nerc.ac.uk

Ensembles of multiple spectral water indices for improving surface water classification

Wen, Zhaofei; Zhang, Ce ORCID: https://orcid.org/0000-0001-5100-3584; Shao, Guofan; Wu, Shengjun; Atkinson, Peter M.. 2021 Ensembles of multiple spectral water indices for improving surface water classification. International Journal of Applied Earth Observation and Geoinformation, 96, 102278. 13, pp. https://doi.org/10.1016/j.jag.2020.102278

Before downloading, please read NORA policies.
[img]
Preview
Text
N529312JA.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (23MB) | Preview

Abstract/Summary

Mapping surface water distribution and its dynamics over various environments with robust methods is essential for managing water resources and supporting water-related policy design. Thresholding Single Water Index image (TSWI) with threshold is a common way of using water index (WI) for mapping water for it is easy to use and could obtain acceptable accuracies in many applications. As more and more WIs are available and each has its distinct merits, the real-world application of TSWI, however, often face two practical concerns: (1) selection of an appropriate WI and (2) determination of an appropriate threshold for a given WI. These two issues are problematic for many users who rely either on trial-and-error procedures that are time-consuming or on their personal preferences that are somewhat subjective. To better deal with these two practical concerns, an alternative way of using WIs is suggested here by transforming the current paradigm into a simple but robust ensemble approach called Collaborative Decision-making with Water Indices (CDWI). A total of 145 subsite images (900 × 900 m) from 22 Landsat-8 OLI scenes that covering various water-land environments around the world were used to assess the performance of TSWI and the CDWI. Five benchmark WIs were adopted in five TSWI methods and CDWI method: Normalized Difference Water Index (NDWI), the Modified NDWI (MNDWI), the Automated Water Extraction Indices without considering (AWEI0) and with considering (AWEI1) shadows, and the state-of-the-art 2015 water index (WI2015). Two aspects of performance were analyzed: comparing their accuracies (indicated by both F1-scores and Youden’s Index) over various environments and comparing their accuracy sensitivities to threshold. The results demonstrate that CDWI produced higher accuracies than the other five TSWI methods for most application cases. Particularly, more cases (indicated by percentage) produced higher F1-scores by CDWI than the other five TSWI methods, i.e. 67% (CDWI) vs. 15% (TSWINDWI), 54% (CDWI) vs. 22% (TSWIMNDWI), 42% (CDWI) vs. 12% (TSWIAWEI0), 57% (CDWI) vs. 17% (TSWIAWEI1), and 34% (CDWI) vs. 12% (TSWIWI2015). Moreover, the F1-score of the CDWI is less sensitive to the change of thresholds compared with that of the five TSWI methods. These important benefits of CDWI make it a robust approach for mapping water. The uncertainty of CDWI method was thoroughly discussed and a general guidance (or look-up-table) for determining parameters of CDWI method was also suggested. The underlying framework of CDWI could be readily generalizable and applicable to other satellite images, such as Landsat TM/ETM+, MODIS, and Sentinel-2 images.

Item Type: Publication - Article
Digital Object Identifier (DOI): https://doi.org/10.1016/j.jag.2020.102278
UKCEH and CEH Sections/Science Areas: Soils and Land Use (Science Area 2017-)
ISSN: 0303-2434
Additional Information. Not used in RCUK Gateway to Research.: Open Access paper - full text available via Official URL link.
Additional Keywords: water index, threshold, integrated decision making, mixed pixels, MNDWI
NORA Subject Terms: Hydrology
Date made live: 30 Dec 2020 15:21 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/529312

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...