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Abstract: Earthworms are important ecosystem engineers, and assessment of the risk of plant 1 

protection products towards them is part of the European environmental risk assessment (ERA). In the 2 

current ERA scheme, exposure and effects are represented simplistically and are not well integrated, 3 

resulting in uncertainty when applying the results to ecosystems. Modeling offers a powerful tool to 4 

integrate the effects observed in lower tier laboratory studies with the environmental conditions under 5 

which exposure is expected in the field. This paper provides a summary of the FORESEE Workshop 6 

((In)Field Organism Risk modEling by coupling Soil Exposure and Effect) held January 28-30, 2020 7 

in Düsseldorf, Germany. This workshop focussed on toxicokinetic-toxicodynamic (TKTD) and 8 

population modeling of earthworms in the context of environmental risk assessment. The goal was to 9 

bring together scientists from different stakeholder groups to discuss the current state of soil 10 

invertebrate modeling, explore how earthworm modeling could be applied to risk assessments, and in 11 

particular how the different model outputs can be used in the tiered ERA approach. In support of these 12 

goals, the workshop aimed at addressing the requirements and concerns of the different stakeholder 13 

groups to support further model development. The modeling approach included four submodules to 14 

cover the most relevant processes for earthworm risk assessment: Environment, Behavior (feeding, 15 

vertical movement), TKTD, and Population. Four workgroups examined different aspects of the model 16 

with relevance for: Risk assessment, earthworm ecology, uptake routes, and cross-species 17 

extrapolation and model testing. Here, we present the perspectives of each workgroup and highlight 18 

how the collaborative effort of participants from multidisciplinary backgrounds helped to establish 19 

common ground. In addition, we provide a list of recommendations for how earthworm TKTD 20 

modeling could address some of the uncertainties in current risk assessments for plant protection 21 

products. 22 

23 

Key Words: cross-species extrapolation; plant protection products; population modeling; soil 24 

organisms; uptake routes 25 

26 

Background 27 
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 Earthworms are important ecosystem engineers that increase soil fertility and provide a wide 28 

range of ecosystem services (Blouin et al. 2013). They are included in the safety assessment of 29 

pesticides in the European Union (EU), which is prescribed by European legislation (Regulation (EC) 30 

No. 1107/2009 and guidance document SANCO/10329/2002). In the EU, pesticides can only be 31 

authorized if no unacceptable effects on non-target organisms, biodiversity, or the ecosystem will 32 

occur. In the risk assessment procedures, testing representative species of earthworms and assessing 33 

the risks to this group is deemed to cover soil-inhabiting Oligochaeta, belonging to the families 34 

Lumbricidae (earthworms) and Enchytraeidae (potworms). Species from both groups are used in 35 

standard ecotoxicological tests, but only tests with lumbricid earthworms need to be submitted 36 

according to EU data requirements for pesticides (283/2013 and 284/213). The Annex to the data 37 

requirement mentions as relevant OECD guidelines for testing the genus Eisenia (e.g., E. fetida, E. 38 

andrei). 39 

 In 2017, the European Food Safety Authority (EFSA) requested an opinion from the Panel on 40 

Plant Protection Products and their Residues (PPR) on the science behind the risk assessment of plant 41 

protection products for in-soil organisms in preparation for a guidance update (EFSA PPR 2017). In 42 

this opinion, a review was presented on the current risk assessment scheme, and proposals were made 43 

for further progress. The use of mechanistic effect models was suggested in this opinion, for example, 44 

models clarifying the relationships between internal concentrations and toxicological effects over time 45 

for endogeic earthworms. However, gaps in the currently available models were identified as well as a 46 

need for research on their applicability domains in soil risk assessment. Therefore, a workshop was 47 

organized to clarify these issues. This synthesis provides a summary of the workshop findings and 48 

recommendations.  49 

The current soil risk assessment follows a tiered approach starting with simple assumptions 50 

with effects characterized in standardized laboratory studies. In addition, whereas the exposure 51 

assessment can take into account spatiotemporal variability of pesticides in soil, abiotic parameters 52 

(such as soil temperature and moisture), and soil composition, the effect assessment for earthworms is 53 

based on the outcome of a reproduction test that does not take such factors into account.  In the first 54 
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tier, a chronic earthworm study (GD 222, OECD 2017) is required, which has the aim of assessing the 55 

intrinsic toxicity of the tested substance. Exposure is assumed to vary in time, since the pesticides 56 

interact with the soil and degrade, and hence a constant exposure cannot necessarily be maintained. In 57 

this type of study, adult E. fetida are exposed to a series of pesticide concentrations, and the relevant 58 

endpoints are assessed only once during the study period, i.e., after 28 days for survival and growth, 59 

and after 56 days for the number of juveniles. Therefore, only a limited mechanistic understanding of 60 

the underlying effect is provided. The results of this test, expressed in terms of a No Observed Effect 61 

Concentration (NOEC) for mortality, reproduction, and growth or a ten percent Effect Concentration 62 

(LC10/EC10) for mortality and reproduction is then related to a worst-case Predicted Environmental 63 

Concentration (PEC) for soil to obtain a Tier 1 estimate of risk. Should the ratio of toxicity to 64 

exposure (TER) be below a defined trigger value (currently 5 for chronic risk assessment in the EU; 65 

Regulation (EU) 546/2011, 2011), a risk is indicated, and a higher tier assessment (intended to include 66 

more realism in exposure and/or effects; Solomon et al. 2008), such as a field study with earthworms 67 

(ISO 11268-3) can be performed to refine the risk.  68 

The limited conceptual integration of exposure and effect assessments in Tier 1 soil risk 69 

assessments leads to uncertainty when extrapolating the results to different ecosystems. Furthermore, 70 

there is a large gap between a simple Tier 1 laboratory study and a full field study, which suggests the 71 

need for intermediate tiers between these options. Key uncertainties that could be reduced through the 72 

use of intermediate tier assessments include addressing actual exposure profiles arising from 73 

earthworm vertical movement and spatiotemporal variability in pesticide concentration, and 74 

extrapolation of the results from field studies to other environmental and/or agricultural situations 75 

beyond actual conditions in the field study. A critical source of uncertainty is the possible difference in 76 

sensitivity between species tested in the laboratory and species found in the field. The low field 77 

relevance of Eisenia species has been recognized, and suggestions to use Aporrectodea caliginosa as 78 

an additional test species are underway (e.g., Bart et al. 2018). Decreasing the uncertainties in the risk 79 

assessment requires a better understanding of the risks of pesticides to different species of earthworms, 80 

including whether there is any relationship between quantifiable traits and toxicological sensitivity.  81 



4 

Mechanistic effect modeling offers a potentially powerful tool to integrate pesticide exposure 82 

and effects and extrapolate results observed in lower-tier laboratory studies to exposure scenarios that 83 

are expected in the field (EFSA PPR 2017). In particular, individual-based models (IBMs) are of 84 

interest, as they allow for a high degree of realism, can help to quantify uncertainties, and can integrate 85 

processes that occur across multiple scales (DeAngelis and Grimm, 2014). Populations are represented 86 

as consisting of discrete individuals, and population-level behavior and effects emerge from 87 

interactions of the individuals with each other and with their environment (DeAngelis and Grimm, 88 

2014). Johnston et al. (2014a, 2014b, 2015, 2018) developed several earthworm IBMs that incorporate 89 

realistic earthworm behavior, address spatiotemporal variability in pesticide exposure, and integrate 90 

exposure and effects using an energy budget approach. Given the growing recognition of the power of 91 

mechanistic effect models for use in environmental risk assessment (ERA) (Hommen et al., 2016) and 92 

recent regulatory guidance on their development, testing, and documentation (EFSA PPR 2014, 2017), 93 

there are clear opportunities to address specific issues identified in ERA approaches by developing 94 

dedicated models aiding at appropriate tiers of the ERA process. With that said, it is clearly 95 

impractical to develop and apply unique effect models and related behavior and exposure scenarios for 96 

every single species. Instead, an approach in which selected earthworm species can represent broader 97 

ecological groups of earthworms is needed. In addition, acceptance of models and exposure scenarios 98 

for ERA will be facilitated through consistent and transparent procedures for the development and use 99 

of effect models, species behavior, and exposure scenarios. The acceptance can be further promoted by 100 

evaluation and documentation and through broad stakeholder buy-in (Forbes et al. 2019).   101 

102 

Objective and Rationale 103 

The FORESEE ((In)Field Organism Risk modEling by coupling Soil Exposure and Effect) 104 

Workshop was held January 28 – 30, 2020, in Düsseldorf, Germany. The overall focus of the 105 

workshop was to bring together scientists from different stakeholder groups (i.e., regulatory 106 

authorities, industry, and contract research organizations (CROs)) and academic scientists to discuss 107 

the current state of earthworm modeling. The workshop aimed to identify research gaps and explore 108 
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how mechanistic effect modeling of earthworms could be applied to soil organism risk assessments. In 109 

particular, we considered how the different model outputs could be used in the regulatory framework 110 

and in the tiered approach prescribed by the recent EFSA Scientific Opinion addressing the state of the 111 

science on risk assessment of plant protection products for in-soil organisms (EFSA PPR 2017). In 112 

support of these goals, the workshop aimed to discuss a common modeling framework for earthworms 113 

and address the requirements and concerns of the involved stakeholder groups at an early stage of 114 

model development. 115 

Johnston et al. (2014a, 2014b, 2015, 2018) developed and validated a suite of earthworm 116 

models that integrate exposure, effects, energy budgets, behavior (movement), and life cycles. Based 117 

on these models, Roeben et al. (2020) initiated the development of a modular framework for 118 

earthworm modeling (FORESEE) that aims to cover most of the relevant earthworm ecological 119 

categories (i.e., ecotypes). FORESEE is mechanistic and aims to provide spatiotemporal realism in 120 

earthworm behavior, as well as exposure and effects of pesticides. The workshop was based on the 121 

FORESEE modeling approach containing four submodules to cover relevant aspects of earthworm 122 

modeling: Environment, Behavior (Feeding and Movement), Toxicokinetics/Toxicodynamics 123 

(TKTD), and Population Dynamics. In practical terms, the Environment module is linked to an IBM 124 

containing movement, TKTD, and population submodels from which earthworm population dynamics 125 

emerge. The Environment module utilizes outputs from pesticide exposure models (e.g., PEARL, 126 

PELMO, HYDRUS), providing spatially and temporally explicit information on soil moisture, 127 

temperature, organic matter content, bulk density, and total and porewater pesticide concentrations. 128 

The behavior module simulates the feeding and vertical movement of different species representing 129 

four major ecological categories of earthworms using a trait-based approach. The TKTD module 130 

covers the toxicity of pesticides to earthworms using the General Unified Threshold model of Survival 131 

(GUTS, Jager et al. 2011; Jager and Ashauer 2018) for lethal effects and Dynamic Energy Budget 132 

((DEB)-TKTD, Jager et al. 2006; Jager 2019) models for sublethal effects. The population module 133 

incorporates existing population models of different species (e.g., Johnston et al. 2014a, 2014b, 2015, 134 

2018). Before use in regulatory risk assessments, all modules should be evaluated independently and 135 

be designed to allow for updating when additional knowledge becomes available (EFSA 2014). 136 
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Preferably, the evaluation, release, and version control of the effect model versions could take place 137 

within the already existing framework for the version control of pesticide fate models, i.e., the EFSA 138 

Chaired FOCUS Version Control Group. 139 

During the workshop, participants from academia, regulatory authorities, CROs, and industry 140 

were divided into four workgroups. These workgroups examined different parts of FORESEE and 141 

addressed various questions relevant to earthworm mechanistic effect modeling: risk assessment, 142 

earthworm ecology, uptake routes, extrapolation and testing against experimental datasets, and 143 

ecotoxicological study needs and data gaps.  144 

Workgroup 1 focused on how model outputs could fit into future risk assessment procedures 145 

for earthworms. Participants discussed how the ecotoxicity assessment and fate inputs fit into the 146 

modeling approach. Furthermore, they explored how FORESEE outputs could be used to refine the 147 

risk assessment of earthworms in different ways and how the modeling approach fits into the tiered 148 

ERA employed under EU regulatory requirements.  149 

Workgroup 2 focused on earthworm ecology. The group discussed the main factors governing 150 

the behavior of important ecological groups of earthworms in arable soils and whether their movement 151 

could be described by a set of behavioral traits. Furthermore, the workgroup looked at other traits, 152 

such as reproduction, vertical distribution, and feeding type, and how such traits likely influence the 153 

movement of earthworms. The modelers confronted model assumptions with knowledge on 154 

earthworm ecology provided by the rest of the group, and in this way, tested whether the model is 155 

sufficiently realistic while being generally applicable to different earthworm species.  156 

Workgroup 3 focused on exposure of earthworms, uptake routes, and TKTD modeling. 157 

Participants discussed relevant pesticide exposure routes (dermal vs. oral) and concentrations 158 

(porewater vs. total soil or litter concentrations) of pesticides for earthworms. Their discussions 159 

included the influence on exposure of different soil properties (e.g., organic matter), model calibration 160 

with laboratory toxicity tests, and multiple pesticide applications.  161 
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Workgroup 4 focused on species extrapolation and testing to increase the validation status of 162 

the model. The species typically used in laboratory experiments to evaluate pesticide risks often differ 163 

from those characteristic of relevant field habitats. Therefore, species extrapolation and model testing 164 

to increase the validation status were considered within the same workgroup. The workgroup 165 

discussed models to extrapolate ecotoxicological sensitivity across species and how to address data 166 

gaps. In addition, issues related to data availability and requirements for model evaluation were 167 

discussed. 168 

In this workshop synthesis, we present the perspectives of each workgroup and highlight how 169 

the collaborative effort involving multiple stakeholders and representing a diversity of scientific 170 

expertise was able to reach consensus on a suite of recommendations and priorities for future work to 171 

develop FORESEE into an implementable tool for pesticide risk assessment in the EU.  172 

173 

Key Findings 174 

Risk Assessment (WG 1) 175 

The current risk assessment scheme (SANCO/10329/2002) has a gap between the risk 176 

assessment tiers. There are currently only a few intermediate refinements of risk (e.g., laboratory tests 177 

using natural soils or additional test species) between the Tier 1 risk assessment using the chronic 178 

laboratory study and the higher tier assessment based on a field study. We identified several levels of 179 

the risk assessment in which modeling tools can be used. In the lower tier risk assessment, a model 180 

could be used to understand the impact of soil properties and bioavailability on the toxicity to soil 181 

organisms. Likewise, a model combining the realistic movement of earthworms (e.g., in relation to 182 

soil moisture or food availability) with a spatiotemporal exposure profile could help to generate 183 

refined exposure endpoints. Those endpoints could be used to calculate a refined TER, based on the 184 

simulated movement and resulting exposure. At the next tier, a potential advance would be to combine 185 

this spatiotemporal exposure pattern with TKTD modeling following the principles outlined in 186 

EFSA’s scientific Opinion on TKTD modeling (EFSA 2018) to predict risk at the level of individuals. 187 
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Another use of the models could be to compare the Tier 1 assessment with the field study to check on 188 

the degree of conservatism of the Tier 1 assessment. However, the current standard chronic earthworm 189 

laboratory study (OECD 2017) is mainly suitable for setting NOECs and/or EC10s but is not adequate 190 

for parameterizing effect models. The standard study does not provide information on the time course 191 

of effects and cannot differentiate between reproductive effects and mortality of newly hatched 192 

juveniles. An option could be a modified test to allow counting of cocoons and assessment of hatching 193 

rate, in addition to the direct measurement of juvenile production. Moreover, the results of the Tier 1 194 

laboratory chronic test are based on nominal pesticide concentrations, as there is no requirement to 195 

measure soil or tissue concentrations. So for modeling to be used to refine risk assessments, new study 196 

designs that increase the number of recorded parameters are needed. 197 

Furthermore, environmental conditions and farming practices vary across regions and crops. 198 

Modeling could facilitate the extrapolation of the findings from the conditions under which the field 199 

studies were conducted to other conditions. As for Tier 1 data, measuring the exposure profile in the 200 

field is necessary. Following successful validation, the model could then be used to extrapolate to the 201 

relevant untested conditions such as other regions, crops, good agricultural practices (GAPs), or across 202 

multiple years. Modeling could also be used to inform the revision of the risk assessment scheme. For 203 

instance, it could be used in conjunction with field studies to calibrate the lower tiers of the risk 204 

assessment or assess the relevant soil depth at which to apply the PEC to be used in standard risk 205 

assessments. Finally, modeling could be used for interpretation of field study results and exploration 206 

of mitigation and compensation options.  207 

If exposure models are used to provide input for the modeling, the resolution of data has to be 208 

considered. Some current EU regulatory pesticide fate models include sufficient temporal and spatial 209 

resolution (e.g., FOCUS, PEARL) but are only suitable for simulating uniform application scenarios, 210 

such as spray applications to the crop or soil surface, or applications by injection and incorporation 211 

into the soil (Van den Berg et al. 2016). If the application is not homogenous (e.g., drip application, 212 

tree row application, or precision farming), the fate models will need a higher spatial resolution to 213 

produce outputs useful for higher-tier ERAs. Although high-resolution two-dimensional fate models 214 
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exist, such as HYDRUS (Šimůnek et al. 2012) or 2DROPS (Agatz and Brown 2017), they are not yet 215 

open access. 216 

As is the case for all models used for ERA, it is critical that FORESEE is evaluated and 217 

documented thoroughly following the principles of Good Modeling Practice as recommended by 218 

EFSA (2014). Evaluation options include testing against additional laboratory and field studies, 219 

sensitivity and robustness analysis (i.e., pushing the limits of the model and testing its domain of 220 

applicability), evaluation of submodels in fit-for-purpose studies, and using results of control and toxic 221 

standard treatments from field studies. In addition, an uncertainty analysis of assessments based on the 222 

model, model assumptions, and parameterizations would need to be included – also in comparison to 223 

standard assessment procedures (EFSA 2018; 2019). 224 

Scenarios need to be clearly defined to represent relevant environmental conditions, and the 225 

fate models must provide the necessary inputs for temperature and soil moisture. However, scenarios 226 

that have been chosen to be worst-case from a pesticide fate perspective may not be worst-case from 227 

an ecological perspective (e.g., if dry conditions during the exposure window keep the earthworms in 228 

deeper soil layers). Thus, the fate scenarios need to be evaluated to ascertain whether they are 229 

sufficiently worst-case from an ecological perspective to determine whether new scenarios are needed. 230 

Models are acknowledged as a useful tool for understanding processes or simulating effects that 231 

cannot be tested in the laboratory, such as effects of repeated exposure over multiple years or 232 

extrapolation to other GAPs. Furthermore, they can help to calibrate the risk assessment, e.g., from 233 

Tier 1 to reference tier (field), as well as for refining the risk estimates and addressing uncertainties 234 

associated with realistic conditions when Tier 1 ERA identifies a non-acceptable risk. 235 

Earthworm Ecology and Behavior (WG 2) 236 

Earthworm vertical movement plays an important role in population-level exposure to 237 

pesticides in the field. Understanding how different earthworm species move in response to 238 

environmental changes is crucial for effective risk assessments of pesticides in soils. In general, 239 

earthworm movement is determined by the ecological category to which they belong and various 240 

abiotic and biotic factors (Roeben et al. 2020).  241 
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Earthworms are often categorized into three ecotypes: epigeic, endogeic, and anecic (Bouché 242 

1977; Bottinelli et al. 2020). Epigeic (surface-living) and anecic (vertical burrowing) earthworms rely 243 

on leaf litter at the soil surface for habitat (epigeic only) and food, whereas geophagous endogeic 244 

earthworms live in temporary horizontal burrows in the mineral soil (Jégou et al. 1998; Capowiez et 245 

al. 2014). Distinct patterns of movement and surface activity across earthworm ecological groups, 246 

together with the environmental fate of different pesticide applications, can strongly influence 247 

pesticide exposure through the soil profile. Accurate assessments of pesticide effects on earthworm 248 

populations necessitate the consideration of each ecological group (Tomlin 1992). Ecotypes might not 249 

always explain the behavior observed in the field, but are currently the most accepted concept and 250 

therefore chosen as model categories. Differences in reaction to changes in environmental parameters 251 

might also be observed not only between species – but also between juvenile and adult worms of one 252 

species, leading to different movement ranges and distribution patterns over time. 253 

Eisenia fetida, Aporrectodea caliginosa, and Lumbricus terrestris are often mentioned as 254 

representative species of epigeics, endogeics, and anecics, respectively (Lee 1985). However, the 255 

position of L. terrestris within these ecological categories, as defined by Bouché (1977), has been 256 

questioned. Many authors refer to L. terrestris as epi-anecic rather than anecic (e.g., Hoeffner et al. 257 

2019) due to differences in diet and behavior. Epi-anecic species first build a burrow or shelter and 258 

subsequently use it to forage at the soil surface, whereas anecic species (also referred to as “true 259 

anecic”) burrow more continuously in the soil and thus ingest more soil (Ferrière 1980; Bastardie et al. 260 

2005). To fully represent earthworm ecotypes (and thus communities) currently found in agricultural 261 

lands, the workgroup decided that for a model to be applied in soil risk assessment, four main ecotypes 262 

are needed: epigeic, endogeic, epi-anecic, and anecic. Different species can be used to represent these 263 

ecotypes, and good examples are: Lumbricus castaneus for epigeics, A. caliginosa for endogeics, L. 264 

terrestris for epi-anecics, and Aporrectodea nocturna or Aporrectodea longa for anecics. E. fetida is 265 

also used to represent epigeics, primarily because so much data are available for this species. 266 

The reliability of population models fundamentally depends on the availability of data, and the 267 

suitability of different earthworm species for population models depends on the ecotypes most at risk. 268 
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Individual-based models, for instance, require detailed information on the biology and behavior of the 269 

modeled species at the individual- and population levels, both for model development and model 270 

validation. Across earthworm ecotypes, abiotic factors play an important role in driving movement 271 

behavior, and thus also the possible exposure to a pesticide. Four environmental variables have been 272 

identified as critical and feasible to be used for simulating the behavior and vertical movement of 273 

earthworms: soil water potential (Gerard 1967; Holmstrup 2001), soil organic matter content (Le 274 

Couteulx et al. 2015; Frazao et al. 2019), temperature (Eriksen-Hamel and Whalen 2006), and bulk 275 

density of the soil (Kretzschmar 1991). For anecic and epi-anecic species, light is an additional factor 276 

to be considered (Nuutinen et al. 2014). Roeben et al. (2020) provide a detailed review of the effects of 277 

biotic and abiotic factors on the vertical movement of earthworms.  278 

IBMs have the advantage of allowing interaction between an individual and its virtual 279 

environment. The identified environmental variables that influence the movement of earthworms are 280 

stored in the modeling environment, which is represented through patches in a spatially-explicit 281 

setting. One approach to incorporate the simultaneous influence of these four environmental variables 282 

on earthworm movement in an IBM is a patch quality index. This index is also part of the modeling 283 

environment and determines the movement decisions of individuals in the movement module. The 284 

index scales the attractiveness of each soil patch according to the four variables from 1 (attractive) to 0 285 

(not attractive). In this way, the quality index can account for the combined effects of temperature, soil 286 

water potential, organic matter content, and bulk density on earthworm movement. To be able to 287 

represent the different ecotypes and their preferences realistically, the workgroup suggested a dynamic 288 

trade-off between the following factors: 289 

• If temperature and water potential are within a defined performance range, organic matter 290 

content should be most important.  291 

• If temperature and water potential are outside this range, organic matter content has no 292 

importance.  293 

• The last factor is the bulk density, which inhibits the movement of earthworms with increasing 294 

density. 295 
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The performance ranges, slopes, and threshold values depend on the ecotype/species modeled and 296 

should be fitted to laboratory and field data individually. Thereby, the patch quality index can cover 297 

the different importance of factors for different ecotypes.  298 

Besides the abiotic factors listed above, other factors, including exposure to pesticides, food 299 

availability, avoidance behavior, inter-species interactions, spatial competition, and intra-species 300 

interactions, can also affect the movement of earthworms and, therefore the risk of exposure (Uvarov 301 

2017; Capowiez and Belzunces 2001). The workgroup discussed the possible extent of the different 302 

influences. Most of the workshop participants concluded that these features do not necessarily need to 303 

be included in the model, depending on the level of realism required to address the specific question at 304 

hand and considering trade-offs between generality and realism. However, some participants 305 

recommended that the relevance of these features ought to be analyzed in a sensitivity analysis prior to 306 

considering trade-offs between simplification and realism. If identified as important, they should be 307 

considered for inclusion in the model to increase reliability of model outputs. 308 

In some cases, there may be a lack of available data, which has to be acknowledged when 309 

choosing a modeling approach. For the epigeic and endogeic ecotypes, it is assumed that mating takes 310 

place when earthworms meet another individual randomly within the soil. For epi-anecic species, 311 

foraging is the primary driver for movement on the soil surface, and if two adult individuals meet, the 312 

earthworms may mate and reproduce, depending on the season.  313 

The workgroup concluded that the development of a trait-based approach for the movement of 314 

earthworms is possible but data-intensive. A list of necessary data and existing knowledge gaps for 315 

representative earthworms from the given ecological categories can be found in Table 1. Ideally, an 316 

energy-budget model is available for the representative species of each ecotype. Furthermore, data on 317 

mortality and longevity of the species are needed and how these traits are influenced by abundance. 318 

Moreover, information about preferences towards the four environmental factors determining 319 

movement is essential. Finally, information on behavioral aspects is necessary, such as the percentage 320 

of time spent on different activities. This includes the time spent foraging at the surface, burrowing, 321 

moving in existing burrows, and being inactive. It is crucial to be aware that these traits and 322 
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preferences can change with developmental stage and exposure, and juveniles will likely have 323 

different traits than adults. For the four ecotypes, knowledge gaps that have to be filled for a trait-324 

based movement model to be implemented have been identified. For some categories, the data gaps 325 

are greater than others (Table 1), but population models are available for three of the four groups, 326 

whereas a model for “true” anecics still needs to be developed (Johnston et al. 2014a, 2014b, 2015, 327 

2018). 328 

Uptake Routes (WG 3) 329 

Extrapolation of effects from standardized laboratory toxicity tests to effects in the 330 

environment is challenging because it requires several extrapolation steps. Using a TKTD framework, 331 

in combination with soil fate modeling, allows the use of mechanistic modeling to facilitate the 332 

required extrapolations. At first, the exposure to a substance with specific physicochemical 333 

characteristics in the artificial soil used in the laboratory toxicity tests has to be translated to different 334 

real soil types in the environment. In comparison to current methods, this translation can be made 335 

more accurate by explicitly modeling the fraction of active ingredient in porewater and sorbed to 336 

particles in both systems (i.e., in the laboratory toxicity test and in the environment) (Li et al. 2020). 337 

Relevant chemical properties include the partitioning coefficient KD (or the organic-carbon 338 

normalized variant KOC), which describes the partitioning of a chemical between the water and soil 339 

phase and, therefore its availability for transport, uptake, and subsequent effects. This partitioning is 340 

influenced by soil composition, for example, the amount of organic carbon, but also by the actual soil 341 

water content. For ionizable chemicals, also the pH and speciation information, such as pKa values, 342 

are informative. Ultimately, biodegradation rate constants need to be considered as they capture the 343 

decline of chemicals. 344 

The second extrapolation requires accounting for different uptake routes (e.g., via skin, via 345 

gut), which are of different relative importance for different earthworm species (e.g., different 346 

movement patterns, different food sources including litter). Currently, this is not explicitly accounted 347 

for in the risk assessment, though some would argue that differentiating between uptake routes in the 348 

standard ERA may not be needed if it is sufficiently conservative. This limitation could be overcome 349 
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by using the internal pesticide concentrations in the earthworm. The extrapolation can be made more 350 

accurate by a two-step TKTD approach (Ashauer and Escher 2010). In the first step, the different 351 

uptake routes are simulated to calculate the time-variable internal exposure (approximated as whole 352 

body residues). This is proposed to be done when analyzing the laboratory toxicity study, and when 353 

simulating effects in the environment. In a second step, the effects (toxicodynamics) are simulated 354 

using the internal pesticide concentration as the forcing variable. This can be done when analyzing the 355 

laboratory toxicity study to calibrate the TKTD model and when predicting effects in the environment. 356 

For the endpoint survival, this approach is termed full-GUTS (Jager et al. 2011; Ashauer et al. 357 

2016), and the same principle can be applied to DEB-TKTD to account for sublethal effects. GUTS is 358 

considered ready to be used in risk assessment in the EFSA scientific opinion on TKTD for aquatic 359 

organisms, and although the DEB-TKTD modeling approach is currently limited to research 360 

applications, its potential for future use in ERA for pesticides is recognized (EFSA 2018). Key aspects 361 

of TKTD modeling can be transferred from the aquatic to the terrestrial risk assessment, in particular 362 

the calculation of exposure multiplication factors (Ashauer et al. 2013, EFSA 2018) as well as many 363 

recommendations for model calibration. This same document (EFSA 2018) recommends strict 364 

requirements for the validation of models.  365 

For uptake of pesticides into soil organisms, it is essential to consider bioavailability as there 366 

are multiple compartments of the soil in which the pesticide can be present (in porewater and sorbed to 367 

soil organic matter and soil mineral particles) and bioavailable to different extents. Pesticide 368 

properties, such as partitioning coefficients or biodegradation rate constants, and soil properties, 369 

including water content, pH values, and organic carbon content, can influence partitioning of the 370 

pesticide in soil. These properties can result in different concentrations in porewater, sorbed to soil 371 

organic and soil mineral particles, and in the soil pore airspace and, therefore, in differences in 372 

bioavailability. Thus, pesticide exposure depends on local conditions, pesticide properties, and 373 

earthworm ecology (e.g., movement, food sources). The pesticide distribution in the soil can be 374 

modeled using fate models, but these need to be extended to include the additional effects of soil 375 

properties that influence bioavailability if internal concentrations are to be predicted. Modeling uptake 376 
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from porewater and soil particles via skin and uptake from particles via the gut accounts for 377 

bioavailability (relative contributions of the different compartments) in pesticide uptake and effects. 378 

The model by Jager et al. (2003) is a good starting point for accounting for general uptake via 379 

dermal exposure versus feeding. We are not aware of any alternative, however additional experimental 380 

work will be required to underpin the tentative relationship between log Kow and uptake rate constants 381 

established by Jager et al. (2003) with a larger database and to account for confounding factors related 382 

to bioavailability. This is important because the rate constants acquired from experiments as described 383 

by Jager at al. (2003) may depend on environmental variables, e.g., soil properties, soil water content 384 

or temperature. Thus, new experimental and data analysis protocols are needed to disentangle the 385 

influence of environmental variables and substance properties on rate constants. The approach of 386 

acquiring uptake and elimination rate constants for both exposure routes (dermal and oral) via the 387 

partition coefficient, log Kow, is based on only three example compounds with a rather high log Kow 388 

and is subject to the limitations described above (dependency on experimental variables). Until this 389 

relationship is made more robust with more data covering a wider range of log Kow values, and 390 

disentangled from experimental variables, it is better to measure the actual uptake rates via gut and 391 

skin for each compound under investigation and in each soil type of interest. The limitations described 392 

here can be overcome by modeling the fate and distribution of test substances in the soil of the 393 

laboratory experiment in combination with TKTD modeling. Such data analysis may be able to 394 

disentangle the influence of environmental variables, and bioavailability, on TK rate constants from 395 

their relationship with substance properties. 396 

Specifically, there is a need for toxicity tests for more and specifically low sorbing compounds 397 

to evaluate the usefulness of the whole approach, i.e., the combination of soil fate modeling with two-398 

step TKTD modeling. Validation experiments can include laboratory toxicity tests with different soils 399 

and compounds (to evaluate if bioavailability is properly accounted for) as well as experiments with 400 

different exposure patterns and field studies (see also next section). 401 

Understanding the bioavailability and actual exposure in the toxicity test used for model 402 

calibration is essential because it enables better extrapolation to different soils in the environment. 403 
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Including measurements and/or model simulations of pesticide fate in the chronic earthworm study 404 

(OECD 2017) would be a step towards providing a more relevant exposure estimate within current 405 

testing schemes.  406 

Cross-Species Extrapolation and Model Testing (WG 4) 407 

For earthworms, as for most taxa, a major issue hampering between-species extrapolation is 408 

that the relevant field species are not tested in the laboratory on a routine basis, and species may differ 409 

in their sensitivity and traits. As a consequence, the evaluation of TKTD models and population 410 

models based on laboratory data, by comparing them with field studies, is associated with additional 411 

challenges. The suitability of models developed for a laboratory test species, such as E. fetida, for field 412 

species remains uncertain and may be inaccurate if species vary in inherent sensitivity and traits. 413 

From previous studies, it has been shown that earthworms can have different inherent 414 

sensitivities to chemicals, including pesticides (Ma and Bodt 1993; de Lima e Silva et al. 2017; 415 

Römbke et al. 2017). In a meta-analysis of species sensitivity, Pelosi et al. (2014) found that reported 416 

LC50 values for more widespread and ecologically relevant earthworm taxa were, on average, 417 

significantly lower than for E. fetida. This finding is indicative of a systematic lower sensitivity of this 418 

widely tested species that needs to be considered in any modeling framework. Whereas this difference 419 

in sensitivity has been observed for lethal effects, little is known regarding which traits explain the 420 

differences in inherent sensitivity, and sublethal endpoints for non-standard test species are difficult to 421 

determine. 422 

Explicitly addressing differences in species sensitivity in mechanistic effect models ideally 423 

involves the identification of potential underlying causes for cross-species differences. Several 424 

characteristics of a species related to a) phylogeny, b) physiology, morphology, ecology, and c) gene 425 

and protein expression, are likely to provide mechanistic explanations for sensitivity differences 426 

among species. Species sensitivity can be represented by summary statistics, like LC50 or NOEC, but 427 

approaches for predicting TKTD model parameters are more likely to succeed as the model parameters 428 

are biologically meaningful (Ashauer and Jager 2018; Gergs et al. 2019). Van den Berg et al. (2020) 429 

hypothesize that models related to physiology, morphology, and ecology exhibit the highest prediction 430 
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power for TK parameters, whereas gene and protein expression models may exhibit the highest 431 

prediction power for TD parameters. 432 

As for TK parameters, a wide range of physical and ecological traits can potentially affect 433 

exposure and uptake. These include skin and gut wall morphology and structure; the role of the gut 434 

microbiome, which varies between species; body size in relation to passive diffusion (also applicable 435 

for life stage sensitivity); gut residence times; lipid content and metabolic capacity (Phase I, II, and III 436 

enzyme activities) of species. Some of these trait data are simple to measure and can be collected 437 

fairly easily for widespread earthworm species, whereas others will be difficult to fully characterize. In 438 

the latter cases, it may be more efficient to categorize traits relating to TK by assessment of rates based 439 

on screening metabolism of different model compounds, rather than through detailed mechanistic 440 

prediction that attempts to cover all substances. 441 

TD traits that determine sensitivity include the presence, structure, and functional motif of 442 

potential molecular targets for the chemical, the extent of damage resulting from a given level of 443 

exposure, as well as repair mechanisms. Gene and protein expression-based approaches are available 444 

for the assessment of these characteristics and can identify the presence of putative target orthologues, 445 

such as with the ECOdrug tool (Verbruggen et al. 2018). For a more detailed target-specific sequence 446 

analysis, the SEQUAPASS tool supports orthologue identification, as well as motif and specific 447 

residue level analyses (LaLone et al. 2016). The underlying assumption inherent in these tools is that 448 

the presence of an orthologue in a species is likely to be associated with higher sensitivity. In addition, 449 

species that possess orthologues containing conserved ligand binding motifs and key residues 450 

associated with strong ligand interactions will be more sensitive than species that lack strong ligand 451 

binding domains or residues. These assumptions have been tested in a number of selected case studies 452 

(Gunnarsson et al. 2008; LaLone et al. 2017). However, the complexities of genome evolution, 453 

including gene family expansion and reduction as well as gene and even whole genome duplications, 454 

mean that these tools are still far from being at a stage in which they fully capture all TD processes 455 

that may influence sensitivity.  456 
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If sufficiently reliable models for the extrapolation of species sensitivity towards different 457 

chemicals are available, or in cases for which laboratory toxicity data are available for the 458 

parameterization of effect models for relevant field species, confidence in population models can be 459 

increased based on field toxicity trials. An example of population-level testing is reported in Johnston 460 

et al. (2018). The use of effect data for testing TKTD models derived from field studies is limited, but 461 

field data could be used to partially (e.g., initial decline in abundance) validate predictions from TKTD 462 

models such as GUTS. It is recognized that both the range and ranking of species sensitivities may 463 

vary considerably among compounds, and pragmatic approaches for dealing with this are needed.  464 

Any move to apply mechanistic models for modeling pesticide impacts in earthworms will 465 

require a change in current testing procedures. The current chronic earthworm test involves the 466 

assessment of survival on day 28 only and measurement of reproduction at test termination (day 56). 467 

Development of process-based approaches such as TKTD models, however, requires data at a higher 468 

temporal resolution. Designs that include measurement of survival at regular times for 469 

parameterization of TKTD models, such as GUTS, are potentially easy to conduct by extending 470 

exposure time and increasing observations of mortality to at least four time points. A challenge for 471 

such studies with earthworms is simply that soil, unlike water, is not transparent. Consequently, each 472 

measurement involves disturbing the test system (e.g., by hand sorting), raising the issue of stress and 473 

potential mechanical damage. Alternatively, a destructive sampling design could be used, though this 474 

would require additional replicates. For DEB model application, the slow rate of earthworm 475 

development and the extended timescale of reproduction mean that life-cycle tests measuring juvenile 476 

and adult traits over time are unlikely to be feasible, and if conducted, would need to take compound 477 

fate into consideration. It should also be noted that for many field-relevant species, following 478 

individuals from birth through adulthood and reproduction is not practical. Approaches that separately 479 

measure juvenile growth and adult reproduction have been proposed and could form the basis of a 480 

suitable method for time series data collection (Van Gestel et al. 1991; Spurgeon et al. 2003). Given 481 

the intricacies of TKTD model development and parameterization for a long-lived soil-dwelling 482 

species, a further challenge is how to validate model predictions for those species. One approach is to 483 

use mechanistic measurements, such as internal concentrations or measurements of tissue “damage” 484 
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(although difficult to define) for the testing of model components. However, the targeted nature of 485 

such measurements means that they may only validate one parameter, rather than the output of the 486 

model as a whole. Therefore, validation of TKTD model predictions on the level of survival or 487 

reproduction based on laboratory validation tests is recommended. 488 

Ideally, the conditions for experiments for validation purposes should be different from those 489 

in the calibration experiment and reflect the (regulatory) question to be addressed by the model. 490 

Examples include variation of exposure duration, spatial variation of exposure, variation in time scale 491 

(temporal extrapolation), or variation in environmental conditions such as soil properties affecting 492 

chemical fate and exposure, and earthworm movement and population structure. 493 

494 

Priorities for Future Work 495 

We conclude that a mechanistic modeling approach, linking appropriate environmental 496 

variables, reflecting defined scenarios, TKTD processes, and movement behavior, can provide realistic 497 

individual- and population-level predictions. This approach offers promise for improving scientific 498 

understanding and informing pesticide risk assessment for earthworms in the EU regulatory 499 

framework. With that said, we have identified several areas in which more work is needed to allow 500 

FORESEE to reach its full potential. Moreover, we provide several recommendations for moving this 501 

initiative forward. Filling the remaining data gaps identified by workshop participants would enable 502 

FORESEE to achieve its full potential as a tool for refining risk and to address uncertainties in the 503 

present risk assessment for earthworms exposed to pesticides. These are shown in Table 2. 504 

505 

Recommendations 506 

We recommend: 507 
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• Further developing FORESEE as a mechanistic effect model that could be applied for508 

pesticide risk assessment and parameterized for relevant earthworm ecotypes represented in509 

European agricultural systems.510 

• Additional assessment of the differences in species sensitivity between standard test species 511 

and more ecologically relevant earthworm species for different compounds, as species 512 

sensitivity can vary between chemicals. 513 

• Further investigation of the relevance of impacts of abiotic and biotic factors on the movement 514 

of earthworms. 515 

• Employing a data-informed, trait-based approach to simulate a set of representative earthworm516 

species using a framework considering four ecotypes, which we believe to be sufficient for517 

capturing earthworm behavioral traits regarding movement patterns in the soil. Traits to518 

include describe moving and burrowing behavior and niche characteristics (i.e., tolerance to519 

drought, temperature, soil bulk density, and food conditions).520 

• Modeling and/or measuring internal concentrations (body residues) as a step to account for 521 

different routes of uptake (e.g., dermal, gut) as a refined option in the tiered risk assessment 522 

scheme. 523 

• Measurements of organism size, mortality, and reproductive output at intermediate time points 524 

in laboratory toxicity studies to facilitate parameterization of TKTD modeling (GUTS and 525 

DEB-TKTD). This will require a reassessment of the standardized approach currently used for 526 

earthworm toxicity testing, especially for the measurement of reproduction for intermediate 527 

time points. In addition, substantial additional effort will be involved as either soil will need to 528 

be changed at each sampling, or additional replicates will be needed to allow destructive 529 

sampling. 530 

• Further developments of FORESEE for possible use in EU pesticide risk assessment following 531 

EFSA’s guidance for good modeling practice, including detailed and transparent model 532 

documentation. This includes the consideration of model uncertainty. 533 
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• Version control of effect models in order for them to be used in the EU registration procedure. 534 

Version control can be done within the existing EFSA-Chaired Version Control Workgroup535 

for pesticide fate models.536 

• Organization of a follow-up working group or targeted workshop to establish detailed 537 

experimental designs for robust model calibration and evaluation. 538 

• Broad stakeholder engagement to achieve agreement on the data sets that FORESEE should be 539 

tested against, validation of study designs, and other criteria for model evaluation to increase 540 

the validation status of the effect models.  541 

• Broad scientific discussion to gain consensus on appropriate ecological scenarios in which to 542 

assess risk using FORESEE given that scenarios used to derive worst-case pesticide fate 543 

estimates may not be appropriate for modeling earthworm risk.  544 

• EFSA to critically consider the key findings and recommendations from this workshop 545 

together with other relevant reports or published scientific information during the revision of 546 

their guidance for risk assessment of soil organisms to improve the linkage of exposure and 547 

effects and address other knowledge gaps in current ERA practice.  548 

• Establishing a formal and transparent mechanism to ensure that models for pesticide risk 549 

assessment in the EU can be effectively and efficiently evaluated. 550 

We acknowledge that current approaches to pesticide risk assessment include uncertainties 551 

with regard to spatiotemporal variation in pedological, climatic, and biological conditions, 552 

agronomical practices, and complexities occurring at the landscape scale (Topping et al. 2020). 553 

However, we conclude that mechanistic effect modeling of the kind described here can help to 554 

quantify and reduce uncertainties in ERA by providing improved integration of exposure and effects 555 

and by incorporating different pesticide application scenarios and greater ecological realism.    556 

557 

558 
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Table 1. Data availability, identified by work group 2, for the development of realistic population 
modules for different earthworm species representative of four earthworm ecotypes. Ticks 
represent available data, (lit.) indicates that the data are available from the scientific literature, - 
indicates not available, and question marks require a literature review to identify whether the 
data are available.   

 

 Lumbricus 
terrestris 

Aporrectodea 
longa 

Aporrectodea 
caliginosa 

Eisenia  fetida / 
Lumbricus castaneus 

 epi-anecic anecics endogeics epigeics 

Energy budget √ √ √ √ - 

Mortality rate ? ? ? ? ? 

Temperature preference √ (lit.) ? √ (lit.) √ (lit.) ? 

Soil water potential  
preference 

√ (lit.) √ (lit.) √ (lit.) √ (lit.) ? 

Soil organic matter 
preference 

- ? √ - - 

Bulk density preference √ ? √ - - 

Mating as surface √ - - √ √ 

% time at surface √ ? √ √ √ 

% time burrowing √ ? (lit.) √ √ √ 

% time displacing √ ? (lit.) √ √ √ 

% time inactive √ ? (lit.) ? (lit.) ? ? 

 

 

 



Table 2. Main data gaps for earthworms in the context of this workshop on soil organism 
pesticide risk assessments and how filling them would improve ERA. 

 

Data Gap Needed for 

Definition of realistic worst-case 
environmental scenarios for modeling (spatial 
and temporal scales, number of spatial 
dimensions, soil and climate variables) and 
establishing link to existing exposure models 

Relevant data for FORESEE’s environment 
module 

Intermediate measurements of survival, 
growth, and reproduction in chronic 
earthworm study 

Time course data to parameterize GUTS or 
DEB-TKTD 

Toxicity test results for different soils and 
chemicals with a range of Log Kow values 

Proof of concept with a short term benefit to 
the existing risk assessment as it could be used 
to replace the arbitrary correction factor of 2 
when log Kow > 2 

Measured dermal and oral uptake rate 
constants for a wide range of Log Kow values 
disentangled from experimental variables (e.g. 
soil type, water content) 

Establishing the relationship between uptake 
rate constants and substance properties (e.g. 
log Kow) whilst accounting for bioavailability  

A few comprehensive studies with 
measurements of several state variables (e.g., 
concentrations in bulk soil, porewater and 
earthworms & toxicity, over time)  

Better system understanding and evaluation if 
model complexity is appropriate 

Ecological studies Data on movement differences among 
earthworm ecological categories 

Tests of inherent toxicity in multiple worm 
species 

Data needed for cross-species extrapolation 
and to distinguish sensitivity differences from 
exposure differences 
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