



# Article (refereed) - postprint

Sharps, Katrina; Hayes, Felicity; Harmens, Harry; Mills, Gina. 2021. **Ozone-induced effects on leaves in African crop species.** 

#### © 2020 Elsevier B.V.

This manuscript version is made available under the CC BY-NC-ND 4.0 license <a href="https://creativecommons.org/licenses/by-nc-nd/4.0/">https://creativecommons.org/licenses/by-nc-nd/4.0/</a>

(CC) BY-NC-ND

This version is available at <a href="http://nora.nerc.ac.uk/id/eprint/529240">http://nora.nerc.ac.uk/id/eprint/529240</a>

Copyright and other rights for material on this site are retained by the rights owners. Users should read the terms and conditions of use of this material at <a href="https://nora.nerc.ac.uk/policies.html#access">https://nora.nerc.ac.uk/policies.html#access</a>.

This is an unedited manuscript accepted for publication, incorporating any revisions agreed during the peer review process. There may be differences between this and the publisher's version. You are advised to consult the publisher's version if you wish to cite from this article.

The definitive version was published in *Environmental Pollution*, 268 (A), 115789. https://doi.org/10.1016/j.envpol.2020.115789

The definitive version is available at https://www.elsevier.com/

Contact UKCEH NORA team at noraceh@ceh.ac.uk

The NERC and UKCEH trademarks and logos ('the Trademarks') are registered trademarks of NERC and UKCEH in the UK and other countries, and may not be used without the prior written consent of the Trademark owner.

- 1 Ozone-induced effects on leaves in African crop species.
- 2 Sharps, K. et al.

10

13

14

15

16

17

## Supplementary Material

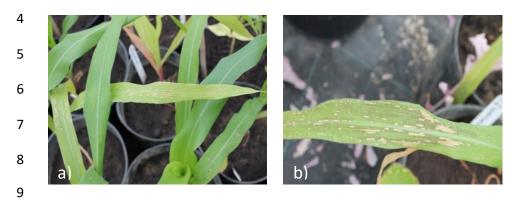
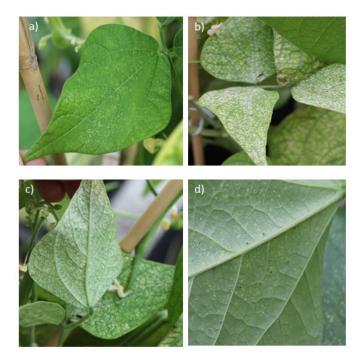




Figure S1. Visible ozone symptoms on maize (Zea mays) leaves after an ozone exposure pilot study

#### in late summer 2019.



**Figure S2**: Red spider mite infestation on Common bean (*Phaseolus vulgaris*). White webbing appears on the upper surface of the leaf, which can become extensive in some cases (S2a, b). Unlike leaf symptoms caused by ozone, spider mite symptoms can be found on both surfaces of the leaf, and are not limited to interveinal areas. The dark coloured, pin-head sized mites can be seen crawling on the underside of the leaf (S2c, d).

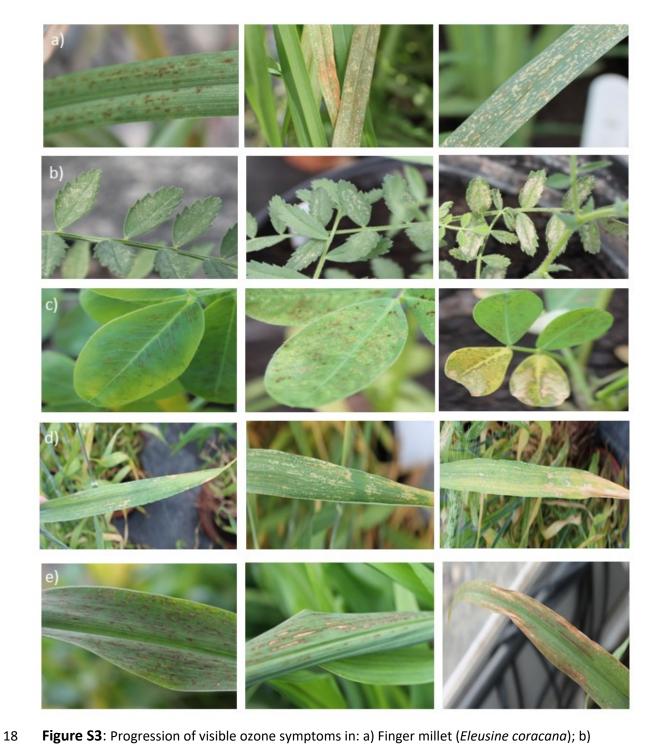



Figure S3: Progression of visible ozone symptoms in: a) Finger millet (*Eleusine coracana*); b)

Chickpea (*Cicer arietinum*); c) Peanut (*Arachis hypogaea*); d) Common wheat (*Triticum aestivum*); e)

Pearl millet (*Pennisetum glaucum*).

Sources of seeds used in the experiment Wheat (Triticum aestivum) seeds were obtained from the Kenya Agriculture and Livestock Research Organistion (KALRO; Njoro-Kenya). Finger millet (Eleusine coracana) and pearl millet (Pennisetum glaucum) seeds were obtained from the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT-Nairobi, Kenya). Widely grown cultivars of common bean (*Phaseolus vulgaris*) ('Black Turtle', 'Cannellini', 'Orca', 'Pinto') were obtained from Jungle Seeds Ltd, UK. (http://www.jungleseeds.co.uk/) The P. vulgaris cultivars 'Mbombo', 'Tiger' and 'Rajama,' and the cowpea (Vigna unguiculata), amaranth (Amaranthus hypochondriacus) and peanut (Arachis hypogaea) seeds were obtained from Rareseeds (https://www.rareseeds.com/store/vegetables). Sweet potato (Ipomoea batatas), mung bean (Vigna radiata) and maize (Zea mays) seeds were obtained from Thompson and Morgan, UK (https://www.thompson-morgan.com/). The sorghum (Sorghum bicolor) and chickpea (Cicer arietinum) seeds were obtained from ICRISAT-India. The barley (Hordeum vulgare) was supplied by Syngenta, UK (https://www.syngenta.co.uk/). 

| Year: 2017               |                    | Ozone concentration |                       |  |
|--------------------------|--------------------|---------------------|-----------------------|--|
| O <sub>3</sub> treatment | Temperature regime | Weekly mean (ppb)   | Mean daily max. (ppb) |  |
| Low                      | Ambient            | 25.6                | 32.5                  |  |
| Medium                   | Ambient            | 40.2                | 67.3                  |  |
| High                     | Ambient            | 45.8                | 84                    |  |
| Low                      | Ambient + 7°C      | 25.4                | 33.9                  |  |
| Medium                   | Ambient + 7°C      | 40.6                | 70.6                  |  |
| High                     | Ambient + 7°C      | 47.8                | 93                    |  |
|                          |                    |                     |                       |  |
| Year: 2018               |                    | Ozone concentration |                       |  |
| O <sub>3</sub> treatment | Temperature regime | Weekly mean (ppb)   | Mean daily max. (ppb) |  |
| Low                      | Ambient + 7°C      | 21.6                | 32.4                  |  |
| Medium                   | Ambient + 7°C      | 37.8                | 69.8                  |  |
| High                     | Ambient + 7°C      | 44.3                | 90.4                  |  |
|                          |                    |                     |                       |  |
| Year: 2019               |                    | Ozone co            | oncentration          |  |
| O <sub>3</sub> treatment | Temperature regime | Weekly mean (ppb)   | Mean daily max. (ppb) |  |
| Low                      | Ambient + 7°C      | 24.7                | 32.5                  |  |
| Medium                   | Ambient + 7°C      | 41.3                | 71.2                  |  |
| High                     | Ambient + 7°C      | 49.2                | 92.4                  |  |

74

75

76

| Species        | Cultivar         | Ozone treatment start | Ozone treatment end |
|----------------|------------------|-----------------------|---------------------|
|                | Korongo          | 18/05/2017            | 25/07/2017          |
|                | Eagle            | 18/05/2017            | 25/07/2017          |
| Wheat          | Njoro            | 18/05/2017            | 25/07/2017          |
|                | Hawk             | 18/05/2017            | 25/07/2017          |
|                | Wren             | 18/05/2017            | 25/07/2017          |
|                | ICMV 221         | 24/05/2017            | 29/06/2017          |
| Pearl millet   | KAT PM1          | 24/05/2017            | 29/06/2017          |
| Peari millet   | Okashana         | 24/05/2017            | 29/06/2017          |
|                | Shibe            | 24/05/2017            | 29/06/2017          |
|                | GuluE            | 1/06/2017             | 28/09/2017          |
|                | KNE624           | 1/06/2017             | 28/09/2017          |
| Finana maillat | KNE814           | 1/06/2017             | 28/09/2017          |
| Finger millet  | Okhale           | 1/06/2017             | 28/09/2017          |
|                | P224             | 1/06/2017             | 28/09/2017          |
|                | U15              | 1/06/2017             | 28/09/2017          |
| Mung bean      | Unspecified      | 1/06/2017             | 5/09/2017           |
|                | Pinto            | 1/06/2017             | 31/07/2017          |
|                | Orca             | 1/06/2017             | 21/08/2017          |
|                | Black Turtle     | 1/06/2017             | 02/08/2017          |
| Common<br>bean | Cannellini       | 1/06/2017             | 25/08/2017          |
| bean           | Mbombo           | 6/06/2018             | 23/08/2018          |
|                | Rajama           | 6/06/2018             | 16/08/2018          |
|                | Tiger            | 6/06/2018             | 16/08/2018          |
|                | Black-eye        | 1/06/2017             | 21/08/2017          |
|                | Blue Goose       | 6/06/2018             | 23/08/2018          |
| Cowpea         | Hog brains       | 6/06/2018             | 23/08/2018          |
|                | Old Timer        | 6/06/2018             | 16/08/2018          |
|                | Razorback        | 6/06/2018             | 16/08/2018          |
|                | Whippoorwill     | 6/06/2018             | 16/08/2018          |
| Chickpea       | ICC 15333        | 19/09/2017            | 3/11/2017           |
| Amaranth       | Pygmy Torch      | 6/06/2018             | 30/08/2018          |
| Peanut         | Negrito          | 6/06/2018             | 23/08/2018          |
|                | Tennessee<br>red | 6/06/2018             | 23/08/2018          |
| Sorghum        | IS1004           | 6/06/2018             | 6/08/2018           |
| Joignain       | IS27557          | 6/06/2018             | 6/08/2018           |

| Barley       | Propino       | 11/06/2019 | 1/10/2019 |
|--------------|---------------|------------|-----------|
| Sweet potato | Erato Orange  | 11/06/2019 | 1/11/2019 |
| Maize        | Incredible F1 | 27/08/2019 | 1/11/2019 |

**Table S3:** Climatic conditions in the solardomes during the growing season for 2017, 2018 and 2019.

Temperature and relative humidity were continuously measured in one ambient temperature solardome (2017) and three heated solardomes (2017, 2018, 2019). Photosynthetically Active Radiation (PAR) was continuously monitored each year in one ambient temperature dome. Seasonal mean ± standard error is

presented. Daylight mean temperature and Vapour-Pressure Deficit (VPD) were calculated using hourly values

84 with >200 PAR, and 12 hr mean PAR was calculated using the period 07:00 – 18:00.

#### **3a)** 2017

| Ozone treatment | Temperature regime | Temperature,<br>daylight mean (°C) | VPD, daylight<br>mean (kPa) | PAR, 12h mean<br>(mmol m <sup>-2</sup> s <sup>-1</sup> ) |
|-----------------|--------------------|------------------------------------|-----------------------------|----------------------------------------------------------|
| Low             | Ambient            | 20.3 ± 0.3                         | 0.61 ± 0.1                  | 487 ± 21                                                 |
| Low             | Ambient + 7°C      | 27.2 ± 0.3                         | 1.89 ± 0.1                  |                                                          |
| Medium          | Ambient + 7°C      | 27.7 ± 0.3                         | 2.05 ± 0.1                  |                                                          |
| High            | Ambient + 7°C      | $27.3 \pm 0.3$                     | 1.87 ± 0.1                  |                                                          |

#### **3b)** 2018

| Ozone treatment <sup>1</sup> | Temperature regime | Temperature,<br>daylight mean (°C) | VPD, daylight<br>mean (kPa) | PAR, 12h mean<br>(mmol m <sup>-2</sup> s <sup>-1</sup> ) <sup>1</sup> |
|------------------------------|--------------------|------------------------------------|-----------------------------|-----------------------------------------------------------------------|
| Low                          | Ambient            |                                    |                             | 572 ± 18                                                              |
| Low                          | Ambient + 7°C      | 30.71 ± 0.14                       | 2.55 ± 0.03                 |                                                                       |
| Medium                       | Ambient + 7°C      | 29.62 ± 0.13                       | 2.37 ± 0.03                 |                                                                       |
| High                         | Ambient + 7°C      | 29.85 ± 0.14                       | 2.40 ± 0.03                 |                                                                       |

#### **3c)** 2019

| Ozone treatment <sup>1</sup> | Temperature regime | Temperature,<br>daylight mean (°C) | VPD, daylight<br>mean (kPa) | PAR, 12h mean<br>(mmol m <sup>-2</sup> s <sup>-1</sup> ) <sup>1</sup> |
|------------------------------|--------------------|------------------------------------|-----------------------------|-----------------------------------------------------------------------|
| Low                          | Ambient            |                                    |                             | 465 ± 19                                                              |
| Low                          | Ambient + 7°C      | 29.16 ± 0.11                       | 2.22 ± 0.02                 |                                                                       |
| Medium                       | Ambient + 7°C      | 28.93 ± 0.12                       | 2.22 ± 0.03                 |                                                                       |
| High                         | Ambient + 7°C      | 28.92 ± 0.14                       | 2.32 ± 0.03                 |                                                                       |

#### Table S4

- 92 Results of regular leaf assessments for crop plants exposed to low, medium and high ozone (O<sub>3</sub>)
- 93 treatments in solardomes. The presence of visible ozone symptoms classed as 'Mild' = <5% of the
- leaf showing ozone symptoms; 'Moderate' = 5-25% of the leaf showing ozone symptoms and
- 95 'Severe' = >25% of the leaf showing ozone symptoms, was recorded for each species.

| Species          | Development of visible ozone symptoms on leaves                                                  |
|------------------|--------------------------------------------------------------------------------------------------|
| Common wheat     | After 6 days of exposure, mild ozone symptoms seen in all wheat cultivars,                       |
| (flag leaf)      | in all treatments. Moderate ozone symptoms in 3 of 6 cultivars in medium                         |
|                  | $O_3$ , and 5 of 6 cultivars in high $O_3$ . Severe ozone symptoms in 1 cultivar in              |
|                  | high O <sub>3</sub> . After 18 days, moderate ozone symptoms seen in all cultivars in            |
|                  | medium and high O <sub>3</sub> , and severe ozone symptoms in 4 of 6 cultivars in                |
|                  | medium O <sub>3</sub> , and all cultivars in high O <sub>3</sub> .                               |
| Pearl millet     | After 7 days of exposure, mild ozone symptoms seen in medium and high                            |
|                  | O <sub>3</sub> treatments only. After 20 days, all but one cultivar showing severe               |
|                  | ozone symptoms in medium and high O <sub>3</sub> treatments. No ozone symptoms                   |
|                  | in low O <sub>3</sub> treatment (final assessment was after 28 days of exposure).                |
| Finger millet    | After 5 days of exposure, mild ozone symptoms in medium O <sub>3</sub> , mild and                |
|                  | moderate ozone symptoms in high O <sub>3</sub> . No ozone symptoms in low O <sub>3</sub> . After |
|                  | 12 days, 4 of 6 cultivars showing severe ozone symptoms in medium O <sub>3</sub> ,               |
|                  | and all 6 cultivars showing severe ozone symptoms in high O <sub>3</sub> . No ozone              |
|                  | symptoms in low O₃ (final assessment was after 21 days of exposure).                             |
| Mung bean        | After 8 days, mild ozone symptoms in medium O <sub>3</sub> only, after 12 days both              |
|                  | medium and high O <sub>3</sub> showing mild ozone symptoms. By 19 days of                        |
|                  | exposure, medium and high O <sub>3</sub> showing severe ozone symptoms. Mild                     |
|                  | ozone symptoms appeared in low O₃ treatment after 27 days.                                       |
| Common bean      | After 8 days of exposure, moderate ozone symptoms in medium O <sub>3</sub> , and                 |
| (2017 cultivars) | moderate and severe in high $O_3$ . In the medium treatment, after 12 days,                      |
|                  | severe ozone symptoms seen in 2 cultivars, with all 4 cultivars showing                          |
|                  | severe ozone symptoms after 34 days. No ozone symptoms in low O <sub>3</sub>                     |
|                  | treatment recorded during growing season.                                                        |
| Cowpea           | Visible ozone symptoms slow to appear. First week of clear ozone                                 |
|                  | symptoms was after 4 weeks of exposure, with symptoms in high O <sub>3</sub>                     |
|                  | treatment only (mild, moderate and severe, depending on leaf age and                             |
|                  | cultivar; 2 cultivars with mild and moderate ozone symptoms, 1 with mild,                        |
|                  | moderate and severe symptoms, 1 with only mild symptoms, and 1 with                              |
|                  | no symptoms). After 8 weeks of exposure, no ozone symptoms in the low                            |
|                  | O <sub>3</sub> treatment, mild symptoms in 3 of 5 cultivars in medium O <sub>3</sub> .           |
| Chickpea         | Ad hoc leaf assessments only.                                                                    |
| Amaranth         | Ad hoc leaf assessments only.                                                                    |
| Peanut           | Ad hoc leaf assessments only.                                                                    |
| Sorghum          | Ad hoc leaf assessments only.                                                                    |
| Barley           | Ad hoc leaf assessments only.                                                                    |
| Sweet potato     | After 7 days of exposure, moderate ozone symptoms in both medium and                             |
|                  | high O₃ treatments.                                                                              |
| Maize            | Ad hoc leaf assessments only.                                                                    |

**Table S5:** Model results of the relationship between leaf number and the number of days of ozone exposure, for common bean (*Phaseolus vulgaris*) cultivars exposed to low, medium and high ozone (O<sub>3</sub>) treatments. Days<sup>2</sup> represents the inclusion of a quadratic term in the model, as the relationship between leaf number and time showed a curved shape (first increasing with time, and then gradually decreasing) for Orca, Pinto and Turtle beans.

**5a)** Optimal models (chosen using top down selection and Akaike's Information Criterion (AIC)) for each *P. vulgaris* cultivar. The 'X' indicates that the model term was present in the optimal model.

|                      |                | Model terms                                                                         |   |   |   |  |  |
|----------------------|----------------|-------------------------------------------------------------------------------------|---|---|---|--|--|
| P. vulgaris cultivar | O <sub>3</sub> | $O_3$ Days Days + Days <sup>2</sup> $O_3$ * Days $O_3$ *(Days + Days <sup>2</sup> ) |   |   |   |  |  |
| Cannellini           |                | Х                                                                                   |   |   |   |  |  |
| Orca                 | Х              |                                                                                     | Х | Χ |   |  |  |
| Pinto                | Х              |                                                                                     | Х |   | X |  |  |
| Turtle               | Х              |                                                                                     | X |   | Х |  |  |

**5b)** Results (p-values) for the interaction terms in the models for each bean cultivar.

|                              | P. vulgaris cultivar |          |          |          |  |
|------------------------------|----------------------|----------|----------|----------|--|
| Model                        | Cannellini           | Orca     | Pinto    | Turtle   |  |
|                              |                      |          |          |          |  |
| Ozone * Days                 | 0.33                 | < 0.0001 | < 0.0001 | < 0.0001 |  |
| Low vs High O₃               | NA                   | < 0.0001 | < 0.0001 | < 0.0001 |  |
| Low vs Medium O <sub>3</sub> | NA                   | < 0.0001 | < 0.001  | 0.019    |  |
| Medium vs High O₃            | NA                   | 0.53     | 0.16     | < 0.0001 |  |
| Ozone * Days <sup>2</sup>    | NA                   | 0.26     | < 0.0001 | < 0.0001 |  |
| Low vs High O₃               | NA                   | NA       | 0.002    | < 0.0001 |  |
| Low vs Medium O <sub>3</sub> | NA                   | NA       | < 0.0001 | 0.68     |  |
| Medium vs High O₃            | NA                   | NA       | 0.36     | < 0.0001 |  |

**Table S6:** Model results (p-values) for investigation of the effect of increased ozone on percentage flag leaf senescence in African wheat (*Triticum aestivum*) cultivars exposed to low, medium and high ozone (O<sub>3</sub>) treatments. Values are for post-hoc tests (using the R package 'emmeans') comparing a) African wheat cultivars at low, medium and high ozone; b) ozone treatment response for each African wheat cultivar.

## **6a)**

|                             | p-values           |           |         |  |
|-----------------------------|--------------------|-----------|---------|--|
| Contrasts (Wheat varieties) | Low O <sub>3</sub> | Medium O₃ | High O₃ |  |
| eagle - hawk                | <0.0001            | 0.0004    | 0.77    |  |
| eagle - korongo             | <0.0001            | 0.0053    | 0.89    |  |
| eagle - njoro               | <0.0001            | <0.0001   | 0.77    |  |
| eagle - wren                | <0.0001            | <0.0001   | 0.53    |  |
| hawk - korongo              | 0.96               | 0.95      | 0.99    |  |
| hawk - njoro                | 0.67               | 0.88      | 1       |  |
| hawk - wren                 | 0.96               | 0.73      | 0.95    |  |
| korongo - njoro             | 0.97               | 0.47      | 0.99    |  |
| korongo - wren              | 1                  | 0.34      | 0.82    |  |
| njoro - wren                | 0.97               | 0.996     | 0.95    |  |

# 

### **6b)**

|                           | p-values |         |         |         |         |
|---------------------------|----------|---------|---------|---------|---------|
| Contrasts (O₃ treatments) | Eagle    | Hawk    | Korongo | Njoro   | Wren    |
| high - low                | 0.040    | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
| high - medium             | 0.004    | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
| low - medium              | 0.004    | 0.026   | 0.023   | 0.91    | 0.82    |