset (PU dataset): The original PU dataset, acquired by the
reflective optics system imaging spectrometer (ROSIS) sensor, consists of 115 bands in
the spectral region of 430–860 nm. The dataset has a spatial resolution of 1.3 m with a
spatial extent of 610 × 340 pixels (Figure 3a). The bands influenced by water absorption
were removed, and there were 103 bands remaining in the dataset. In total, nine land-
use/cover types were identified (Figure 3b), including Asphalt, Meadows, Gravel, Trees,
Painted metal sheets, Bare Soil, Bitumen, Self-Blocking Bricks, and Shadows. The number
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of training, validation, and testing samples of each class collected from the ground truth
map is also shown in Table 1.
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2.2. Method
2.2.1. Overview of Capsule Network

Caps is more robust than CNN for the affine transformation of target classification, and
the number of needed training samples is fewer. Capsule is defined as a group of hidden
neurons. It is a vector whose direction and length represent the entity’s attribute and the
probability of entity existence, respectively [17]. The Caps presented by Sabour et al. (2017)
consisted of input layer, output layer, convolutional layer, primary capsule (PrimaryCaps)
layer, dynamic routing algorithm (Algorithm 1), and digital capsule (DigitCaps) layer
(Figure 1). Herein, the convolutional layer is used to extract the low-level features of the
classification target. The PrimaryCaps layer captures the spatial relationships among the
features by using the capsules. The low-level features encoded by PrimaryCaps layer
are transferred to DigitCaps and are predicted using dynamic routing agreement [30].
Specifically, the dynamic routing algorithm adjusts the value of coupling coefficients
according to the similarity between the low-layer capsule and the corresponding high-
layer capsule, i.e., the higher the similarity is, the bigger the coupling coefficient between
them. With the iteration process, the ûj|i, obtained by affine transformation of capsule ui
(Equation (1)), moves toward the corresponding high-layer capsule when the similarity
between them is higher (Equation (2)).

ûj|i = Wijui (1)

sj = ∑
i

cijûj|i (2)

where W represents the weight matrix that indicates the spatial relationship among the
features. sj is the total input of capsule j. The coupling coefficient cij between capsule i
and all capsules in the high layer sum to 1 and can be calculated by using the “softmax”
function as follows:

cij =
exp

(
bij

)
∑k exp(bik)

(3)

where logits bij are the prior probabilities that capsule i should be coupled to capsule j in
the high layer. bij is initialized as 0.

The output of the capsule in the (l + 1)-th layer is defined as vj; the length of vj is
compressed to [0, 1) by using a nonlinear “squashing” function (Equation (4)).

vj =
‖sj‖2

1 + ‖sj‖2

sj

‖sj‖
(4)

The whole computational process between the capsule layers is illustrated in Figure 4.
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Algorithm 1: Dynamic routing algorithm.

1: procedure Routing (ûj|i, r, l)
2: for every capsule i in layer l and capsule j in layer (l+1): bij ← 0 .
3: for r iterations do
4: for every capsule i in layer l: ci ← softmax(bi)
5: for every capsule j in layer (l+1): sj ← ∑

i
cijûj|i

6: for every capsule j in layer (l+1): vj ← squash
(

sj

)
7: for every capsule i in layer l and capsule j in layer (l+1): bij ← bij + ûj|i·vj
8: return vj

2.2.2. PAR-Based Adaptive Capsule Network

• The architecture of ACaps

Similar to the architecture of Caps, the ACaps consists of feature extraction, capsule
encoding units, and decoder units. The features extracted by convolutional layers are
sent to the primary capsule layer and then encoded as capsules. The output of the last
capsule layer encodes the instantiation parameters of the input image with the encourage
of reconstruction loss (Equation (5)). After that, the image reconstruction is implemented
by using the decoder structure which consists of a stack of fully connected layers (Figure 5).
In the decoder structure, all but the activity vector of the correct image capsule is masked,
and then the activity vector is used to reconstruct the input image. The difference between
the reconstructed image and the original input image is measured by Euclidean distance
and minimized during the training process.

Lk = Tk max
(
0, m+ − ‖vk‖

)2
+ λ(1− Tk) max

(
0, ‖vk‖ −m−

)2 (5)

where Tk = 1 and ‖vk‖ represent k-th target labels and the length of k-th digit capsule,
respectively. m+ = 0.9 and m− = 0.1 denote the minimum margin and the maximum
margin, respectively. λ = 0.5 is the downweighting factor for preventing the Caps-based
methods from shrinking into the local optimum.

• Adaptive routing algorithm without iteration

As mentioned above, the low-layer capsules with the coupling coefficient cij is learned
to obtain the relationship between the partial features and the whole through a dynamic
routing algorithm. However, cij shows a large sparsity after several iterations of train-
ing [18]. This causes the gradient vanishing and the ineffectiveness of capsule network
when stacking multiple layers. To avoid the gradient vanishing when stacking multiple
layers, a kind of adaptive routing algorithm is presented in [18]. In the adaptive routing
algorithm, the new ûj|i of low-layer capsule always moves toward the corresponding
high-layer capsule despite the degree of similarity between them. As a result, the direction-
ality of the original ûj|i is adaptively enhanced when the similarity is higher and reduced
when the similarity is lower. In this paper, the adaptive update process of ûj|i is defined
as follows:

ûj|i = ûj|i + vj (6)

Because there is no parameter to be trained in the routing process and only the capsules
in the lower layer are summed, the number of iterations of the adaptive routing algorithm
is set to 1, and the iteration process in the adaptive routing algorithm is removed. The
pseudocode of the adaptive routing algorithm without iteration is shown in Algorithm 2.
The adaptive routing algorithm without iteration introduces the gradient coefficient γ
amplifies the gradient and removes the iteration process to improve the computational
efficiency. The output vj of the capsule j in layer (l + 1) can be calculated as follows:

vj = squash(∑
i

γûj|i) (7)
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where squash() is a nonlinear squash function which is elaborated in detail in what follows.

• PAR method

The activation value of a capsule represents the probability that a specific type of
object or object part exists, whereas the squash function of ACaps encourages the capsules
with low energy to have large activation values. Thus, the irrelevant information cannot be
filtered out and may be then entangled with the effective information. It is disadvantageous
to the ACaps to make a good decision from the information it receives. To learn the more
discriminative presentation and improve the classification performance of the ACaps, the
PAR method was proposed and defined as follows:

vj = ‖sj‖n sj

‖sj‖
(8)

where n is a hyperparameter, and it was set to 2 in this paper. The power squash function
can improve the computation of the likelihood that an entity representing an object’s
feature exists from the length of the capsule.

The algorithm for the adaptive routing without iteration for hyperspectral remote
sensing classification is shown in Algorithm 2.

Algorithm 2: Adaptive routing without iteration.

1: procedure Routing (ûj|i, r, l)
2: capsule i in layer l and capsule j in layer (l+1)
3: sj ← ∑

i
ûj|i

4: vj ← squash
(

γsj

)
5: ûj|i ← vj + ûj|i
6: return vj
7: end procedure

The calculation process of the adaptive routing algorithm without iteration is also il-
lustrated in Figure 5. The direction of the corresponding capsule vj in the higher layer is the
same as that of the longer capsule in the lower layer through the adaptive routing process.
The features encoded by the low-layer capsule are thus clustered, and the corresponding
capsule in the higher layer has a higher probability of being activated. Conversely, other
capsules with lower probabilities in the higher layers are masked and excluded from the
image reconstruction process by using the masking method presented in [16].
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Figure 5. The architecture of PAR-ACaps and the adaptive routing process. Encoding part consists
of feature extraction and capsule encoding stages. Decoder part includes DigitCaps layer and
dense layers which reconstruct an image from DigitCaps layer representation. FC denotes the fully
connected layer. d0 is the dimension of the digital capsule. Nc is the number of classes. d1 denotes
the dimension of the output of dense layers. Sigmoid represent the activation functions of sigmoid
function in FC layer.
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3. Results
3.1. Experimental Settings

To validate the effectiveness of the PAR-ACaps, the classification performances of
the proposed method tested on SA and PU datasets were compared with those of the
benchmarks, including 1DCNN, CNN, 3DCNN, Caps, ACaps, RF, and SVM with radial
basis function kernel. For a fair comparison between CNN and Caps-based classifiers,
the network architectures are designed as similarly as possible to suppress the diversity.
Because the deep neural network may lead to vanishing gradient and result in inferior
classification performance, these architectures shown in Figure 6 are relatively shallower,
smaller neural networks. In the CNN and Caps-based models, there are two convolutional
layers for feature extraction. The kernel size was set to 3 × 3 for the convolutional layer
with a stride of 1. The number of filters in each convolutional layer was set to 128. The
maximum pooling layer with 2 × 2 filter was employed in the CNN model. These models
were trained on a laptop equipped with an Intel Core i7-9700 3.00 GHz processor and
16 GB of memory.

For convincing comparisons between the classification performances of PAR-ACaps
and those of benchmarks, the quantitative comparisons of the classification accuracies of
those models were necessary, which have typically been achieved using popular hypothesis
testing approaches based on tests of the statistical significance of the difference or inequality
in the values observed [31]. McNemar’s test has been widely adopted in remote sensing
classification as a tool for evaluating the significance of a difference in accuracy. The
improvements of PAR-ACaps in classification performances relative to benchmarks were
thus analyzed using McNemar’s test.
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3.1.1. The Effect of the Window Size

The input window size has an important influence on the classification performances
of the CNN and Caps-based models. To obtain the optimized input window size, these
models were trained on the SA and PU datasets with differently sized inputs. For the CNN
and Caps, the input sizes were 5 × 5, 7 × 7, 11 × 11, 15 × 15, 19 × 19, 23 × 23, 27 × 27,
31 × 31, and 35× 35. The training processes with each size of input window were repeated
5 times, and the average overall classification accuracies (OA) were obtained to evaluate
the classification performances.

As shown in Figure 7, the average OAs of CNN achieved the maximum when the
input window sizes for PU and SA datasets were 31 × 31. In the following experiments,
the input window sizes of CNN for PU and SA datasets were thus set to 31 × 31. For the
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Caps, the maximum OA (97.29%) for PU dataset was achieved with the input window
size of 15 × 15. Meanwhile, the secondary maximum OA (96.66%) of Caps, approximate
with the highest, was obtained by using the input images with the size of 31 × 31. When
performed on the SA dataset, Caps achieved the highest average OA (94.44%) with the
input window size of 31 × 31. Because the window size has significant effect on the
computational efficiency of Caps, the window size of Caps for both PU and SA datasets
was set to 31 × 31 for a fair comparison.
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3.1.2. The Effect of Gradient Coefficient γ

As mentioned above, the gradient coefficient γ has the effectiveness of amplifying the
gradient and improving the computational efficiency of PAR-ACaps. Thus, a sensitivity
analysis was conducted to further investigate the effect of the different values of γ on
the overall classification accuracy of ACaps-based classification method (Table 2). The
classification performances of PAR-ACaps in terms of OA were validated on both PU and
SA datasets for the cases of γ =1, 2, 3, and 4. As shown in Table 2, the highest OAs can be
obtained for the case of γ = 3 when tested with both PU and SA datasets.

Table 2. The effect of the hyperparameter γ on the overall classification accuracy (%).

γ = 1 γ = 2 γ = 3 γ = 4

PU 98.50 99.06 99.16 98.70
SA 88.22 88.81 95.41 80.25

3.2. Classification Result
3.2.1. The Classification Performance of ACaps with Shallow Architecture

When the training processes were completed, the trained models were used to catego-
rize the unlabeled test samples into the proper classes. The classification performances of
the trained models were tested on the PU and SA dataset. The classification results obtained
by the RF, SVM, 1DCNN, CNN, 3DCNN, and Caps-based models are shown in Figures 8
and 9. For the PU dataset, the overall classification accuracy (OA) of RF, SVM, 1DCNN,
CNN, 3DCNN, Caps, ACaps, and PAR-ACaps was 87.56%, 91.59%, 98.59%, 92.98%, 90.97%,
97.46%, 99.36, and 99.51%, respectively. The classification performances of the deep learn-
ing models were superior to those of RF and SVM. Specifically, the PAR-ACaps methods
obtained the highest OA. As illustrated in Figure 8, most of the misclassifications occurred
at the heterogeneous area that consisted of complex landscape structures or materials. For
instance, many testing samples of Self-Blocking Bricks were misclassified as Gravel and
Meadows in the classification results of RF, SVM, and CNN. Meanwhile, many samples
of Meadows were misclassified as Bare Soil by 1DCNN and 3DCNN. By contrast, the
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misclassifications of ACaps and PAR-ACaps were slighter, and only a few samples of
Self-Blocking Bricks were incorrectly classified as Gravel.

To further investigate the effectiveness of the PAR-ACaps for the PU dataset, the
per-classification accuracy is presented in Table 3. As shown by the table, the PAR-ACaps
outperforms the benchmarks in terms of land-use/cover discrimination, especially for the
complex class. For example, the classification accuracies of Meadows and Self-Blocking
Bricks derived from PAR-ACaps were higher than those of the benchmarks.

Table 3. The overall accuracy (%), per-class accuracy (%), and the Kappa coefficients (K) between
the PAR-ACaps and other classification methods in terms of classification accuracy with PU dataset;
class names are in Table 1.

Class No. RF SVM 1DCNN CNN 3DCNN Caps ACaps PAR-ACaps

1 88.41 92.67 99.69 98.18 97.60 94.66 100 100
2 88.23 94.19 98.62 96.38 88.42 90.56 99.79 99.82
3 73.29 84.66 99.79 98.05 91.41 68.39 99.79 99.79
4 96.85 98.66 96.45 98.03 98.55 97.04 97.33 97.45
5 99.29 99.76 99.52 44.70 0.00 100 100 100
6 90.36 93.60 99.17 89.96 98.21 100 100 99.98
7 88.34 92.19 100 99.02 98.29 98.10 100 100
8 69.31 60.37 94.71 94.39 97.74 98.45 94.32 96.39
9 100 100 99.64 96.42 99.64 95.71 98.57 98.03

OA 87.56 91.59 98.59 94.49 90.97 97.46 99.36 99.51
K 0.82 0.87 0.97 0.91 0.87 0.96 0.98 0.99
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As shown in Figure 9, the OAs obtained by the RF, SVM, 1DCNN, CNN, 3DCNN,
Caps, ACaps, and PAR-ACaps for SA dataset were 73.43%, 81.56%, 83.65%, 93.92%, 85.05%,
86.66%, 92.75%, and 94.52%, respectively. The OAs of the benchmarks (i.e., RF, SVM,
1DCNN, CNN, 3DCNN, Caps, and ACaps) were lower than that of PAR-ACaps. Espe-
cially for the RF, SVM, 3DCNN, and Caps, many samples of Corn_senesced_green_weeds
were misclassified as Lettuce_romaine_6wk and Lettuce_romaine_7wk. Specifically, the
classification accuracies obtained by RF, SVM, 3DCNN, and Caps were only 2.93%, 29.66%,
45.64%, and 69.99%, respectively, as shown in Table 4. In addition, many samples of
Lettuce_romaine_4wk were misclassified as Lettuce_romaine_5wk by Caps, and the classi-
fication accuracy was only 79.90%, which is significantly lower than other classifiers. This
led to the OAs of RF, SVM, 3DCNN, and Caps being far lower than those of CNN and PAR-
ACaps. In contrast to the benchmarks, the OA of SA dataset was significantly improved
by PAR-ACaps. Particularly, the classification accuracy of Corn_senesced_green_weeds
was significantly improved and only lower than those of 1DCNN and CNN. Thus, the OA
achieved by PAR-ACaps was the highest, and its outperformance can be clearly seen from
Figure 9.

Table 4. The overall accuracy (%), per-class accuracy (%), and the Kappa coefficients (K) between
the ACaps and other classification methods in terms of classification accuracy with SA dataset; class
names are in Table 1.

Class No. RF SVM 1DCNN CNN 3DCNN Caps ACaps PAR-ACaps

1 99.47 99.47 51.15 100 100 100 100 99.86
2 2.93 29.66 87.78 92.06 45.64 69.99 72.29 82.46
3 87.97 96.83 99.18 96.30 93.35 79.90 99.36 98.18
4 100 100 99.93 99.71 100 93.93 100 98.41
5 100 100 100 99.47 100 97.24 100 99.70
6 99.66 100 100 100 98.99 93.47 99.33 97.99

OA 73.43 81.56 83.65 93.92 85.05 86.66 92.75 94.52
K 0.68 0.77 0.69 0.89 0.81 0.83 0.91 0.93

Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 18 
 

 

Table 4. The overall accuracy (%), per-class accuracy (%), and the Kappa coefficients (K) between 
the ACaps and other classification methods in terms of classification accuracy with SA dataset; class 
names are in Table 1. 

Class No. RF SVM 1DCNN CNN 3DCNN Caps ACaps PAR-ACaps 
1 99.47 99.47 51.15 100 100 100 100 99.86 
2 2.93 29.66 87.78 92.06 45.64 69.99 72.29 82.46 
3 87.97 96.83 99.18 96.30 93.35 79.90 99.36 98.18 
4 100 100 99.93 99.71 100 93.93 100 98.41 
5 100 100 100 99.47 100 97.24 100 99.70 
6 99.66 100 100 100 98.99 93.47 99.33 97.99 

OA 73.43 81.56 83.65 93.92 85.05 86.66 92.75 94.52 
K 0.68 0.77 0.69 0.89 0.81 0.83 0.91 0.93 

 
Figure 9. The classification results of SA dataset obtained by the PAR-ACaps and the benchmarks. 

To check whether the improvement in classification performance of the PAR-ACaps 
had statistically significance, the McNemar’s test was used to analyze the classification 
method for a significance level of 0.05. The McNemar’s test was performed between the 
PAR-ACaps and the benchmarks. The p-values were calculated and are shown in Table 5. 
As shown in Table 5, the p-values were much smaller than 0.05. Thus, the improvement 
of the PAR-ACaps in classification performance appears to be important. 

Table 5. The McNemar’s test results (p-value) derived from the quantitative comparisons of accuracy between the PAR-
ACaps and the benchmarks (RF, SVM, 1DCNN, CNN, 3DCNN, Caps, and ACaps). 

 Dataset RF SVM 1DCNN CNN 3DCNN Caps ACaps 

p-value 
PU 0.0 0.0 2.674×10-12 3.458×10-15 4.327×10-19 1.806×10-16 1.046×10-9 
SA 3.863×10-134 7.238×10-64 9.652×10-32 8.773×10-43 6.984×10-33 6.698×10-38 3.675×10-12 

  

Figure 9. The classification results of SA dataset obtained by the PAR-ACaps and the benchmarks.



Remote Sens. 2021, 13, 2445 12 of 17

To check whether the improvement in classification performance of the PAR-ACaps
had statistically significance, the McNemar’s test was used to analyze the classification
method for a significance level of 0.05. The McNemar’s test was performed between the
PAR-ACaps and the benchmarks. The p-values were calculated and are shown in Table 5.
As shown in Table 5, the p-values were much smaller than 0.05. Thus, the improvement of
the PAR-ACaps in classification performance appears to be important.

Table 5. The McNemar’s test results (p-value) derived from the quantitative comparisons of accuracy between the PAR-
ACaps and the benchmarks (RF, SVM, 1DCNN, CNN, 3DCNN, Caps, and ACaps).

Dataset RF SVM 1DCNN CNN 3DCNN Caps ACaps

p-value PU 0.0 0.0 2.674 × 10−12 3.458 × 10−15 4.327 × 10−19 1.806 × 10−16 1.046 × 10−9

SA 3.863 × 10−134 7.238 × 10−64 9.652 × 10−32 8.773 × 10−43 6.984 × 10−33 6.698 × 10−38 3.675 × 10−12

3.2.2. The Classification Performance of PAR-ACaps with Deeper Architecture

As mentioned above, the proposed model can avoid the gradient vanishing by remov-
ing the coupling coefficient cij from the routing process and then introducing a hyperparam-
eter γ to amplify the gradient. To validate the effectiveness of the modification, the depths
of the model architectures of 1DCNN, CNN, 3DCNN, Caps, ACaps, and PAR-ACaps were
added, and then the classification performance of these models were tested on the PU and
SA datasets. In this experiment, the number of feature extraction layers (convolutional
layers) in 1DCNN, CNN, 3DCNN, Caps, ACaps, and PAR-ACaps were set as 4 and 6.

As illustrated in Figure 10a, the classification performances of 1DCNN, CNN, 3DCNN,
and Caps for PU dataset significantly degenerated with the increase in the number of
convolutional layers. The OAs of 1DCNN, CNN, 3DCNN, Caps, and ACaps decreased from
98.59%, 94.49%, 90.97%, 97.46%, and 99.36% to 91.84%, 88.79%, 84.67%, 94.31%, and 96.76%,
respectively, with a decrease of 6.75%, 5.7%, 6.3%, 3.15%, and 2.60%. Compared with
these benchmarks, the decrement of OA of PAR-ACaps was slighter with a decrease from
99.51% to 97.63%; the decline of PAR-ACaps was only 1.88%. The outperformance of PAR-
ACaps with deeper architecture was also tested and verified on SA dataset (Figure 10b).
The OA of PAR-ACaps decreased by 0.10% from 94.52%. The OA decline of PAR-ACaps
was smaller than those of benchmarks including 1DCNN, CNN, 3DCNN, and Caps,
which decreased from 91.98%, 93.92%, 85.05%, and 86.66% to 85.19%, 87.79%, 81.97%, and
77.18%, respectively.
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Figure 10. The changes of the classification accuracies of the 1DCNN, CNN, 3DCNN, Caps, ACaps,
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In order to compare the classification performances of these models with deeper
architectures in detail, the class-level classification results for PU and SA datasets are
shown in Tables 6 and 7. From Tables 6 and 7, the superiority of PAR-ACaps can be clearly
observed, especially when distinguishing the most-often confused land cover/use types.
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Table 6. The overall accuracy (%), per-class accuracy (%), and the Kappa coefficients (K) of PU dataset
derived from CNN, Caps, ACaps, and PAR-ACaps with relatively deeper architectures.

4 convolutional layers

Class no. 1DCNN CNN 3DCNN Caps ACaps PAR-ACaps

1 98.55 94.83 94.70 88.68 99.27 99.20
2 97.06 87.82 99.05 95.74 98.70 98.75
3 98.15 96.06 98.77 96.72 99.79 99.69
4 97.67 91.71 97.56 91.05 96.89 97.11
5 100 97.94 0.00 99.05 100 100
6 99.65 91.31 93.81 99.58 99.93 99.94
7 100 96.09 88.04 98.45 98.78 99.26
8 90.91 88.25 67.84 87.95 96.13 97.29
9 97.50 95.80 100 87.61 95.00 96.07

OA 97.38 90.25 93.27 94.38 98.70 98.83
K 0.96 0.86 0.90 0.91 0.98 0.98

6 convolutional layers

1 97.99 98.91 81.42 93.09 95.65 97.32
2 90.38 85.99 81.32 93.71 98.01 98.34
3 97.54 98.97 91.20 97.34 97.34 97.95
4 97.11 96.89 98.11 90.63 94.12 95.28
5 98.82 96.75 0.00 98.47 98.35 98.47
6 87.52 99.73 99.86 97.90 99.96 99.82
7 98.78 98.82 99.02 99.02 99.26 99.63
8 87.43 77.19 95.29 94.90 85.37 90.07
9 94.64 96.35 99.64 87.67 90.71 93.92

OA 91.84 88.79 84.67 94.31 96.76 97.63
K 0.88 0.84 0.78 0.91 0.95 0.96

Table 7. The overall accuracy (%), per-class accuracy (%), and the Kappa coefficients (K) of SA dataset
derived from CNN, Caps, ACaps, and PAR-ACaps with relatively deeper architectures.

4 convolutional layers

Class No. 1DCNN CNN 3DCNN Caps Acaps PAR-ACaps

1 100 100 100 100 100 100
2 71.40 68.24 58.61 68.56 75.84 89.43
3 95.56 97.40 90.50 96.04 98.73 98.10
4 100 98.94 100 99.91 100 99.82
5 100 99.84 100 100 100 100
6 99.33 98.32 100 96.99 100 98.66

OA 91.98 92.15 88.08 90.98 93.65 96.80
K 0.90 0.90 0.85 0.88 0.92 0.96

6 convolutional layers

1 100 99.47 100 97.73 100 100
2 47.42 57.66 39.07 44.87 77.50 79.18
3 91.13 92.19 84.17 65.50 98.52 98.10
4 100 99.43 100 97.72 99.94 100
5 100 99.86 100 85.43 100 100
6 98.99 99.44 98.32 90.07 100 100

OA 85.19 87.79 81.97 77.18 94.03 94.42
K 0.81 0.85 0.78 0.72 0.92 0.93

When performed on the PU dataset, the average OAs derived from 1DCNN, CNN,
3DCNN, Caps, ACaps, and PAR-ACaps with four convolutional layers were 97.38%,
90.25%, 93.27%, 94.38%, 98.70%, and 98.83%, respectively. Meanwhile, the OAs of these
methods with six convolutional layers were 91.84%, 88.79%, 84.67%, 94.31%, 96.76%, and
97.63%, respectively. As illustrated in Figure 11, the misclassification phenomenon of
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1DCNN, CNN, 3DCNN, and Caps were more serious than those of ACaps and PAR-
ACaps, whereas the classification results of ACaps and PAR-ACaps with four and six
convolutional layers were approximate to that of ACaps and PAR-ACaps with relatively
shallower architecture, respectively.

As shown in Table 7 and Figure 12, the classification results of SA dataset also indi-
cated that the performances of 1DCNN, CNN, 3DCNN, and Caps significantly degenerated
with the increase in architecture depth. The average OAs derived from 1DCNN, CNN,
3DCNN, Caps, ACaps, and PAR-ACaps were 91.98%, 92.15%, 88.08%, 90.98%, 93.65%, and
96.80%, respectively, whereas the corresponding OAs decreased to 85.19%, 87.79%, 81.97%,
77.18%, 94.03%, and 94.42%, respectively. The numbers of samples that were misclassified
by 1DCNN, CNN, 3DCNN, and Caps increased at a different degree. For example, the num-
bers of samples of Corn_Senesced_green_weeds, misclassified as Lettuce_romaine_6wk or
Lettuce_romaine_6wk, increased with the depths of these networks.
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3.3. Computational Efficiency

For a fair comparison of computational efficiencies among the deep learning-based
classifiers, the input window size of the CNN, 3DCNN, Caps, ACaps and PAR-ACaps were
set as 31 × 31. The training time of these methods with two, four, and six convolutional lay-
ers for both PU and SA datasets are shown in Figure 13. The training time of these models
increased with the number of convolutional layers. The training time of 1DCNN and Caps
were, respectively, the least and the most for both PU and SA datasets. Meanwhile, it can
be clearly seen that the training time of the Caps-based classifier was significantly reduced
by the proposed method (PAR-ACaps) for both PU and SA datasets. The training time
spent by the Caps with a different number of convolutional layers for PU and SA dataset
was about 2 times of those of the ACaps and PAR-ACaps with similar network structures.
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4. Discussion

This paper proposed a kind of powered activation regularization (PAR)-based adap-
tive capsule network (PAR-ACaps) that uses adaptive routing algorithm without iteration
for the purpose of feature relationship learning and PAR method for more discriminative
feature learning. The classification performance of PAR-ACaps was tested on two public
datasets (i.e., PU and SA dataset) and compared with that of the benchmarks including
RF, SVM, 1DCNN, CNN, 3DCNN, Caps, and ACaps. To further verify the effectiveness of
the routing algorithm without iteration, the classification performance of PAR-ACaps with
relatively deeper architecture was also compared with those of 1DCNN, CNN, 3DCNN,
Caps, and ACaps with the same number of convolutional layers. The experimental results
verified that the classification performances of PAR-ACaps with shallow and relatively
deeper architecture were superior to those of the benchmarks in terms of OA, and the com-
putational efficiency of the PAR-ACaps was significantly improved from the original Caps.

Unlike the CNN that uses the pooling layer to reduce the dimension of the features
and avoid the phenomenon of overfit, PAR-ACaps uses the routing algorithm to replicate
the learned knowledge across the space. Thus, the spatial information (e.g., the precise
position of entity) would not be thrown away and the relationship among the features
can be learned. Therefore, the classification performance of PAR-ACaps in terms of OA
is superior to those of 1DCNN, CNN, and 3DCNN. Due to the phenomenon of coupling
coefficient thinning gradually in the training process of Caps, the gradient vanishes and
thus may lead to suboptimal probability distribution. Meanwhile, the PAR-ACaps in-
troduced the hyperparameter γ into the routing process to amplify the gradient, and
the adaptive routing algorithm was thus proposed for solving the problem of gradient
vanishing in Caps. Furthermore, the PAR method was proposed and used to repress the
strength of connections of capsules in adjacent capsule layers, and the sparser, and more
discriminative representation was thus learned to improve the classification performance.
The outperformances of PAR-ACaps with relatively shallower and deeper architectures
demonstrated that the adaptive routing algorithm and PAR method are effective to the
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problem faced by the Caps and ACaps, respectively. Simultaneously, there is no iteration
process in the adaptive routing algorithm, and the computational efficiency of PAR-ACaps
was significantly higher than that of Caps. However, the number of trainable parameters
of the Caps- and ACaps-based classification methods were larger than that of CNN-based
methods, and the training time consumed by Caps and ACaps-based classification methods
were thus far more than those of CNN-based methods.

5. Conclusions

In this study, a new hyperspectral remote sensing classification method based on
an improved adaptive capsule network (PAR-ACaps) was proposed in which gradient
vanishing and overfitting were avoided by using an adaptive routing algorithm. The PAR
method was proposed and used to learn sparser and more discriminative representation.
The performance of the proposed PAR-ACaps was tested with two public datasets (PU and
SA dataset) by measuring the OAs and the training time. The experimental results demon-
strated that the proposed method with shallow and relatively deeper architecture could
always achieve the highest classification accuracies, constantly outperforming benchmark
comparisons including RF, SVM, 1DCNN, CNN, 3DCNN, Caps, and ACaps. In terms of
the computational efficiency, the proposed method has significantly reduced the time con-
sumed by Caps-based method. We, therefore, conclude that the proposed PAR-ACaps has
great potential for the hyperspectral remote sensing classification. However, the pixel-wise
method (PAR-ACaps) cannot reduce the salt-and-pepper noise [32]. To further improve the
classification performance of the Caps-based classifier, object-oriented Caps-based classifier
is needed. In the future, we will further study the object-oriented capsule network.
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