Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

Ecological variables for deep-ocean monitoring must include microbiota and meiofauna for effective conservation

Ingels, Jeroen; Vanreusel, Ann; Pape, Ellen; Pasotti, Francesca; Macheriotou, Lara; Arbizu, Pedro Martínez; Sørensen, Martin Vinther; Edgcomb, Virginia P.; Sharma, Jyotsna; Sánchez, Nuria; Homoky, William B.; Woulds, Clare; Leduc, Daniel; Gooday, Andrew J. ORCID: https://orcid.org/0000-0002-5661-7371; Pawlowski, Jan; Dolan, John R.; Schratzberger, Michaela; Gollner, Sabine; Schoenle, Alexandra; Arndt, Hartmut; Zeppilli, Daniela. 2021 Ecological variables for deep-ocean monitoring must include microbiota and meiofauna for effective conservation. Nature Ecology & Evolution, 5 (1). 27-29. 10.1038/s41559-020-01335-6

Abstract
The deep sea (>200 m depth) encompasses >95% of the world’s ocean volume and represents the largest and least explored biome on Earth (<0.0001% of ocean surface), yet is increasingly under threat from multiple direct and indirect anthropogenic pressures. Our ability to preserve both benthic and pelagic deep-sea ecosystems depends upon effective ecosystem-based management strategies and monitoring based on widely agreed deep-sea ecological variables. Here, we identify a set of deep-sea essential ecological variables among five scientific areas of the deep ocean: (1) biodiversity; (2) ecosystem functions; (3) impacts and risk assessment; (4) climate change, adaptation and evolution; and (5) ecosystem conservation. Conducting an expert elicitation (1,155 deep-sea scientists consulted and 112 respondents), our analysis indicates a wide consensus amongst deep-sea experts that monitoring should prioritize large organisms (that is, macro- and megafauna) living in deep waters and in benthic habitats, whereas monitoring of ecosystem functioning should focus on trophic structure and biomass production. Habitat degradation and recovery rates are identified as crucial features for monitoring deep-sea ecosystem health, while global climate change will likely shift bathymetric distributions and cause local extinction in deep-sea species. Finally, deep-sea conservation efforts should focus primarily on vulnerable marine ecosystems and habitat-forming species. Deep-sea observation efforts that prioritize these variables will help to support the implementation of effective management strategies on a global scale.
Documents
529346:167464
[thumbnail of Ingels et al. - 2020 - Ecological variables for deep-ocean monitoring mus.pdf]
Preview
Ingels et al. - 2020 - Ecological variables for deep-ocean monitoring mus.pdf - Accepted Version
Available under License Creative Commons Attribution Non-commercial 4.0.

Download (154kB) | Preview
Information
Programmes:
NOC Programmes > Ocean BioGeosciences
Library
Statistics

Downloads per month over past year

More statistics for this item...

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item