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Abstract

Background: The plant microbiome plays a vital role in determining host health and productivity. However, we
lack real-world comparative understanding of the factors which shape assembly of its diverse biota, and crucially
relationships between microbiota composition and plant health. Here we investigated landscape scale rhizosphere
microbial assembly processes in oilseed rape (OSR), the UK’s third most cultivated crop by area and the world's
third largest source of vegetable oil, which suffers from yield decline associated with the frequency it is grown in
rotations. By including 37 conventional farmers’ fields with varying OSR rotation frequencies, we present an
innovative approach to identify microbial signatures characteristic of microbiomes which are beneficial and harmful
to the host.

Results: We show that OSR yield decline is linked to rotation frequency in real-world agricultural systems. We
demonstrate fundamental differences in the environmental and agronomic drivers of protist, bacterial and fungal
communities between root, rhizosphere soil and bulk soil compartments. We further discovered that the assembly
of fungi, but neither bacteria nor protists, was influenced by OSR rotation frequency. However, there were
individual abundant bacterial OTUs that correlated with either yield or rotation frequency. A variety of fungal and
protist pathogens were detected in roots and rhizosphere soil of OSR, and several increased relative abundance in
root or rhizosphere compartments as OSR rotation frequency increased. Importantly, the relative abundance of the
fungal pathogen Olpidium brassicae both increased with short rotations and was significantly associated with low
yield. In contrast, the root endophyte Tetracladium spp. showed the reverse associations with both rotation
frequency and yield to O. brassicae, suggesting that they are signatures of a microbiome which benefits the host.
We also identified a variety of novel protist and fungal clades which are highly connected within the microbiome
and could play a role in determining microbiome composition.

Conclusions: We show that at the landscape scale, OSR crop yield is governed by interplay between complex
communities of both pathogens and beneficial biota which is modulated by rotation frequency. Our
comprehensive study has identified signatures of dysbiosis within the OSR microbiome, grown in real-world
agricultural systems, which could be used in strategies to promote crop yield.
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Background
The world’s population is projected to be over 9 billion
by 2050 and will require 60% more food [1]. Up to 80%
of this requirement could be met by closing the yield
gap of agricultural crops, which represents the difference
between the actual and achievable yield [1]. Crops may
not reach their achievable yield due to a variety of abi-
otic factors such as climate or crop management as well
as biotic factors [2–4]. In most crops, including maize,
wheat, soybean, sugarcane and oilseed rape, frequent
cropping on the same land is associated with a decline
in yield, of typically between 10 and 30%, and this may
be a key contributor to the yield gap [4]. A major factor
implicated in yield decline is dysbiosis of the rhizosphere
microbiome. Within rotations, break crops are used to
disrupt the life cycles of both pathogens and deleterious
rhizosphere microbiota, reducing the amount of inocu-
lum that can accumulate within soil. Frequent cropping
may result in build-up and carry over of pathogen inocu-
lum, and particularly the development of multi-species
pathogen complexes, which may result in a shift from a
rhizosphere microbiome which benefits the host, to one
which is harmful [4].
Various plant, soil and environmental variables inter-

act with agronomic factors to determine assembly of the
rhizosphere microbiome and its effects on crop health
[2, 3]. While management of the rhizosphere micro-
biome has great practical significance for improving the
sustainability of agricultural systems, we lack a system-
atic comparative understanding of the relative import-
ance and interactions of the varied factors which shape
the rhizosphere microbiota, and its consequences for
crop health and yield, under real-world settings [5–8].
Importantly, despite widespread recognition of the im-
portance of establishing causative links between plant
health and the rhizosphere microbiome [9], field-based
ecological analysis of the rhizosphere microbiome re-
mains descriptive and functional interpretation of micro-
biome composition is still largely based on profiling
specific microbial taxa which have known beneficial or
detrimental impacts on plant health and nutrition, such
as pathogens and mycorrhizal fungi [10, 11]
Eukaryotes such as fungi, and particularly protists are

largely neglected in studies of the plant microbiome [5,
12–14] despite their important contribution to plant
health and regulation of the structure and function of
microbial communities [15, 16]. Recent evidence sug-
gests strong eukaryote-bacteria interactions within the
rhizosphere which may control community stability and
confer host resistance to pathogens [17], emphasising
the need for holistic analysis of microbiome composition
and interaction pathways when considering rhizosphere
functions. Furthermore, studies have largely focused on
either the root-associated or rhizosphere soil

community, with few comparative studies, despite evi-
dence suggesting that drivers of community assembly in
these compartments will be different, reflecting the con-
trasting importance of direct and indirect plant-
interaction pathways [16, 18].
Oilseed rape (Brassica napus) is the third most culti-

vated crop in the UK and the world's third largest source
of vegetable oil, with 70 million tonnes produced annu-
ally worldwide [19, 20]. Field experiments have indicated
that oilseed rape (OSR) yield declines proportionally
with the frequency it is grown in rotation, and yield
losses of up to 25 % have been reported [21–25]. This
has been associated with changes to rhizosphere bacter-
ial and fungal community composition, and increased
abundance of a number of putative pathogens [21, 26],
but the nature of the microbial interactions which
underlie a shift from a beneficial to a deleterious micro-
biome remain elusive.
In the current study, we used a landscape sampling ap-

proach to link the relationship between the below-
ground OSR microbiome and plant health. OSR root,
rhizosphere soil and bulk soil compartments were sam-
pled from 37 commercial farms in the UK, which were
chosen to include a range of OSR cropping frequencies
within rotations. Comprehensive analysis of metadata
across sites was used to identify the specific manage-
ment practices, climatic variables and soil physico-
chemical properties which determined assembly of each
microbial kingdom within the compartments. We identi-
fied root and rhizosphere specialist microbial taxa, in-
cluding several novel rhizosphere protist and fungal
clades. Lastly, we characterised microbial co-occurrence
patterns within the root and rhizosphere compartments
and used these to identify microbial taxa which were
positively or negatively associated with both OSR rota-
tion frequency and OSR yield, thereby identifying puta-
tive microbial signatures of crop health.

Materials and methods
Sample collection
Thirty-seven OSR field sites from 25 commercial farms
located within the main UK OSR growing region were
sampled in March 2015 (Fig. 1). Agronomic metadata
for each farm was collected including rotation length
(years since OSR was grown previously), cropping his-
tory, sowing date, variety, pesticide use and the subse-
quent seed yield (Supplementary Tables 1 and 2).
Meteorological data for rainfall and temperature at each
field site were obtained from the UK Met-Office (www.
metoffice.gov.uk). Soil textural analysis was determined
using laser diffraction at NRM Laboratories Ltd.
Samples were taken using a W-shaped sampling pat-

tern starting at least 25 m into the field to avoid edge ef-
fects. Five ‘W’ transects were marked out with canes 10
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m apart with each ‘W’ measuring 8 m × 4 m. Plants
closest to the canes were selected and were removed
from the ground with roots attached. Five plants from
each ‘W’ were pooled resulting in 5 composite samples
per field site. Bulk soil samples were collected from
plant-free areas close to the canes using an auger to a
depth of 20 cm and were pooled as above. All samples
were stored at 4 oC overnight and processed the follow-
ing day. Loosely adhering soil was removed from the
roots leaving no more than 2 mm rhizosphere soil. Ap-
proximately 6 g of roots with closely adhering soil were
vigorously washed sequentially in 4 × 25 ml sterile dis-
tilled water to release the rhizosphere soil which was
then centrifuged (3250×g for 10 min) and the excess
water drained to leave a pellet of rhizosphere soil.
Washed roots that were less than 2 mm diameter were
cut into approximately 5 mm pieces to yield root sam-
ples (comprising of closely associated rhizoplane and en-
dophytes). Bulk soil samples were sieved through a 7
mm, then 2 mm sieve, and approximately 6 g was
washed in sterile distilled water using the same sequen-
tial washing method as the rhizosphere soil samples to
ensure bulk soil and rhizosphere soil samples were
comparable.

Soil chemical analysis
All analysis was carried out using the procedures and
methodologies of Rothamsted Research’s Analytical
Chemistry Unit. For each replicate, pooled bulk soil
samples were sieved through a 2 mm steel mesh and air
dried for approximately 2 weeks. Soil pH was measured
with an Orion-3-star pH meter (Thermo Scientific).
Nitrate, ammonia and available (Olsen) phosphorus

concentrations were determined using a Skalar SANPLUS

System, Analytical BV, Breda, Netherlands as per the
manufacturer’s instructions [27, 28]. Extractable sulphur
was analysed via the Optima 7300 DV Inductively
Coupled Plasma - Optical Emission Spectrometer (ICP-
OES) (Perkin Elmer Life and Analytical Sciences, 710
Bridgeport Avenue, Shelton, CT 06484 USA) after
KH2PO4 extraction. To determine the concentration of
extractable major and trace elements (see Supplementary
Table 2) an NH4NO3 extraction was carried out and
analysed by ICP-OES (Perkin Elmer Life and Analytical
Sciences, 710 Bridgeport Avenue, Shelton, CT 06484
USA). To detect total major and trace elements (see
Supplementary Table 2), approximately 5 g of air dried
sieved soil was milled using a Retsch mill PM 400
(Christison Scientific, Albany Road, Gateshead, NE8
3AT, UK) for 6 min at 250 rpm. Aqua regia digestion of
soil was performed and the subsequent extract was ana-
lysed using an ICP-OES (Perkin Elmer Life and Analyt-
ical Sciences, 710 Bridgeport Avenue, Shelton, CT 06484
USA) [29]. A LECO TruMac Combustion Analyser (St.
Joseph, MI, USA) was used to measure total N and total
C. Inorganic C was determined by phosphoric acid di-
gestion and analysis on a Skalar Primacs Analyser, Skalar
Analytical BV, Breda, Netherlands.

DNA extraction
Root, rhizosphere soil or bulk soil samples (250 mg)
were randomised across six 96-well plates and extracted
using the PowerSoil-htp™ 96 Well Soil DNA Isolation
Kit (MoBio Laboratories, Carlsbad, CA, USA) following
the manufacturer’s recommendations, except the sam-
ples were homogenised in a TissueLyser II (Qiagen) at
20 Hz for 2 × 10 min with a 180o rotation of the plates
between homogenisations. Quality and quantity of DNA
was checked on a Nanodrop (Thermo Scientific).

Sequencing
For each sample, 10 ng of DNA was used to amplify
either the fungal ITS2 region (fITS7-ITS4) [30], the V3-
V4 region of the bacterial 16S rRNA gene (341F and
806R) [31, 32], or the V1–V3 region of the eukaryotic
18S rRNA gene (Euk-A and Euk-570R) [33]. The primer
sets were modified at the 5′ end with adapters from a
dual-index sequencing strategy [34]. PCR reactions were
performed in a reaction volume of 25 μl, containing Q5®
Hot Start High-Fidelity 2X Master Mix (New England
Biolabs) and 0.5 μM of each primer. Cycling conditions
for 16S were as follows: 95 oC for 2 min, 30 cycles of 95
oC for 30 s, 55 oC for 30 s, 72 oC for 5 min and then
final extension of 72 oC for 10 min. Cycling conditions
for ITS were as follows: 95 oC for 2 min, 30 cycles of 95
oC for 30 s, 52 oC for 30 s, 72 oC for 2 min and then
final extension of 72 oC for 10 min. Cycling conditions

Fig. 1 Location of the 37 sites sampled in this study. The rotation
range (years since OSR was last grown) is indicated. Virgin is OSR
grown for the first time
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for 18S were as follows: 95 oC for 2 min, 30 cycles of 95
oC for 20 s, 57 oC for 15 s, 72 oC for 5 min and then
final extension of 72 oC for 10 min. The amplicons were
purified and normalised using the SequalPrep™
Normalization Plate Kit (Invitrogen). The libraries were
sequenced using the Illumina MiSeq Reagent Kit v3
(600-cycle) on a total of nine MiSeq runs. Following se-
quencing, Trimmomatic v0.35 was used to remove low-
quality bases from the sequence ends [35]. The following
steps were then performed using USEARCH and
UPARSE software [36, 37]. Paired-ends reads (16S rRNA
and ITS) were assembled by aligning the forward and re-
verse reads and quality filtering (-fastq_maxee 0.5). For
18S rRNA, the forward read alone was truncated to 225
nt due to the large size of the amplicon which meant
that reads would not overlap. Unique sequences were
sorted by abundance, then singletons (usearch -sortby-
size–minsize 2) were discarded from the dataset. Se-
quences were clustered to OTUs at 97% minimum
identity threshold (usearch-cluster_otus), where chi-
meras are removed using chimaera filters integrated into
the algorithm. Further chimeras were removed using
-uchime ref and the databases used for taxonomy assign-
ment. Taxonomy was assigned using Quantitative In-
sights into Microbial Ecology (QIIME 1.8) [38] and the
Greengenes reference database (gg_13_8) for 16S rRNA
[39], the UNITE database (version 7.0) for ITS [40], or
the SILVA database (release 119) (with taxonomies cross
referenced with the PR2 (version 4.10.0) database) for
18S rRNA [41, 42]. Bacterial OTUs were retained from
the 16S rRNA dataset and OTUs representing mito-
chondrial and chloroplast 16S rRNA sequences were re-
moved, resulting in 8,633,474 bacterial reads. Fungal
OTUs were retained from the ITS dataset resulting in
14,259,717 fungal reads. From the 18S rRNA dataset, se-
quences from Archaeplastida, fungi and metazoa were
removed to leave predominantly single-celled eukary-
otes, referred to hereafter as protists, resulting in 4,889,
204 reads. To account for differences in sequencing ef-
fort, we decided on a random sub-sampling approach,
due to the large differences in library sizes (Weiss et al.
2017). The exclusion of reads resulting from this was
shown to not change broad patterns as a function of
rarefaction depth (Supplementary Table 3). OTU ta-
bles were rarefied according to an even sampling
depth that resulted in the retention of the majority of
samples (over 98%) or at least 1000 reads. This re-
sulted in 5000 bacterial reads, 2000 fungal reads and
1000 protists reads per sample and a total of 14,256
bacterial OTUs, 5714 fungal OTUs and 2150 protist
OTUs. Rarefaction curves for the three amplicons are
shown in Supplementary Figure 3. More details of the
reads and OTUs removed and retained is shown in
Supplementary Table 4.

Statistical analyses
Direct ordination was used to relate the variability in the
distribution of microbes to agricultural management
practices, soil characteristics, climatic variables (Supple-
mentary Tables 1 and 2) and geographical distance.
Principle coordinates of neighbour matrices (PCNM)
were used as explanatory spatial variables [43–45] and
were calculated from grid coordinates of the sites using
GUSTA ME [46]. Community data underwent Hellinger
transformations [47] before undergoing direct ordination
analyses. Analyses were performed in CANOCO v5.0
[48]. Principal components analysis (PCA) was first used
to reduce the number of environmental variables taken
forward to further analyses. PCNM and the environmen-
tal variables that significantly explained variation in mi-
crobial communities were determined with forward
selection (999 Monte Carlo permutations; false discovery
rate (FDR) P < 0.05) and used in redundancy analysis
(RDA) [49]. Partial redundancy analysis was performed
when both PCNM and environmental variables were sig-
nificant to summarize the part of species composition
variation explained by environmental variables, after
removing the effects of geographic distance (PCNM).
Alpha diversity metrics (Fisher’s alpha) and non-

metric multidimensional scaling (NMDS) [50] were cal-
culated using the vegan package in R and plots created
with ggplot2 [51, 52]. Ternary plots were created with
ggtern in R, using the 1000 most abundant OTUs from
each taxa [51, 53].
The FUNGuild v1.0 database was used to assign eco-

logical functions (trophic modes) to each OTU [54]. We
accepted guild assignments that had a confidence of
“highly probable” or “probable” and used the OTUs that
assigned to a single trophic mode which resulted in 676
OTUs (11.8% of total OTUs), representing 41.4% of
reads. Rotations lengths were binned into groups of
short (1 in 2 years to 1 in 4 years), medium (1 in 5 years
to 1 in 7 years) and long (1 in 8 years and longer).
Significant differences in Fisher’s alpha and FUNGuild

trophic modes were evaluated with the Kruskal–Wallis
rank sum test. P values were corrected for multiple com-
parisons with a Dunn’s test using the FDR with the
Benjamini–Hochberg method.

Network analysis
OTUs accounting for the top quartile of relative abun-
dance were filtered to remove those which did not occur
in at least 3 of the replicates for each sample type. OTU
tables were combined for each compartment, resulting
in 4642 OTUs in bulk soil, 4301 in rhizosphere and
2705 in roots which were used in network analysis. Cor-
relations were calculated using the Sparse Correlations
for Compositional data algorithm (SparCC), and P values
calculated using 1000 bootstraps [55]. Networks were
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produced by retaining edges with a correlation ≥ ± 0.4
and P ≤ 0.05 and were analysed in R [56] using the pack-
age iGraph [57]. Modules were calculated by the fast
greedy algorithm [58]. Within module degree and
among module degree were used to assign roles to nodes
[59]. Networks were visualised using ggplot2 [51]. Pear-
son’s correlations between relative abundance of each
OTU and rotation length and yield were calculated, and
P values corrected using FDR. Edges representing a cor-
relation of P ≤ 0.05 and R ≥ + 0.2 or ≤ − 0.2 to rotation
or yield were added. Chord plots were produced in the
circlize package in R [56, 60]. Core networks were pro-
duced as above using the twenty most abundant OTUs
from bacteria, fungi and protists together with yield and
rotation length [61].

Phylogenetic analysis
Phylogenetic trees of novel OTUs were produced. These
included the 18S rRNA sequences corresponding to the
ITS sequences of novel fungal OTUs as well as the 18S
rRNA sequences of novel protist lineages. Further OTUs
which were closely related to these (>95% sequence
identity) were included, along with their most closely re-
lated sequences downloaded from NCBI GenBank. Se-
quence alignments were generated using MAFFT v.7 (e-
ins-i algorithm) [62] and masked to omit ambiguously
aligned positions. Phylogenetic analyses were performed
on the CIPRES Science Gateway [63]. Maximum likeli-
hood analyses were performed with RaxML v 8 [64, 65].

Results
Links between yield and metadata
Of the 53 continuous metadata variables taken (Supple-
mentary Tables 1 and 2), only rotation length (years
since last OSR grown) and available potassium (K)
showed a significant correlation with yield (FDR P <
0.05) (Supplementary Figure 2). Linear regression con-
firmed a positive relationship between yield and rotation
length; F(1, 32) = 15.1, P < 0.001, R2 = 0.3206 (Fig. 2).

Landscape microbial diversity, composition and
distribution
In all microbial kingdoms, alpha diversity (Fig. 3a) was
significantly greatest in the bulk soil, reduced in the
rhizosphere and was lowest in the roots (Kruskal–Wallis,
FDR P ≤ 0.001). Bacterial diversity was approximately
10-fold higher than that of fungi or protists (Fig. 3a).
Taxa which increased in relative abundance as the com-
partment shifted from bulk soil (BS) through rhizo-
sphere (RH) soil to root (RO) were the bacterial phyla
Proteobacteria (⍺) (BS = 14.4%, RH = 15.7%, RO =
23.4%), Proteobacteria (β) (BS = 4.0%, RH = 8.4%, RO =
17.1%) and Bacteroidetes (BS = 16.9%, RH = 21.0%, RO
= 25.0%), the fungal classes Chytridiomycetes

(Chytridiomycota) (BS = 12.4%, RH = 24.6%, RO =
64.1%) and Leotiomycetes (Ascomycota) (BS = 3.5%, RH
= 5.9%, RO = 12.5%) and the protist groups Rhizaria (BS
= 45.1%, RH = 47.2%, RO = 61.7%) and Stramenopiles
(BS = 20.8%, RH = 28.6%, RO = 33.2%) (Fig. 3b).
For each microbial kingdom, we investigated the dis-

tribution of OTUs within compartments using ternary
plots (Fig. 3c). The distribution of OTUs was found to
vary between microbial kingdoms. All kingdoms pos-
sessed a large number of OTUs shared between the bulk
soil and rhizosphere soil (red). However, in the bacteria
there were also many OTUs predominantly found in the
root (green), and a continuum between the bulk soil/
rhizosphere and root OTUs (Fig. 3c). There was a dis-
tinct lack of a rhizosphere soil selected bacterial commu-
nity, with only one abundant rhizosphere soil-specific
OTU (B12), which had 100% sequence identity to Flavo-
bacterium fluminis (Bacteriodetes) [KF891387] (Fig. 3c,
Supplementary Table 5a).
Within the fungi, dominant root-specific OTUs in-

cluded F2 which had 100% sequence identity to
Olpidium brassicae [AB205212], F8 which had 98%
sequence identity to Cadophora sp. [KT269668] and
F19 which had 100% sequence identity to Tetracla-
dium maxilliforme [KX610446] (Fig. 3c, Supplemen-
tary Table 5b). In contrast to the bacteria, the fungal
microbiome had a distinct rhizosphere soil selected
community including F22 which had 100% sequence
identity to Pyrenopeziza brassicae [MF187548], a
group of OTUs within the class Tremellomycetes and
the abundant OTUs F9 and F17 (Fig. 3c). OTUs F9
and F17 had low identity to Genbank sequences, and
detailed phylogenetic analysis placed F9 within a clade
comprised of members of the genus Rozella (Rozel-
lida) [66, 67] (Supplementary Figure 3a), while F17
was placed within the newly described order

Fig. 2 Linear regression showing a statistically significant
relationship between seed yield data (collected from each site) and
rotation length (years since OSR was last grown) (P < 0.001, R2 of
0.3206). The shaded region is a representation of the 95%
confidence limits for the estimated prediction
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Fig. 3 (See legend on next page.)

Hilton et al. Microbiome            (2021) 9:19 Page 6 of 15



Lobulomycetales (phylum Chytridiomycota) (Supple-
mentary Figure 3b) [68].
The protists lacked a specific rhizosphere soil selected

community but shared several dominant OTUs between
the rhizosphere soil and root, which included P87 which
had 99% sequence identity to Spongospora nasturtii
[AF310901] and P24 which had 99% sequence identity
to uncultured eukaryotes found in soil and was assigned
to the genus Lagenidium [LC160286] (Fig. 3c, Supple-
mentary Table 5c). One abundant OTU was found
equally in all compartments (P65) and was 98% similar
to species within the genus Phytophthora [HM161752].
Abundant root-specific protists included P82, which had
98% sequence identity to Spongospora subterranea
[AY604173] and P14, which had 93% sequence identity
to an uncultured Stramenopile extracted from a marine
water sample [JQ781890] (Fig. 3c, Supplementary Table
5c). Detailed phylogenetic analysis of P14 placed it and
related sequences from this study to a new clade close to
the Oomycete orders Olpidiopsidales s.l. (which includes
parasites of red and brown algae) and Haliphthorales
(crustacean parasites) (Supplementary Figure 3c).
We used FUNGuild to assign functional roles to OTUs

and found a large and highly significant (P < 0.001) in-
crease in the relative abundance of pathotroph reads in
the root compared with rhizosphere and bulk soil (Sup-
plementary Figure 4). There was also a significantly
higher relative abundance of pathotroph reads in the
short rotations compared with long rotations in all

compartments (P < 0.01). Saprotrophs showed the op-
posite trend regarding rotation length group and had
higher abundance in long rotations compared with short
rotations in all compartments (P < 0.05). There were
very few symbiotrophs, which showed no observable pat-
tern (Supplementary Figure 4).

Drivers of microbial community assembly
We used redundancy analysis (RDA) to relate variability
in the distribution of microbiota to explanatory variables
(Table 1). Bulk soil pH accounted for most of the com-
munity variation in every compartment in all microbial
kingdoms, accounting for 14.4–36.8% of the variation in
the communities, with differing effects on each compart-
ment for each microbial kingdom (Table 1). The import-
ance of pH in determining community composition
across compartment and taxonomic groups was clearly
visualised using non-metric multidimensonal scaling
(NMDS) of Bray-Curtis similarity (Fig. 3d).
Rotation length accounted for 5.2–11.5% of fungal

community variation in the rhizosphere soil and roots,
but did not account for any variation in bacterial or pro-
tist communities. Annual rainfall and annual
temperature accounted for a small amount of variation
in the composition of the rhizosphere soil fungi (6.8%)
and root protist communities (5.8%), respectively. The
nutrients Ca, Mg and Mn also contributed to variation
across the taxonomic groups (Table 1), with Ca a par-
ticularly important contributor to bacterial communities

(See figure on previous page.)
Fig. 3 Analyses of bacteria, fungi and protist communities in the three compartments, bulk soil, rhizosphere soil and root. a Fisher’s alpha
diversity. b Stacked barplots showing the relative abundance of taxa. Taxonomic groups with a relative abundance of under 1% in all
compartments were combined into the low abundance group. c Ternary plots of distribution of OTUs among compartments. B3 = Methylotenera
mobilis, B4 = Flavobacterium succinicans, B12 = Flavobacterium fluminis, F2 = Olpidium brassicae, F8 = Cadophora sp., F9 = Rozella sp., F17 =
Lobulomycetales sp., F19 = Tetracladium maxilliforme, F22 = Pyrenopeziza brassicae, P14 = Haliphthorales sp., P24 = Lagenidium sp., P65 =
Phytophthora sp., P82 = Spongospora subterranean and P87 = Spongospora nasturtii. d Non-metric MDS analysis of the microbial community
estimated by Bray-Curtis similarity of the bacterial, fungal or protist rRNA amplicons identified to OTU level. Compartments are highlighted by
convex hull and point shape. pH of the bulk soil where the sample was taken is shown by the colour scale

Table 1 Redundancy analysis determining the percent variation of the bacterial, fungal and protist communities in the different
compartments explained by environment and distance (PCNM). Variables which caused over 5% variation in any compartment are
included in the table. Nutrients are denoted with either T (total) or A (available). Partial redundancy analysis was performed, when
both PCNM and environmental variables were significant, to summarise the part of the species composition variation explained by
environmental variables after removing the effects of geographic separation (environment-distance)
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(6.4 to 10.8%) across all 3 compartments. Geographic
separation (PCNM) accounted for variation in the fungal
bulk soil (14.5%) and rhizosphere soil communities
(20.7%), and the protist bulk soil (7.4 %) and root
(12.5%) communities (Table 1). Partial RDA (Environ-
ment-PCNM), which summarised the part of species
composition variation explained by environmental vari-
ables after removing the effects of geographic separation,
reduced the variation by environment alone, suggesting
that the effects of geographic separation were due to a
combination of dispersal limitation and environmental
differences (Table 1).

Inter-kingdom co-occurrence networks in OSR
microbiomes
To build novel insights into co-occurrence and co-
exclusion patterns within the microbiome of OSR at the
landscape scale, inter-kingdom microbial interaction
networks for the bulk soil, rhizosphere soil and root
were generated (Supplementary Figure 5). Connectivity
(measured by density) was highest in the bulk soil, low-
est in the rhizosphere soil and intermediate in the roots
(Table 2). However, modularity was highest in the rhizo-
sphere soil, indicating a greater number of connections
within modules than between (Table 2, Supplementary
Figure 5). Bacteria formed most of the connections in
the multi-kingdom networks, predominantly with other
bacteria (Table 2). This was partially due to the larger
number of bacterial OTUs inputted into the networks,
but accounting for this, a greater proportion of bacterial
connections were observed than expected. However,
there were a substantial number of inter-kingdom con-
nections, which shifted from predominantly bacteria-
fungi to bacteria-protists as the compartment moved
from bulk soil, through rhizosphere soil to root
(Table 2).
We visualised the connections between taxa in each

compartment using chord plots and included yield and

rotation as nodes. These demonstrated that the connec-
tions remained remarkably similar between the bulk soil
and the rhizosphere soil, which differed substantially to
the root (Fig. 4a). In the bulk soil and rhizosphere soil
networks, most connections were from the Proteobac-
teria (23%) and Actinobacteria (23%), whereas in root
networks the Proteobacteria formed a larger proportion
(45%) of connections, while only 1% of connections in-
volved Actinobacteria. There was also greater enrich-
ment of connections involving Bacteroidetes, Chloroflexi,
Stramenopiles and Rhizaria in the root, relative to the
rhizosphere and bulk soil (Fig. 4a). It is noteable that in
the roots, the majority of connections associated with
yield were with the Proteobacteria and Bacteroidetes.
Nodes (representing connected OTUs) were assigned

network functions based on their among and within mod-
ule connectivity (Fig. 4b). These allowed us to identify
hubs (highly connected nodes), likely to act as keystone
taxa that drive and maintain community structure and
function. Within the bulk soil networks, hubs included the
highly abundant bacterial OTUs B7, B10 and B50, which
all had 100% sequence identity to uncultured bacteria iso-
lated from soil and were assigned to the Cytophagaceae,
Acidobacteria and Skermanella, respectively (Fig. 4b, Sup-
plementary Table 5). B7 (Cytophagaceae) and B50 (Sker-
manella) were also hubs in the rhizosphere soil along with
B3, which had 97% sequence identity to Methylotenera
mobilis [NR_102842] and 100% identity to other uncul-
tured bacteria found in soil, leaf litter and freshwater [69],
B4 which had 99% sequence identity to Flavobacterium
succinicans (Bacteriodetes) [MG575969], and B5 which
had 100% sequence identity to Bradyrhizobium sp.
[MH118326]. The only hubs retained in the root network
were B3 (Methylotenera mobilis) and B4 (Flavobacterium
succinicans) (Fig. 4b).
Within the fungi, the most connected OTUs (F10,

F10569) in the bulk soil were assigned to Mortierella,
with F10569 designated a module hub (Fig. 4b). In the

Table 2 Network statistics for the co-occurrence networks for each compartment. Number of input OTUs used in the network are
shown in the top panel
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rhizosphere soil, there were no designated module hubs;
however, F9 (Rozella sp.) had 64 connections, notably
higher than the average of 2 connections for the other
highly abundant OTUs (Fig. 4b, Supplementary Table
5b). The most connected fungal OTU in the root com-
partment was F19 (Tetracladium maxilliforme) with 29
connections (Fig. 4b, Supplementary Table 5b).
Several protists had a very high number of connections,

although none were designated as hubs. In the rhizo-
sphere soil and root, the most connected was P14
(Haliphthorales sp.) (95 and 73 connections respectively).
The only protist to have more connections in the root
than in rhizosphere soil was P82 (Spongospora subterra-
nea) (44 and 17 connections respectively) (Supplementary
Table 5c). There were several other highly connected pro-
tists in the rhizosphere including P87 (Spongospora
nasturtii) (45 connections) and P24 (Lagenidium sp.) (24
connections) (Supplementary Table 5c, Fig. 4b).

Correlations with yield and rotation
We produced core networks to explore connections be-
tween the most abundant OTUs in the rhizosphere and

root (from Supplementary Table 5c) and correlations
with yield and rotation (Fig. 5). Rotation length and yield
generally did not correlate with network hubs or highly
connected nodes in the rhizosphere or root and tended
to separate from the main network. However, there were
the exceptions of hub B4 (Flavobacteria succinicans)
which had a positive correlation with yield in the rhizo-
sphere soil, and also highly connected F19 (Tetracla-
dium maxilliforme) which had a positive correlation
with both rotation length and yield in the root (Fig. 5).
Most correlations with yield and rotation length in the

root were with less connected but abundant OTUs
(Fig. 5). The relative abundances of several OTUs were
correlated with both yield and rotation length, including
the fungus O. brassicae (F2) and the amoebozoan Cera-
tiomyxella tahitiensis (P90) which increased in relative
abundance in shorter rotations, and were associated with
reduced yield, while Tetracladium maxilliforme (F19)
and Tetracladium furcatum (F1088), showed the reverse
trend, increasing in relative abundance with higher yields
and longer rotations. Notably, no bacterial OTUs were
associated with both yield and rotation length (Fig. 5).

Fig. 4 Multi-kingdom OTU networks in the bulk soil, rhizosphere soil and root. a Chord plots illustrating the distribution of correlations between
high-level taxonomic groups and yield and rotation. The plot includes all correlations, i.e. does not distinguish between positive and negative
correlations. Thickness of the ribbon indicates proportion of nodes within each group, which is shown on the outside circle. b Network functions
of nodes (connected OTUs). Each node was assigned a role according to its topological properties. The within module degree measures how
well-connected a node is to other nodes in the same module (y-axis). The among module connectivity measures how well-distributed the links
of a node are among different modules (x-axis). Solid markers indicate the node was one of the 20 most abundant OTUs of their
respective kingdom
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The relative abundance of a range of OTUs was corre-
lated with rotation length but not yield in root or rhizo-
sphere soil compartments. Bacterial OTUs (B28, B32,
B25, B8, B48 and B24) from a range of phyla, together
with Cadophora sp. (F8), Lagena radicola (P26) and Phy-
tophthora sp. (P65) had increased relative abundance in
shorter rotations (Fig. 5). In contrast, several OTUs in-
creased in relative abundance in the root or rhizosphere
soil in longer rotations, including two Tetracladium
OTUs (F26 and F1564), Gibbelulopsis nigrescens (F4),
Rozella sp. (F9), Lobulomycetales (F17), Mortierella
(F28) and several bacterial OTUs (B11, B43 and B16).
Similarly, a number of OTUs in either the root or rhizo-

sphere compartments correlated with yield but not rota-
tion length. This included Pyrenopeziza brassicae (F22),
Glissomonadida (P8) and Protaspis grandis (P29) which
increased in relative abundance with reduced yields, while
increased yield was correlated with the increased relative
abundances of Flavobacterium OTUs (B4, B15), Rhodo-
bacter (B20), Gibellulopsis nigrescens (F4), Podospora
(F1106) and Botryotrichum (F11) (Fig. 5).
Although direct correlations were sparse between highly

connected nodes and rotation and/or yield, they were
however connected to yield and rotation via other nodes.
For instance, the highly connected protist P14
(Haliphthorales sp.) had no direct correlations with yield
and/or rotation, but correlated via other nodes. These in-
cluded a negative correlation to F19 (Tetracladium maxil-
liforme) and a positive correlation with F2 (O. brassicae)
in the root, and a negative correlation with B4 (Flavobac-
teria succinicans) and a positive correlation with F22
(Pyrenopeziza brassicae) in the rhizosphere soil (Fig. 5).

Discussion
Local scale field experiments have previously indicated
that OSR yield is affected by rotation frequency [21, 70];
however, it remained unknown whether this

phenomenon occurs in real-world cropping systems.
Using a landscape sampling approach, incorporating
commercial farms across a wide geographical area that
use differing soil types and management regimes, we
have characterised factors which shape the rhizosphere
microbiome of OSR and its relationship with crop
health. This comprehensive study revealed that specific
environmental and agronomic drivers of community as-
sembly vary between microbial kingdoms and between
root and rhizosphere compartments. Importantly, we
show that at a landscape scale, OSR yield was associated
with rotation frequency, and we have identified key mi-
croorganisms, particularly root associated fungi, which
are associated with yield and/or rotation, and which
could be putative indicators of crop health.
In particular the relative abundance of O. brassicae

(F2) increased in roots in shorter rotations that suffered
from reduced yields, while Tetracladium maxilliforme
(F19) and Tetracladium furcatum (F1088), showed the
reverse trend. While correlation does not prove an asso-
ciation with yield, several factors point to these fungi be-
ing important determinants of plant health in the field.
First and foremost, across all farm sites, O. brassicae was
the single most abundant component of the root associ-
ated microbiome, and has also been found to be the only
member of the fungal core microbiome of Canola in a
field experiment in Canada [71]. Secondly, our earlier
work showed that O. brassicae increased in abundance
as OSR rotation frequency increased at an experimental
field site in the UK, and we further showed that it can
reduce OSR growth in glasshouse bioassays [21]. Tetra-
cladium spp. are known as aquatic hyphomycetes, but
have frequently been detected as endophytes in roots of
a variety of crop species [72, 73] and proven to be bio-
logically active in this niche [74]. Here, we show that
multiple Tetracladium OTUs are not only widespread
but also abundant within the roots, but not the

Fig. 5 Core networks comprising of the twenty most abundant OTUs from each kingdom including yield and rotation as nodes. a Rhizosphere, b
Root. Pearson correlation coefficients and P significance values to yield and rotation are shown in Supplementary Table 5
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rhizosphere soil of OSR. Importantly, the relative abun-
dance of the two most abundant Tetracladium OTUs
positively correlated with both yield and rotation. While
Brassicaceae are unable to produce mycorrhizal associa-
tions, some Helotiales fungal root endophytes related to
Tetracladium have been shown to act as plant symbionts
which promote growth and P supply [75]. Together, our
data collected from field-grown OSR at the landscape
scale, reveals Tetracladium spp. likely provide beneficial
functions to the plant affecting its yield.
In addition, a variety of fungal generalist plant patho-

gens were also found to be abundant and widespread
members of the OSR microbiome. This included, Cado-
phora sp. (F8), Fusarium merismoides (F5), Intersonilia
sp. (F79), Pyrenochaeta sp. (F59) and Pyrenopeziza bras-
sicae (F22). The oomycete plant pathogens Lagena radi-
cola (P26) and Phytophthora sp. (P65) were also
abundant in both roots and rhizosphere soil. Relative
abundance of Cadophora sp. in both the rhizosphere
and root compartments, and Phytopthora sp. and Lagena
radicola in the rhizosphere and roots respectively, in-
creased with short rotations. Enrichment of these patho-
gens with increased cropping of OSR in the rotation
provides evidence that yield decline is associated with
the development of a deleterious rhizosphere micro-
biome comprising multiple pathogens. While the
remaining pathogens had no association with OSR rota-
tion frequency, they had relatively low occupancy within
the root, suggesting drivers other than rotation fre-
quency were responsible for local abundance. These
fungi have the potential to affect yield locally and add to
the pathogen pressure which develops by repeated crop-
ping of OSR. For example, Pyrenochaeta sp. has been
shown to be locally abundant in OSR rhizosphere and
roots and have a negative correlation with yield [70], and
also has the potential to reduce growth of OSR in la-
boratory bioassays [21].
Although many OTUs were not assigned a trophic

mode during FUNGuild analysis, there was still a signifi-
cant increase in pathotrophs in the root and in short ro-
tations in each compartment. Saprotrophs showed the
reverse trend, and were more abundant in the long rota-
tions. Interestingly Tetracladium was classified as a
saprotroph rather than a symbiotroph, which could
partly account for the increase in saprotrophs detected
in long rotations.
While the bacterial and protist communities were not

influenced by rotation, there were abundant OTUs
which correlated with yield and/or rotation. A single
root Rhodobacter OTU (B20) and two rhizosphere soil
Flavobacteria (B4 and B15) positively correlated with
yield, but none of these taxa correlated with OSR rota-
tion frequency. While the protists Glissomonadida (P8)
in the root and Protaspis grandis (P26) in the

rhizosphere correlated with low yield. Furthermore, an
Amoebozoan related to Ceratiomyxella tahitiensis (P90)
correlated to both increased OSR cropping frequency
and reduced yield. The functional significance of these
associations is unclear. Pathogenic and mutualistic asso-
ciations are the best understood rhizosphere interac-
tions, although microbes can affect plant health through
other mechanisms such as effects on nutrient availability
and microbe-microbe competition. While several Amoe-
bazoa are known as human pathogens, most are consid-
ered saprophytes [76], and similarly the fungi Podospora
and Botryochum (which both correlated with high yield)
are known saprophytes. Decomposition in the root zone
by saprophytes could be associated with nutrient avail-
ability, providing a feedback loop which could benefit
plant health [77]. Interestingly, relative abundance of
Gibellulopsis nigrescens in rhizosphere soil correlated
with high yield, and in roots was linked with long rota-
tions. G. nigrescens is considered a saprophyte and under
some circumstances a weak pathogen [78, 79], but it has
been shown to provide protection against plant infection
by virulent Verticillium pathogens [79, 80], and similarly
our evidence suggests it could represent a beneficial
component of the plant microbiome.
Clearly the effect of the microbiome on crop yield re-

flects the outcome of complex interaction pathways in-
volving mutualistic and antagonistic biota. Microbial
network analysis fills a critical gap in our understanding
of soil microbial community assemblages by providing
insight beyond microbial diversity per se, allowing us to
visualise co-occurrence and potentially to identify taxa
which maintain community structure and function [81,
82]. Bacteria were the only group which formed highly
connected hubs in the roots and rhizosphere, and
bacteria-bacteria connections dominated interaction
pathways, increasing proportionally from the bulk soil,
to rhizosphere soil through to the root. This was accom-
panied in the root with a marked decrease in bacteria-
fungal connections and increase in bacteria-protist
connections, and relatively high protist connectivity, and
low fungal connectivity. Despite the lack of eukaryotic
hubs, we have identified a number of highly connected
novel fungal and protist OTUs, and evidence suggests
that these are abundant, and widely distributed within
the microbiome, and therefore may play a role in struc-
turing the microbiome. Of particular note is P14 which
is most closely related to the clades Olpidiopsidales and
Haliphthorales, which include parasites of red algae and
crustaceans. P14 was by far the most connected protist
in both the roots and rhizosphere soil and had a positive
relationship with the pathogen Pyrenopeziza brassicae in
the rhizosphere and the pathogen O. brassicae in the
roots and a negative relationship with the highly
connected and potentially beneficial endophyte
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Tetracladium maxilliforme in the roots, suggesting it
could play a role in plant health via indirect interaction
pathways. The most connected fungus in rhizosphere
soil was a novel clade of Rozella (F9), which are consid-
ered to be endoparasites of oomycetes and fungi [83],
and since F9 had a positive association with yield, there
is the intriguing possibility that it represents an endo-
parasite of the fungal pathogens which were abundant in
OSR roots.
Microbes have potential to reduce or enhance each

other’s growth via numerous direct and indirect path-
ways. While practical use of microbial biocontrol
agents to control pathogens is well established [84],
recognition that microbial pathogens co-occur and
can interact synergistically together, and with non-
pathogenic microbes to increase disease is only re-
cently being recognized [85]. Using synthetic commu-
nities, Duran et al. [17] suggested that the bacterial
microbiome provides protection of the plant against
fungal and oomycete pathogens via antagonistic inter-
action pathways, and in particular detected strong
competitive potential among a range of taxa including
Flavobacteria and Pseudomonads. However, the path-
ogens we detected had limited connectivity with other
taxa. Despite this, Flavobacteria (B4) was highly con-
nected and had a positive correlation with yield in
the rhizosphere and a negative correlation to P14
which as mentioned above had a positive relationship
with the pathogen Pyrenopeziza brassicae in the
rhizosphere and the pathogen O. brassicae, suggesting
these antagonistic relationships may be present. Also,
the pathogens O. brassicae and Phytophthora (P65)
were positively correlated in both the rhizosphere and
root networks, providing some support for a potential
synergism between these pathogens at the landscape
scale.
Our study shows that the microbiomes of the three

compartments, across the landscape, clustered into well-
defined groups, indicating that similar communities were
selected into the rhizosphere soil or root at different
sampling locations, irrespective of soil and climate vari-
ation. Within-compartment community similarity de-
creased from bulk soil through rhizosphere soil to root,
in which there was increasingly greater stochasticity in
community composition as complexity declined, with
fungi and protists dominated by small numbers of
OTUs. This reduction in diversity is likely due to micro-
bial specialization required for invasion and survival in-
side plant tissue [86]. Notably, there was a distinct
fungal rhizosphere soil selected community, which was
not the case for bacteria or protists. Fungi which were
more abundant in rhizosphere soil relative to roots and
bulk soil included the pathogen Pyrenopeziza brassicae
and novel and abundant OTUs F9 (Rozella sp.) and F17

(Lobulomycetales), identified here for the first time, dem-
onstrating the importance of sampling the rhizosphere
soil and the root as separate compartments.
Significantly, bulk soil pH was the major driver of

rhizosphere and root community composition, sug-
gesting that soil pH could override effects of the plant
on microbial community assembly. pH has been
shown to be a strong predictor of bulk soil bacterial
richness, diversity and community composition across
landscapes [87, 88], and similarly can be a key factor
shaping bulk soil fungal communities [89, 90]. Much
less is known about variation of soil protist communi-
ties, but evidence also points to pH as a determinant
of bulk soil community composition [91]. Further-
more, the microbial groups responded differently to
bulk soil pH as a driver of composition within the
roots and rhizosphere. In bacteria, the effect of bulk
soil pH decreased as the compartment moved from
bulk soil through rhizosphere soil to root. In fungi,
bulk soil pH was an equally important driver in all
compartments. However, in protists, bulk soil pH had
the greatest effect on communities inhabiting the root
compartment. Importantly, despite pH being a major
driver of microbial community composition, there was
no correlation between soil pH and crop yield.

Conclusions
Our data indicates that at the landscape scale, OSR crop
yield is governed by interplay between complex commu-
nities of both pathogens and beneficial biota which is
modulated by rotation frequency. Our work defines a
range of potential plant-beneficial and deleterious organ-
isms, including several novel fungal and protist clades
which we describe, which could be used to devise strat-
egies to improve plant health. Importantly, this study
demonstrates agronomic management, such as crop ro-
tation, plays an important role in promoting beneficial
microbes, and reducing pathogens. Targeted isolation of
these newly identified beneficial biota, such as strains re-
lated to Tetracladium spp. and Flavobacterium is critical
to develop our understanding of plant-microbe and
microbe-microbe interaction mechanisms. This will pro-
vide a platform to devise novel strategies to promote
plant health [92]. These approaches are critical to pro-
vide innovative solutions for the sustainable improve-
ment of plant health and crop yield.
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Additional file 2: Supplementary Table 2. Bulk soil properties from
each of the five reps of the 37 field sites. pH, soil water content, bulk
density and 35 nutrients are shown. Farms with more than one field
location are donated with a-d.

Additional file 3: Supplementary Table 3. A comparison of three
samples, one bulk soil (BS), one rhizosphere (RH) and one root (RO),
rarefied at 1000 reads and not rarefied, to demonstrate the similarity in
community composition.

Additional file 4: Supplementary Table 4. Sequencing read and OTU
statistics for each amplicon (16S, ITS, 18S) and compartment (bulk soil,
rhizosphere, root).

Additional file 5: Supplementary Table 5. Twenty most abundant
OTUs in rhizosphere soil and root compartments, (a) bacteria, (b) fungi,
(c) protists. Occupancy shows the percentage of samples containing the
OTU. OTU names and identities (%) for (b) fungi and (c) protists were
obtained from NCBI blastn top hits.

Additional file 6: Supplementary Figure 1. Rarefaction curves of a)
Bacteria (16S) at 5000 reads, b) Fungi (ITS) at 2000 reads and c) Protists
(18S) at 1000 reads.

Additional file 7: Supplementary Figure 2. Correlogram showing
significant Spearman correlations (FDR P ≤ 0.05) among metadata
parameters. Circles are coloured according to the R2 value on the sliding
scale (blue = positive correlation, red = negative correlation). Suffixes for
nutrients, T = total nutrient, A = available nutrient.

Additional file 8: Supplementary Figure 3. Phylogenetic tree of 18S
rRNA sequences a) including the 18S sequence of the fungi (a) F9 and
(b) F17 and the novel protist (c) P14. Other closely related less abundant
OTUs found in this study are also included and highlighted in blue. The
hosts the lineages are associated, or which environments they were
sequenced from are in parenthesis.

Additional file 9: Supplementary Figure 4. Relative abundance of
trophic modes based on FUNguild determinations. Error bars represent
standard error of the mean. Different letters above the bars indicate
significant differences at the P < 0.05 level between bars of the same
trophic mode. Rotations lengths were binned into groups of short (1 in 2
years to 1 in 4 years), medium (1 in 5 years to 1 in 7 years) and long (1 in
8 years and longer).

Additional file 10: Supplementary Figure 5. Correlation networks
generated using SparCC. Edges indicate correlation of >0.4 or <-0.4. (a)
bulk soil, (b) rhizosphere soil, (c) root.
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