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A B S T R A C T

Between pandemics, the influenza virus exhibits periods of incremental evolution via a process known as
antigenic drift. This process gives rise to a sequence of strains of the pathogen that are continuously replaced by
newer strains, preventing a build up of immunity in the host population. In this paper, a parsimonious epidemic
model is defined that attempts to capture the dynamics of evolving strains within a host population. The
‘evolving strains’ epidemic model has many properties that lie in-between the Susceptible–Infected–Susceptible
and the Susceptible–Infected–Removed epidemic models, due to the fact that individuals can only be infected
by each strain once, but remain susceptible to reinfection by newly emerged strains. Coupling results are used
to identify key properties, such as the time to extinction. A range of reproduction numbers are explored to
characterise the model, including a novel quasi-stationary reproduction number that can be used to describe
the re-emergence of the pathogen into a population with ‘average’ levels of strain immunity, analogous to
the beginning of the winter peak in influenza. Finally the quasi-stationary distribution of the evolving strains
model is explored via simulation.
1. Introduction

Epidemic models have become important tools for understand-
ing, predicting and developing mitigation strategies for public health
planners dealing with infectious diseases. Recent advances in genetic
epidemiology have greatly accelerated our understanding of the com-
plex interactions between host immunity and pathogen evolution, and
emphasised the important role that pathogen evolution can have on
the dynamics of infection. However, it remains extremely challenging
to combine together these two interacting processes within the same
mathematical framework [1]. In this paper we develop a parsimonious
epidemic model that describes the transmission dynamics of a multi-
strain pathogen with evolutionary dynamics similar to the influenza A
virus evolving via antigenic drift.

Multi-strain models have become increasingly popular due to the
rise in availability of pathogen genetic analyses. Many models have
been based on ordinary differential equations (ODE), despite the fact
that stochastic effects play an important role in mutation [see [1] for a
review]. Bichara et al. [2] develop an epidemic model with competition
between finitely many pathogen strains, and include vertical transmis-
sion and immunity from maternal antibodies in the infection dynamics.
Meehan et al. [3] analyse multi-strain epidemic models with mutation
between strains within an ODE framework. However since their focus
is on drug-resistance, they do not consider the effect of immunity. In
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the multi-strain models discussed in Gog et al. [4], there is assumed
to be a finite number of possible strains, and each individual may be
infected with one or more of such strains. Evolution was been modelled
by a random jump process on a finite strain space using a nearest neigh-
bour jump process. Models involving a countable number of infectious
statuses have been discussed in the past [5], but these typically only
use the previously mentioned nearest-neighbour evolution. In [5] this
is expressed as a model for parasitic infections where the ‘‘type’’ of
an individual is defined by the quantity of parasites in a host. Despite
the many modelling papers on multi-strain epidemics, the methodology
required to fit these models to data is only just emerging [6].

Between pandemics, the 4 main sub-types of the influenza virus
evolve according to a process called antigenic drift [7]. Antigenic drift
arises due to the fact that infection with a particular strain of influenza
provides the host with a long-lasting immunity to future infection by
the same strain. Once immunity to a particular strain has built up in the
population, there is a selection advantage to strains that do not elicit
the same immune response. To capture within a mathematical model
the complex processes driving the evolution of the influenza virus is
extremely challenging due to the interactions between host immunity
and viral evolution [8]. Nonetheless, simple models can give rise to
surprisingly complex dynamics [9,10]. The H3N2 subtype of influenza
A, in particular, exhibits a narrow spread in its evolutionary tree,
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with all strains a short genetic distance from a single branch [11,12].
Each strain persists for a relatively short amount of time before being
replaced.

In this paper we define a novel epidemic model with countably
infinite, evolving strains that sits between the traditional susceptible–
infected–susceptible (SIS) and susceptible–infected–removed (SIR) epi-
demic models, in that each individual may be infected many times with
the pathogen, but only once by a strain. The model is designed to reflect
the narrow pattern of evolution observed in pathogens undergoing anti-
genic drift, such as seasonal influenza. By introducing an equivalence
relation on the state space, we are able to describe the equilibrium
behaviour of the model prior to elimination of the pathogen. In Sec-
tion 5, coupling arguments are used to make precise the relationship
between our new model and the traditional SIS and SIR models and
to explore the large population limit. In Section 6 we discuss three
reproduction numbers for the novel model. Finally in Section 7 we
explore simulations from the quasi-equilibrium distributions.

2. Definition of the model

2.1. SIRS with evolving strains (E-SIRS)

Consider a closed population of 𝑁 individuals which are classified
as susceptible, infective or removed. For each time 𝑡, we denote the
number of susceptibles by (𝑡), the number of infectives by (𝑡), and
he number of removed individuals by (𝑡). An infective remains in this
lass for a random period of time known as their infectious period, after
hich they become removed. Similarly, removed individuals become

usceptible again after their immune period, during which they cannot
e infected by any strain (even a new one). We assume the durations
f infectious periods are i.i.d. draws from 𝐿𝐼 ∼ Exp(𝛾) and immune
eriods are i.i.d draws from 𝐿𝑅 ∼ Exp(𝛿).

To capture dynamics of competing and evolving strains, every indi-
idual has a strain index 𝑘 ∈ Z which denotes the most recent strain
ith which an individual was (or is currently) infected. We denote the
umber of susceptibles, infectives and removed individuals respectively
ith strain index 𝑘 by 𝑘(𝑡), 𝑘(𝑡) and 𝑘(𝑡). Finally we denote by 𝐾∗(𝑡)

the largest strain index observed up to time 𝑡 and use 𝐾∗ ∶= 𝐾∗(𝑡−)
where the time is clear from context.

As in the standard SIRS model [13], we assume homogeneous
mixing of individuals, and so each pair of individuals makes contact
at the points of a Poisson process with rate 𝛽

𝑁 > 0. New strains are
introduced into the population in the following way. Each time an
infective makes contact with a susceptible individual, we assume that
with some probability 𝜃 ∈ [0, 1], there is a successful infection of the
susceptible with a previously unseen strain, which is given strain index
𝐾∗(𝑡−) + 1. With probability 1 − 𝜃, the original strain in the infective
ttempts to infect the susceptible; the success of this infection depends
n the strain index of the susceptible. For simplicity, we assume that
mmunity is cumulative: a susceptible with strain index 𝑘 is immune to
ll strains with index 𝑗 ≤ 𝑘. Removed and susceptible individuals retain
he strain index of the strain they have most recently recovered from.
ll contact processes, mutation events, infectious periods and immune
eriods are assumed to be independent from each other.

To summarise, the epidemic proceeds according to the following
vents.

• Infection without mutation:
(𝑗 (𝑡),𝑘(𝑡)) ↦ (𝑗 (𝑡) − 1,𝑘(𝑡) + 1)
for all 𝑗 < 𝑘, with rate 𝛽(1 − 𝜃)𝑁−1𝑗 (𝑡)𝑘(𝑡).

• Infection with mutation:
(𝑗 (𝑡),𝐾∗+1(𝑡) = 0) ↦ (𝑗 (𝑡) − 1,𝐾∗+1(𝑡) = 1) for 𝑗 ∈ Z with rate
𝛽𝜃𝑁−1𝑗 (𝑡)(𝑡).

• Recovery:

(𝑘(𝑡),𝑘(𝑡)) ↦ (𝑘(𝑡) − 1,𝑘(𝑡) + 1) for 𝑘 ∈ Z with rate 𝛾𝑘(𝑡).
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• Loss of global immunity:
(𝑘(𝑡),𝑘(𝑡)) ↦ (𝑘(𝑡) − 1,𝑘(𝑡) + 1) for 𝑘 ∈ Z with rate 𝛿𝑘(𝑡).

The state space of the E-SIRS model is given by 𝛺′ = {(𝐬, 𝐢, 𝐫) ∶
𝑘∈Z(s𝑘+i𝑘+r𝑘) = 𝑁}, with 𝐬, 𝐢, 𝐫 being infinite sequences taking values

n {0, 1,… , 𝑁}. A natural initial condition might be 1(0) = 1,𝑘(0) = 0
or 𝑘 ≠ 1, 0(0) = 𝑁−1, 𝑘(0) = 0 for 𝑘 ≠ 0, and 𝑘(0) = 0 for all 𝑘. This
quates to a single currently infective individual infected with a strain
o which all other individuals are susceptible, and to which no-one is
urrently recovering.

.2. SIS with evolving strains (E-SIS)

Consider a second model where following an infectious period, an
ndividual becomes immediately susceptible, corresponding to the E-
IRS model where 𝛿 = ∞. In this model there are no periods of
mmunity and so recovery events generate susceptibles:

• Recovery: (𝑘(𝑡),𝑘(𝑡)) ↦ (𝑘(𝑡) − 1,𝑘(𝑡) + 1) for 𝑘 ∈ Z with rate
𝛾𝑘(𝑡).

plus infection transitions as above. The E-SIS model evolves over
he subspace {(𝐬, 𝐢) ∶

∑

𝑘∈Z(s𝑘 + i𝑘) = 𝑁}. We will refer to both spaces
y 𝛺′, the meaning will always be clear from context.

.3. Link to single-strain models

Consider the E-SIS model with 𝜃 = 1. All contacts are mutation
ontacts and hence successful, and so ((𝑡),(𝑡)), the total numbers of
usceptibles and infectives, follow a traditional single-strain SIS model
s defined in [14]. We can also perform a similar identification between
(𝑡),(𝑡),(𝑡)), the number of susceptibles, infectives and immune
ndividuals in the E-SIRS model and the single-strain SIRS model as
efined in [13].

On the other hand, consider the E-SIS model with 𝜃 = 0. Since no
ontacts are mutations, no individual can be infected more than once. If
he population starts with strain index 0 except for the initial infectives
ith strain 1, (0(𝑡),1(𝑡),1(𝑡)) behaves as a traditional single-strain
IR model as defined in [14].

. Equivalence relation

We wish to study the long-term average behaviour of characteristics
uch as the levels of immunity and pathogen diversity, however the
onstant emergence and extinction of strains means that the evolving
pidemic process has no steady-state. To counter this we introduce
n equivalence relation to fix the process against the most recently
merged strain.

efinition 1. The active strain set of a state (𝐬, 𝐢, 𝐫) ∈ 𝛺′ is given by
= {𝑘 ∈ Z ∶ i𝑘 > 0}. Let elements of this set be indexed from 1 to |K|

n ascending order, so for 𝑘𝑎, 𝑘𝑏 ∈ K, we have 𝑘𝑎 < 𝑘𝑏 whenever 𝑎 < 𝑏.

efinition 2. Two states (𝐬, 𝐢, 𝐫) and (𝐬′, 𝐢′, 𝐫′) ∈ 𝛺′ are equivalent if
nd only if the following conditions hold.

1. The total numbers of susceptibles, infectives and removed indi-
viduals are equal: |𝐬| = ∑

𝑘∈Z s𝑘 =
∑

𝑘∈Z s′𝑘 = |𝐬′|, and similarly
|𝐢| = |𝐢′| and |𝐫| = |𝐫′|.

2. The numbers of active strains are equal: |K| = |K′
|.

3. Each active strain has the same number of infectives: i𝑘𝑎 = i′
𝑘′𝑎

,
for 𝑎 = 1,… , |K|.

4. The numbers of individuals that are susceptible to the 𝑎th active
strain are equal: ∑𝑘<𝑘𝑎

s𝑘 =
∑

𝑘<𝑘′𝑎
s′𝑘, for 𝑎 = 1,… , |K|.

5. The numbers of removed individuals that will become suscep-
tible to the 𝑎th active strain are equal: ∑𝑘<𝑘𝑎

r𝑘 =
∑

𝑘<𝑘′𝑎
r′𝑘 for

𝑎 = 1,… , |K|.
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In order to easily refer to the equivalence classes, we define the
ollowing representative of each equivalence class.

efinition 3. The representative of the equivalence class containing
𝐬, 𝐢, 𝐫), denoted (𝐬∗, 𝐢∗, 𝐫∗) is defined as follows. If K ≠ ∅, denote the

active strains for the representative by K∗ = {1 − |K|,… , 0}. Let 𝜙 ∶
K → K∗ be a bijection defined by 𝜙(𝑘𝑎) = 𝑎 − |K| for 𝑎 = 1 … , |K|.
Then the representative (𝐬∗, 𝐢∗, 𝐫∗) is given by:

i∗𝑘 =

{

i𝜙−1(𝑘) for 𝑘 ∈ K∗,
0 otherwise.

∗
𝑘 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∑𝜙−1(𝑘+1)−1
𝑗=𝜙−1(𝑘)

s𝑗 for 𝑘 ∈ {1 − |K|,… ,−1},
∑∞

𝑗=𝜙−1(0) s𝑗 for 𝑘 = 0,
∑𝜙−1(1−|K|)−1

𝑗=−∞ s𝑗 for 𝑘 = −|K|,
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

r∗𝑘 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∑𝜙−1(𝑘+1)−1
𝑗=𝜙−1(𝑘)

r𝑗 for 𝑘 ∈ {1 − |K|,… ,−1},
∑∞

𝑗=𝜙−1(0) r𝑗 for 𝑘 = 0,
∑𝜙−1(1−|K|)−1

𝑗=−∞ r𝑗 for 𝑘 = −|K|,
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

If K = ∅ then i∗𝑘 = 0 for all 𝑘 ∈ Z and s∗0 =
∑

𝑗∈Z s𝑗 and s∗𝑘 = 0 for 𝑘 ≠ 0,
and similarly for 𝐫. Let {𝟎} denote the set of all these absorbing states.

In the rest of this paper, the process of representatives on the
pace of equivalence classes (states described with starred states as in
efinition 3) will be referred to as the normalised process, and will
e denoted by (𝐒∗, 𝐈∗,𝐑∗) or (𝐒∗, 𝐈∗) as appropriate. Definitions 2 and 3
emove all strains with no infective individuals, and give index 0 to the
ost recent strain to have emerged and have infectives. All susceptibles

nd removed individuals are given the strain index one less than the
earest infective above them in strain order. Any individuals immune
o all existing strains are given strain 0, as though they just recovered
rom the most recently emerged strain.

xample 4. Consider the state (𝐬, 𝐢, 𝐫) ∈ 𝛺′ given by

s1,… , s7) = (0, 0, 1, 1, 0, 0, 1)

(i1,… , i7) = (0, 1, 0, 0, 0, 1, 0)

(r1,… , r7) = (1, 0, 0, 1, 1, 0, 0)

here all remaining terms of 𝐬, 𝐢, 𝐫 are zero. Strains 2 and 6 are active so
= {2, 6} ⇒ K∗ = {−1, 0} and the representative under the equivalence

elation is given by

s∗−2,… , s∗0) = (0, 2, 1),

(i∗−2,… , i∗0) = (0, 1, 1),

(r∗−2,… , r∗0 ) = (1, 2, 0).

otation. Recall that without the equivalence relation, the state space
f the epidemic process was 𝛺′. We denote the state space of the
ormalised process over the set of equivalence class representatives by
.

We will use 𝐱 = (𝐬, 𝐢, 𝐫) ∈ 𝛺 with, for example, 𝐬 = (s𝑘)𝑘 ∈ {0,… ,
𝑁}Z to denote a typical element of the state space. We will also use,
for example, |𝐬| = ∑

𝑘∈Z s𝑘 to denote the total number of susceptibles.
A random variable written in calligraphic type, e.g. 𝑘(𝑡), refers to a
process without the equivalence relation. The corresponding variable
written in roman type, e.g. 𝑅𝑘(𝑡), refers to the normalised process
evolving over representatives from the equivalence classes.
3

4. Quasi-stationarity and absorbing states

Like many infectious disease models, the E-SIRS and E-SIS models
defined in Section 2 have an absorbing class of states that corresponds
to the population containing no infected individuals, 𝐢 = 𝟎. For finite
population models, the absorbing state is reached with certainty in
finite time, and so the limiting distribution is degenerate with no mass
in non-absorbing states. However, like the single strain SIS model,
these processes may not go extinct for a long time (individuals can
be reinfected) and the transient quasi-stable behaviour is of interest.
The quasi-stationary distribution and limiting conditional distribution
conditioned on the epidemic not going extinct, represent the long-term
average behaviour for an endemic disease.

4.1. Properties of quasi-stationary distributions for epidemics

In this section and the rest of this paper, P𝐮[𝐴] = P[𝐴|𝑋(0) ∼ 𝐮].

Definition 5. Let 𝑋 = (𝑋(𝑡))𝑡≥0 be a Markov process on a countable
state space 𝛺 with absorbing state 0 from which it cannot escape. Then
a distribution 𝐮 on 𝛺 ⧵ {0} is a quasi-stationary distribution (QSD) if
P𝐮[𝑋(𝑡) ∈ 𝐴|𝑋(𝑡) ≠ 0] = 𝐮(𝐴) for all 𝑡 ≥ 0.

Given initial condition 𝐯 on 𝑆 = 𝛺 ⧵ {0}, 𝐮 is a 𝐯-limiting conditional
istribution (LCD) if lim𝑡→∞ P𝐯[𝑋(𝑡) ∈ 𝐴|𝑋(𝑡) ≠ 0] = 𝐮(𝐴). Note that, for
rocesses where 𝑆 is a single communicating class, every QSD 𝐮 is a
-LCD and every LCD is a QSD.

Related to the QSD on irreducible state spaces is the notion of the
ecay parameter which describes the rate of decay of the transition
robabilities.

efinition 6. Let 𝑋 = (𝑋(𝑡))𝑡≥0 be an irreducible Markov process
n a countable state space 𝛺 with absorbing state 0. Let 𝐮 be a QSD
ssociated to 𝑋. Then the decay parameter 𝛼 is given by

= inf{𝑎 ≥ 0 ∶ 𝑃𝑖𝑗 (𝑡) = 𝑜(𝑒−𝑎𝑡)}.

or 𝑖, 𝑗 ∈ 𝛺 ⧵ {0} The absorption parameter 𝛼0 is given by

0 = inf{𝑎 ≥ 0 ∶ ∫

∞

0
P𝑖[𝑇 > 𝑡]𝑒𝑎𝑡𝑑𝑡 = ∞},

or 𝑖 ∈ 𝛺 ⧵ {0} where 𝑇 is the extinction time of 𝑋 starting from state
. Note that for irreducible processes, 𝛼 is independent of 𝑖, 𝑗 and 𝛼0 is
ndependent of 𝑖.

According to Theorem 6 of [15], a necessary condition for the
xistence of a QSD is that 𝛼 > 0.

heorem 7. Conditional on non-absorption, the following hold.

1. The QSD for the number of infectives in the single-strain SIS model
exists uniquely and gives weight to all states {1,… , 𝑁}.

2. The QSD for the number of susceptibles and infectives in the single-
strain SIR model exists uniquely and gives full weight to the state
{(𝑆, 𝐼) = (0, 1)}.

3. The QSD for the number of susceptibles and infectives in the single-
strain SIRS model exists uniquely, and gives weight to all non-
absorbing states.

roof. Theorem 1 of [16] states that QSDs exist and are unique
n finite irreducible state spaces, and so there is a unique QSD for
he SIS model and for the SIRS model conditional on {𝐼 > 0}, and
on-zero weight is given to all non-absorbing states. For reducible
rocesses, Theorem 8 of [16] states that QSDs will give full weight
o the communicating class with the longest expect time to leave and
ny states accessible from this ‘‘slowest’’ communicating class. This
haracterises the QSD for the SIR model. □

Further work on characterising the QSD for the standard SIS model
an be seen in [17–19] making use of recurrent processes and normal
pproximations.
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Fig. 1. Comparisons of expected population composition under E-SIRS QSDs with (a) 𝛽 = 2, 𝜃 = 0.9, 𝛿 = 0.2, 𝑁 = 25; (b) 𝛽 = 2, 𝜃 = 0.9, 𝛿 = 2, 𝑁 = 25.
.2. Existence and uniqueness

Here we will summarise the existence and uniqueness results for the
-SIS and E-SIRS processes.

heorem 8. Let the E-SIS model be defined as in Sub Section 2.2 with
arameters 𝛽, 𝛾 > 0 and 𝜃 ∈ (0, 1]. Then for the normalised process,
onditional on the events {𝐼(𝑡) > 0}, there exists a unique QSD which equals
he unique LCD of the process and gives weight to all non-absorbing (i.e.
ransient) states, {(𝐬, 𝐢) ∈ 𝛺 ∶ |𝐢| > 0}. If 𝜃 = 0 and the process begins with
single infective, then there exists a unique LCD which gives full weight to

he state with a single infective with strain index 0, and 𝑁 − 1 susceptibles
ith strain index 0.

roof. For 𝜃 ∈ (0, 1], we obtain existence and uniqueness by proving
hat 𝑆 = 𝛺 ⧵ {𝟎} is a single finite communicating class, which immedi-
tely gives existence, uniqueness and equality of the QSD and LCD by
heorem 3 from [15].

Under the equivalence relation, there can be at most 𝑁 different
train indices present in the population. This implies that every in-
ividual must appear in one of the states s1−𝑁 ,…s0 or i1−𝑁 ,… , i0.
herefore we can bound above the size of 𝑆, the set of transient (i.e.
on-absorbing) states, by (2𝑁)𝑁 .

One can see that the transient states form a single communicating
lass by noting that one can get from a single infective of strain index 0
ith 𝑁 −1 susceptibles of index 0 to any other state through infections

mutation and non-mutation) and recoveries. If all individuals are
nfected and then all but one recovers, then the process returns to the
ingle infective case mentioned above.

For 𝜃 = 0 we consider the E-SIS model starting with a single
nfective of strain 0 and susceptibles of strain index −1. If 𝜃 = 0, then
utation is impossible. As a result, once an individual has become in-

ected and recovered, they join the 𝑠0 class and cannot be reinfected. In
this way {𝑆0(𝑡)} behaves identically to the {𝑅(𝑡)} class in the SIR model,
and we identify the two models in this way. Point 2 in Theorem 7 then
gives the required LCD. □

Theorem 9. Let the E-SIRS model be defined as in Sub Section 2.1 with
parameters 𝛽, 𝛾, 𝛿 > 0 and 𝜃 ∈ (0, 1]. Then, conditional on having at least
ne infective, there exists a unique QSD. If 𝜃 = 0 and there is initially one
nfective, a QSD still exists and gives full weight to the state with one infective
ith strain index 0 and 𝑁 − 1 susceptibles with strain index 0.

roof. For 𝜃 ∈ (0, 1], one follows the same argument as in
heorem 8, this time bounding the size of the state space by (3𝑁)𝑁 ,
ince individuals may also reside in classes r ,… , r . The fact that
1−𝑁 0

4

the transient states form a single communicating class also follows as
in Theorem 8. For 𝜃 = 0, we see that each state that can be reached
is a transient communicating class; there is no way to return to a state
once left. As such, we need to consider the decay parameter on leaving
each state, which equals the exponential rate of leaving such a state:
𝛽s−1i0∕𝑁+𝛾i0+𝛿r0. The decay parameter for the process is therefore the
minimal such value across all non-absorbing states. Therefore s−1 = 0,
i0 = 1 and r0 = 0 minimise the decay parameter. According to Theorem
1 of [16] this forces the QSD to have full mass on this state where
i0 = 1, s0 = 𝑁 − 1, since the only state accessible from this state is an
absorbing one. □

4.3. Sampling the quasi-stationary distribution

Samples from quasi-stationary distributions can be produced us-
ing the sequential Monte Carlo (SMC) sampler with stopping time
resampling methods developed in [20]. In brief, 𝑀 realisations of the
model (referred to as particles) are simulated forward in time. Absorbed
particles (with no infected individuals) are given weight zero and non-
absorbed particles are given weight 1 initially. The distribution of
weights converges to the limiting conditional distribution. Once the to-
tal weight drops below a proportion 𝜆 of the initial weight, the particles
are replenished via a resampling step. Combine-split resampling [20]
was used, which prevents any occupied states from being lost and
has the advantage that the distribution of weights remains unchanged
after resampling. This resampling method combines particles in the
same location together, draws new particle locations uniformly from
the existing locations and equalises the weight on particles in the same
location. In our implementation, after a burn-in of 𝑇b = 1, weighted
samples were drawn every 𝑇d = 1 time units until time 𝑇max = 100.

Fig. 1 shows the expected number of individuals in each class under
the QSD. In this example we used 𝑀 = 1000 particles and a resampling
threshold of 𝜆 = 0.6. The Figure shows that when 𝛿 is smaller there
is a larger proportion of globally immune individuals in the removed
classes, and so the population can support fewer strains.

5. Limiting behaviour

One aspect of interest is how the E-SIS and E-SIRS processes relate to
those without mutation. To this end, we consider the limits of the times
to extinction of the processes as 𝜃 tends to 0 or 1, and the limit, for fixed
𝜃, of the time to extinction as the population size 𝑁 tends to infinity.
Infinite population models can be used to provide approximations for
quantities which we cannot obtain analytically for finite population
models, such as the decay parameter.
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5.1. Limits as mutation probability changes

Theorem 10. Let 𝑇 𝜃 be the time to extinction of the E-SIS model, and 𝑇 1

he time to extinction of the standard SIS model, both starting from a single
nfective (nominally of strain index 1) in a population of 𝑁 individuals.
hen 𝑇 𝜃 → 𝑇 1 in distribution as 𝜃 → 1.

roof. We make use of a coupling of (𝑇 𝜃 ∶ 0 < 𝜃 < 1) and 𝑇 1. Firstly,
let 𝐗𝜃(𝑡) = (𝐒𝜃(𝑡), 𝐈𝜃(𝑡)) be the E-SIS model. We assume the process to
be defined over a population indexed by 𝑛 = 1,… , 𝑁 .

• For each individual 𝑛, define a sequence of i.i.d. infectious periods
{𝐿(𝑛)

𝑚 ∼ Exp(𝛾) ∶ 𝑚 ∈ N}.
• For each ordered pair of individuals (𝑛, 𝑛′), define a homogeneous

Poisson process {𝐴(𝑛,𝑛′)(𝑡)} on [0,∞) with rate 𝛽∕𝑁 .
• For each ordered pair (𝑛, 𝑛′) define a sequence of uniform random

variables 𝑈 (𝑛,𝑛′)
𝑙 ∼ Unif[0, 1] for 𝑙 ∈ N.

• Let all 𝐿(𝑛)
𝑚 , 𝐴(𝑛,𝑛′) and 𝑈 (𝑛,𝑛′)

𝑙 be independent.

Now let (𝐸, ,P) be the product space of these random processes and
variables. Using these building blocks, we construct an E-SIS model
{𝐗𝜃(𝑡)} and SIS model {𝐘(𝑡) = (𝑆(𝑡), 𝐼(𝑡))} as follows. Set 𝑆𝜃

−1(0) =
𝑁 − 1, 𝐼𝜃0 (0) = 1 for the E-SIS model and set 𝑆(0) = 𝑁 − 1, and 𝐼(0) = 1
for 𝐘(0). Assume the initial infective individual has index 𝑛 = 1 without
loss of generality. In both processes infectious individual 𝑛 generates
contacts with each susceptible individual 𝑛′ at points of the Poisson
process {𝐴(𝑛,𝑛′)(𝑢)}, where 𝑢 denotes the cumulative time that individual
𝑛 has been infectious and 𝑛′ has been susceptible. In other words the
Poisson processes are stopped whenever it is not possible for individual
𝑛 to infect individual 𝑛′. At each contact event in the SIS model an
infection occurs. The newly infected individual 𝑛′ stays infected for a
period of length 𝐿(𝑛′)

𝑚(𝑛′ ,𝑡)+1, where 𝑚(𝑛′, 𝑡) is the number of infections
individual 𝑛′ has recovered from up to the contact time 𝑡. In the E-SIS
model the 𝑖th contact event in {𝐴(𝑛,𝑛′)(𝑢)} results in a mutation if and
only if 𝑈 (𝑛,𝑛′)

𝑖 ≤ 𝜃, in which case individual 𝑛′ is infected with a new
strain and given the lowest unused strain index. However if 𝑈 (𝑛,𝑛′)

𝑖 > 𝜃
then individual 𝑛 attempts to infect 𝑛′ with their current strain and the
infection is successful if the strain index of individual 𝑛′ is strictly less
than the stain index of 𝑛. As in the SIS model, successful infections in
the E-SIS model are given infectious period length 𝐿(𝑛′)

𝑚(𝑛′ ,𝑡)+1. Notice that
under this coupling non-mutation contacts of 𝑛′ by 𝑛 are only successful
if the strain index of 𝑛 is strictly greater than that of 𝑛′ in the E-SIS
model. However mutation contacts and all contacts in the SIS model
are always successful.

Fix 𝜔 ∈ 𝐸, our probability space. For the SIS model, we have 𝑇 1 < ∞
almost surely. On the interval [0, 𝑇 1(𝜔)), there are two possibilities for
the E-SIS model. At each infective–susceptible contact we compare the
strain indices. The first possibility is that every contact will always lead
to a successful infection, arising from a sequence of infection events
which always contact a susceptible of a lower index. In this case, we
have 𝑇 𝜃(𝜔) = 𝑇 1(𝜔) for all 𝜃 ∈ [0, 1]. The second possibility is one or
more ‘‘potentially unsuccessful’’ contact events exist, in which if the
event were to be non-mutation, it would fail. This failure occurs if
the relevant 𝑈 (𝑛,𝑛′)

𝑖 > 𝜃. Since we must have a finite number of such
events occurring in [0, 𝑇 1), we can find 𝜃∗ such that 𝑈 (𝑛,𝑛′)

𝑖 ≤ 𝜃∗ for
all such 𝑈 (𝑛,𝑛′)

𝑖 corresponding to potentially unsuccessful events. This
means that for 𝜃 ≥ 𝜃∗ we must have 𝑇 𝜃∗ (𝜔) = 𝑇 1(𝜔). So for every
𝜔 ∈ 𝐸, there exists 𝜃∗ ∈ (0, 1) such that 𝑇 𝜃(𝜔) = 𝑇 1(𝜔) for all 𝜃 ≥ 𝜃∗.
Hence 𝑇 𝜃(𝜔) → 𝑇 1(𝜔) as 𝜃 → 1 for almost every 𝜔 ∈ 𝐸, and hence
𝑇 𝜃 → 𝑇 1 in distribution by the Skorohod Dudley theorem from, for
example, Theorem 3 of [21]. □

Theorem 11. Let 𝑇 0 be the time to extinction of the standard SIR model.
Then 𝑇 𝜃 → 𝑇 0 in distribution as 𝜃 → 0.

Intuitively, one can think of identifying the 1-class for the E-SIS

model and the 𝑅-class of the SIR model. As mutation events get rarer,

5

the chance of mutation happening before extinction becomes smaller
and smaller, and so the two processes are more likely to coincide under
a suitable coupling until extinction.

Proof. This proof follows in a similar fashion to Theorem 10. In
this version, the coupling is constructed between the E-SIS and the
SIR model. The only differences are that in the SIR model individuals
enter the removed category after their infectious period and the Poisson
process {𝐴(𝑛,𝑛′)(𝑢)} progresses during any time for which 𝑛 is infective
and 𝑛′ is susceptible in the E-SIS model (as before); but when 𝑛′ is
susceptible or removed in the SIR model.

In the E-SIS model infectious contacts between 𝑛 and 𝑛′ are only
successful if the event is a mutation or 𝑛′ is of a strictly lower strain
index than 𝑛. In the SIR model, only the first infectious contact is suc-
cessful. This means that the two epidemics must be identical up to the
time of the first repeat contact, when one identifies the {1,2,3,…}
lasses in the E-SIS model with the 𝑅 class of the SIR model.

Similar to the proof of Theorem 10, for each 𝜔 ∈ 𝐸 one can find a
alue of 𝜃∗ so that 𝑇 𝜃∗ (𝜔) = 𝑇 0(𝜔) for all 𝜃 ≤ 𝜃∗, and so 𝑇 𝜃 → 𝑇 0 almost
urely as 𝜃 → 0 and hence 𝑇 𝜃 → 𝑇 1 in distribution by the Skorohod
udley theorem of [21]. □

.2. Large population limits

In order to obtain some large population limit results, we will
onsider an ‘‘infinite’’ population model. We will refer to this as an
volving Birth–Death Process (E-BDP). More precisely we assume that
nfected individuals are a negligible part of an infinite population of
ndividuals that are not immune to any strains at the start of the
pidemic, and so all infections will be successful almost surely. This
mplies infections from a given strain 𝑘 and recoveries from that strain
ehave as a linear birth–death process with birth rate 𝛽 and death
ate 𝛾. Additionally, at the point of each infection, with probability
∈ [0, 1], the new infective is infected with a previously unseen strain,
nd given the next available strain index 𝐾∗ + 1.

The possible events comprise:

• Infection with mutation: 𝐾∗+1(𝑡) = 0 ↦ 𝐾∗+1(𝑡) = 1 with rate
𝛽𝜃(𝑡).

• Infection without mutation: 𝑘(𝑡) ↦ 𝑘(𝑡) + 1 for 𝑘 ∈ Z with rate
𝛽(1 − 𝜃)𝑘(𝑡).

• Recovery: 𝑘(𝑡) ↦ 𝑘(𝑡) − 1 for 𝑘 ∈ Z with rate 𝛾𝑘(𝑡).

After it emerges, each strain behaves according to a linear birth–
eath process with birth rate 𝛽(1−𝜃) and death rate 𝛾. The total number
f infectives (𝑡) also behaves according a birth–death process with
irth rate 𝛽 and death rate 𝛾.

The time to extinction of the E-SIS model converges to that of the E-
DP model, noting that under a suitable coupling, the time to extinction
f the E-BDP equals the Linear BDP without mutation. This leads us to
he following result.

heorem 12. Let 𝑇 𝜃,𝑁 be the time to extinction of the E-SIS model, and
the time to extinction of the E-BDP model. Then we have 𝑇 𝜃,𝑁 → 𝑇 in

istribution as 𝑁 → ∞ when 𝛽 < 𝛾. If 𝛽 ≥ 𝛾, then on the event {𝑇 < ∞},
region of probability 1 − 𝛾∕𝛽, we also have 𝑇 𝜃,𝑁 → 𝑇 in distribution as
→ ∞

roof. Using Theorems 10 and 11 we can conclude that for any fixed
that 𝑇 0,𝑁 is the time to extinction for the standard SIR model, and

1,𝑁 is equal to the time to extinction for the standard SIS epidemic
odel. Furthermore, from these theorems we can construct a coupling

f the SIS, E-SIS and SIR models using two sets of Poisson processes
nd mutation indicator variables such that, for any 𝜃 ∈ [0, 1],
0,𝑁 (𝜔) ≤ 𝑇 𝜃,𝑁 (𝜔) ≤ 𝑇 1,𝑁 (𝜔) (1)



A. Griffin, G.O. Roberts and S.E.F. Spencer Mathematical Biosciences 330 (2020) 108480

U

t
t

a

T
𝜃
c

P
i
S
c
e
G
a
w
b
f
𝐼
𝑘
e
u

𝐗
𝐗
g
i
l
1
e

a
t
h
Q
s
h
e

6

k
n
a
i
i
m
i
m

6

u
h
h

for almost every 𝜔 ∈ 𝐸. From [22], we know that if 𝛽 < 𝛾 then 𝑇 0,𝑁

converges in distribution to 𝑇 , the time to extinction of a Linear BDP
with the same parameters 𝛽 and 𝛾. From [23] we obtain that the same
thing happens for SIS models, i.e. 𝑇 1,𝑁 → 𝑇 in distribution as 𝑁 → ∞.

sing the bounds in Eq. (1), we obtain that 𝑇 𝜃,𝑁 → 𝑇 as 𝑁 → ∞ for
all 𝜃 ∈ [0, 1].

In the case where 𝛽 ≥ 𝛾 we note that on a set of probability 1− 𝛾∕𝛽,
the time to extinction of the linear BDP is infinite, as discussed in
Chapter 3.2 of [24]. From [23], we know that 𝑇 1,𝑁 → 𝑇 almost surely
(and hence in distribution) on the event {𝑇 < ∞}. From [22] we know
hat on this event, 𝑇 0,𝑁 → 𝑇 in distribution. Therefore we must have
hat 𝑇 𝜃,𝑁 → 𝑇 as 𝑁 → ∞ for all 𝜃 ∈ [0, 1] here too. □

It should be noted, that on the event {𝑇 = ∞} we do not have
𝑇 0,𝑁 → ∞. Instead a suitably rescaled version of 𝑇 0,𝑁 converges to
n extreme-value distribution as mentioned in Theorem 8.1 [14].

Next we show existence of a QSD for the E-BDP model.

heorem 13. Let 𝐗(𝑡) be the E-BDP with parameters 𝛾 > 𝛽 > 0 and
∈ [0, 1]. Then, under the equivalence relation described in Section 3 and

onditional on the event {𝐼(𝑡) > 0}, there exists a unique QSD.

roof. To prove existence, we first show that the state space we are
nterested in is countable. To do this we use the following construction.
tarting with a single infective of strain 0, we can define a method of
onstructing the state space. By having a birth in strain 0, or a mutation
vent, one can systematically arrive at any state in the state space.
iven these two possible events, one can encode each state according to
finite binary sequence, which corresponds to a unique integer which
e can use to enumerate the space. Given that there exists a lower
ound 𝑙 ∈ Z such that 𝐼𝑘 = 0 for all 𝑘 ≤ 𝑙, we construct the state as
ollows. Starting with the lowest non-zero strain index 𝑙 + 1 consider
𝑙+1 strain 0 within-strain-infection events. Then for each higher strain
, we choose a mutation event followed by 𝐼𝑘−1 within-strain infection
vents. Note that only considering finite sequences gives countability,
nlike the uncountability of the infinite paths on this binary tree.

To obtain existence of a QSD, we now introduce a coupling. Let
(𝑡) = (𝑋𝑗 (𝑡))𝑗∈Z be the E-BDP. Let 𝛼𝑋 be the decay parameter for
(𝑡). Let (𝑌 (𝑡))𝑡≥0 be the process defined on the same probability space,
iven by 𝑌 (𝑡) =

∑

𝑗∈𝑍 𝑋𝑗 (𝑡). Since the mutations do not affect whether
nfections are successful or not, 𝑌 (𝑡) can be seen to be a single-strain
inear BDP with birth rate 𝛽, and death rate 𝛾. As discussed in Example

of [25], 𝑌 (𝑡) has the decay parameter 𝛼𝑌 = 𝛾 − 𝛽. Let 𝑇𝑋 be the
xtinction time of 𝐗(𝑡) and 𝑇𝑌 for 𝑌 (𝑡).

Letting 𝛼𝑌0 be the absorption parameter for 𝑌 (𝑡), and 𝛼𝑋0 for 𝐗(𝑡), we
lso know that 𝛼𝑌0 = 𝛾 − 𝛽. Since 𝑇𝑋 = 𝑇𝑌 under the coupling, we use
he definition of the decay parameter to deduce that 𝛼𝑋0 = 𝛾 − 𝛽, and
ence 𝛼𝑋 ≥ 𝛼𝑋0 > 0. Using Theorem 13 of [15] we get existence of a
SD. Moreover, using Theorem 3.3.2 of [26], we must have 𝛼𝑋 = 𝛾 − 𝛽

ince there is only one state from which extinction can occur: one must
ave 1 infective before extinction, which must be of strain 0 under the
quivalence relation. This leads to the uniqueness of the QSD. □

. Reproduction numbers

To characterise the dynamics of the models, we look to a number of
ey statistics which are related to the commonly used basic reproduction
umber, 𝑅0, that illustrates whether or not an epidemic is likely to infect
large proportion of the population. The basic reproduction number

s defined as the number of individuals infected by a single typical
nfective in a large, otherwise susceptible population [27]. In the E-SIRS
odel, we still have 𝑅0 = 𝛽∕𝛾. One issue with 𝑅0 is that it fails to take

nto account the likely immunities present in the population, or how
uch the pathogen evolves during the opening phase of the epidemic.
6

.1. Modified household reproduction number 𝑅∗

In [28], an epidemic is considered which spreads through a pop-
lation grouped into households, such that individuals in the same
ousehold make contact at a different rate to individuals in different
ouseholds. The households reproduction number 𝑅∗ is shown in [28,

Section 2.3] to be equal to 𝑅∗ = 𝜇𝑅𝐻 where 𝜇 is the expected number
of individuals infected in a single household epidemic (including the
initial infective), and 𝑅𝐻 is the mean number of contacts an infective
individual makes with individuals in other households during a single
infectious period.

For the E-SIRS model, we consider each strain as a ‘‘household’’
which has countably many individuals, and mutations are considered
contacts between households. In this case 𝜇 is the expected total pop-
ulation of a birth–death process with birth rate 𝛽(1 − 𝜃) and death rate
𝛾, including the initial infective. One can use the branching property
to compute 𝜇 = 𝛾∕(𝛾 − 𝛽(1 − 𝜃)) and note that the between household
reproduction rate 𝑅𝐻 = 𝛽𝜃∕𝛾 and so,

𝑅∗ =

{ 𝛽𝜃
𝛾−𝛽(1−𝜃) 𝛽(1 − 𝜃) < 𝛾

∞ 𝛽(1 − 𝜃) ≥ 𝛾.

To recontextualise this in terms of strains and mutations, one can
think of 𝑅𝐻 as the expected number of new strains originating from a
single individual during one infectious period, and 𝜇 as the expected
number of individuals that ever get infected by a specific strain.

One could consider 𝑅0 to be the ‘‘intra-strain’’ reproduction number,
and 𝜇 to be the ‘‘inter-strain’’ reproduction number. With these we
obtain one of three regimes:

• If 𝑅0 = 𝛽∕𝛾 < 1, then the whole population would die out with
certainty, and no large epidemic would occur.

• If 𝑅0 ≥ 1 and 𝜇 < ∞ then a large epidemic occurs with positive
probability, but each individual strain dies out quickly.

• If 𝑅0 ≥ 1 and 𝜇 = ∞, then each strain has a positive probability
of producing a large outbreak.

This can be compared to, for example, the multi-type epidemics of [29,
30], where epidemics in specific groups can die out but the overall
epidemic survives, or where the survival of an epidemic somewhat
depends on a large epidemic occurring within a single group. Fig. 2
shows realisations of the genetic trees under the E-SIS model under the
two supercritical regimes. For small 𝜃, we obtain only a small number of
strains, and the epidemic is more likely to die out. Moreover, in a finite
population, this low 𝜃 leads to high immunity in the population and
hence shorter epidemics. The trees highlight how only a small number
of the strains survive for a long time, particularly in Fig. 2(a). Fig. 2
also show similarities to the tree for H3N2 in Extended Data Figure
9(c) of [12], a paper which specifically looks to model influenza.

6.2. Quasi-stationary reproduction number 𝑅𝑄

One drawback to 𝑅0 is that it only usefully describes the initial
behaviour of an epidemic in a naive population and does not take into
account the build up of immunity in the E-SIRS model. One alternative
is to consider the effective reproduction number, denoted 𝑅𝑡, defined as
𝑅𝑡 = 𝑅0

𝑆(𝑡)
𝑁 in a population of size 𝑁 . Much work has been done in

trying to evaluate 𝑅𝑡 for specific infections such as influenza by [31]
and Ebola by [32]. However, 𝑅𝑡 is time-dependent and can therefore
be difficult to compute and interpret. At a quasi-stable equilibrium the
number of new infections balances the recoveries and so 𝑅𝑡 ≈ 1, and
hence 𝑅𝑡 is not informative about the disease characteristics. Ideally,
we would like a reproduction number that adjusts for the build-up
of immunity in the population, but remains informative about the
infectivity of a disease.

We offer an alternative reproduction number, based on the QSD,
which aims to describe the infectiousness of strains of an endemic
disease in a population with ‘average’ levels of historical immunity. The
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7

uasi-stationary reproduction number (𝑅𝑄) is the average number of
econdary infections caused by a single typical infective introduced into
n otherwise uninfected (S status) population with levels of immunity
strain indexes) drawn from the quasi-stationary distribution, so each
ther individual may or may not be immune to the current strain of the
nfective. By typical infective, we mean an individual with strain index
ampled from the distribution of strain indexes of infectives in the QSD.
nder the E-SIRS model, the total number of infectives is always less

han the SIS model without evolving strains, and so 𝑅𝑄 ≤ 𝑅0.
The quasi-stationary reproduction number provides a measure of

he ability of a pathogen to re-invade a population from which it
as been eradicated. For diseases like seasonal influenza which have
reatly reduced incidence during the summer months, 𝑅𝑄 measures the
eproduction number at the beginning of the next influenza season after
ccounting for the residual immunity left over from last year.

More precisely, we draw the single infective from the marginal
umber of infectives in the QSD 𝑢𝐼 (𝑘): the probability that given an
ndividual is infective, it is of strain index 𝑘. For QSD 𝐮 this is given by

𝐼 (𝑘) =
∑

(𝐬,𝐢,𝐫)∈𝛺
𝑢(𝐬,𝐢,𝐫)

i𝑘
|𝐢|

.

Under the equivalence relation described in Section 3, we can have a
maximum of 𝑁 strains in a population of size 𝑁 , and so the strain index
ranges over 𝑘 ∈ K∗ = {0, 1 −𝑁}. The susceptible population is drawn
from the total strain marginals of the QSD 𝑢𝐾 (𝑘): the probability under
the QSD that a given individual is of strain index 𝑘.

𝑢𝐾 (𝑘) =
∑

(𝐬,𝐢,𝐫)∈𝛺
𝑢(𝐬,𝐢,𝐫)

i𝑘 + r𝑘 + s𝑘
𝑁

inally, we require the probability that a randomly chosen individual
rawn from the strain marginal will be susceptible to strain 𝑘 (i.e. will

have a strain index lower than 𝑘):

𝑢𝐿(𝑘) =
𝑘−1
∑

𝑗=1−𝑁
𝑢𝐾 (𝑗).

During their infectious period the infective makes infectious contact
with each individual at the points of a Poisson process with rate
𝛽∕𝑁 . For large populations the infective is unlikely to contact the
same individual twice (or themselves), and so the expected number
of contacts is 𝛽∕𝛾. With probability 𝜃 the contacts are mutations and
re successful infections. With probability (1 − 𝜃) the contacts are
on-mutations and are only successful if the individual contacted has
lower strain index, which occurs with probability 𝑢𝐿(𝑘) when the

nfective has strain index 𝑘. To calculate 𝑅 we condition on the strain
𝑄 p

7

index of the initial infective, hence

𝑅𝑄 =
𝛽
𝛾

0
∑

𝑘=1−𝑁
(𝜃 + (1 − 𝜃)𝑢𝐿(𝑘))𝑢𝐼 (𝑘)

=
𝛽
𝛾
(𝜃 + (1 − 𝜃)𝐮𝑇𝐿𝐮𝐼 ). (2)

ince 𝑢𝐼 and 𝑢𝐿 are both probability mass functions, 0 ≤ 𝐮𝑇𝐿𝐮𝐼 ≤ 1 and
so we have that 𝑅𝐻 ≤ 𝑅𝑄 ≤ 𝑅0. As 𝜃 → 1 then 𝑅𝑄 → 𝛽∕𝛾 = 𝑅0, as does
𝑅𝐻 .

The three notions of a reproduction number in this section describe
three different facets of the epidemic model, and can be compared in
Fig. 3. It shows that 𝑅𝑄 is always less than 𝑅0 due to the effects of
immunity, and 𝑅∗ depends greatly on 𝜃; the unplotted points for 𝑅∗ are
in the regions where it is infinite, namely where 𝛽(1 − 𝜃) ≥ 𝛾. Values
of 𝑅𝑄 were calculated using the SMC sampler described in Section 4.3
with 𝑀 = 100 particles and a resampling threshold of 𝜆 = 0.4.

7. Simulation study

To further explore the E-SIRS model we use the SMC sampler
described in Section 4.3 to investigate numerically features of the QSD
which we cannot obtain analytically. We wish to observe how various
key properties behave as we vary parameters of the model. To this end
we look at the following expectations over the QSD. For brevity we
omit time indices and conditioning, and denote expectations under the
QSD by E𝑄.

• The expected total number of infectives E𝑄[𝐼] and immune indi-
viduals E𝑄[𝑅] in the QSD, where 𝐼 =

∑0
𝑘=−∞ 𝐼𝑘, 𝑅 =

∑0
𝑘=−∞ 𝑅𝑘.

• The expected total number of active strains E𝑄[𝐾] in the QSD
where 𝐾 = |{𝑘 ∶ 𝐼𝑘 > 0}|.

• We also look at how varying the model parameters affects strain
diversity in infectives and the whole population.

e will focus on the E-SIS model, but also discuss for each statistic how
he addition of an immune period, as in the E-SIRS models, changes
he number of infectives and strain diversity. Unless otherwise stated,
ll expectations over the QSD were produced with the SMC sampler
escribed in 4.3 with 𝑀 = 100 particles and resampling threshold
= 0.4.

.1. Expected number of infectives

Fig. 4 shows a heatmap of the expected number of infectives in the

opulation under quasi-stationarity, E𝑄[𝐼], and how this depends on
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Fig. 4. Expected number of infectives as 𝛽 and 𝜃 change in E-SIS with 𝛾 = 1, 𝑁 = 100.

he contact rate and the probability of mutation. Increasing the contact
ate 𝛽 or mutation probability 𝜃 increases the expected number of
nfectives. However, for a fixed population size (in this case 𝑁 = 100),

the number of infectives increases linearly in 𝛽 when E𝑄[𝐼] is much
maller than 𝑁 . This can be observed in Fig. 5(a), which shows that the
umber of infectives grows more slowly as 𝛽 increases, especially when
is small and so the probability of failed infections is high. As was also
oted in Section 4.3, increased levels of global immunity result in fewer
nfectives under quasi-stationarity, due to the increased possibility of
ailed infections.

Fig. 5(b) shows that as 𝑁 increases the expected proportion of
nfectives (E𝑄[𝐼]∕𝑁) decreases in the case where 𝛽 < 𝛾, whereas in the
upercritical case we see that E𝑄[𝐼]∕𝑁 remains fairly constant. In the
-SIRS model, we see that E𝑄[𝐼]∕𝑁 is decreased by the introduction of

transient global immunity. Furthermore, as 𝛿 gets smaller the transient
immunity lasts longer and E [𝐼]∕𝑁 further decreases.
𝑄

8

7.2. Expected number of strains

We investigated what happens to the expected number of active
strains, E𝑄[𝐾] (strains held by infectives) as the parameters change.
Under our models, the number of strains is always less than the number
of infectives due to the absence of super-infectivity (infection of an
individual by multiple strains during a single infectious period). As
such, much of the behaviour is similar to that of the expected number of
infectives in the previous subsection. For example, the expected number
of strains increases linearly with 𝛽 when E𝑄[𝐾] is much less than 𝑁 .

his follows since we already know that for 𝜃 = 1 every infective begins
new strain and so E𝑄[𝐾] = E𝑄[𝐼]. Like in single-strain SIS and SIR
odels with low 𝑅0, the number of infectious contacts behaves like a

irth–death process and so increases linearly in 𝛽. When E𝑄[𝐾] is closer
o 𝑁 , the chance of having an unsuccessful contact is higher due to the
mmunity induced by competing strains. At the other end of the scale,
e automatically have that E𝑄[𝐾] = 1 if 𝜃 = 0.

Fig. 6 shows the expected number of strains for fixed 𝛽𝜃 (mutation
ontact rate) and 𝛽(1− 𝜃) (non-mutation contact rate), as 𝛽 and 𝜃 vary.
ote that for Fig. 6(b), both 𝜃 and 𝛽 increase from left to right, whereas,

o maintain fixed 𝛽𝜃, 𝛽 decreases as 𝜃 increases. In the case when 𝛽𝜃
s high, one might expect E𝑄[𝐼] and E𝑄[𝐾] to be closer in value, since
here is a high probability of mutation leading to a high number of
o-circulating strains. This is demonstrated in Fig. 6(a), where we see
hat for fixed 𝛽𝜃, the number of strains is larger (and therefore closer
o the number of infectives) for the 𝛽𝜃 = 2 line than for the 𝛽𝜃 = 0.05
ine. In Fig. 6(a) there is a maximum point for the number of strains
s 𝛽 increases, after which the number of strains decreases. As 𝛽(1 − 𝜃)
ncreases in Fig. 6(b), the number of strains becomes more linear in 𝜃.

.3. Strain diversity

In Fig. 7 we investigate the distribution of immunity across the
ctive strains. The figure shows the expected proportion of infectives
𝑄[𝐼∕𝑁] and total individuals for each strain index E𝑄[𝐼𝑘 + 𝑆𝑘 + 𝑅𝑘],
elative to the most recently emerged strain. The expectations taken
ver the quasi-stationary distribution were calculated using the SMC
ampler described in Section 4.3, with 𝑀 = 100 particles, resampling
hreshold 𝜆 = 0.4 and burn-in 𝑇b = 11.

Fig. 7(a) illustrates that larger values of 𝛽 greatly increase the
iversity of strains in the infectives and the variation in immunity in
he population, since there are more infectives and so more chances
or mutation contacts. Another point of interest is the lag of the strain
iversity: the number of strains between the mode of the infective
trains and the mode of the total population. The lag is fairly consistent
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Fig. 5. Expected proportion of infectives in the E-SIS and E-SIRS models: (a) as 𝛽 varies with 𝛾 = 1, 𝑁 = 100; (b) as 𝑁 varies with 𝛾 = 1, 𝜃 = 0.4.
Fig. 6. Expected number of strains under quasi-stationarity for (a) fixed 𝛽𝜃; (b) fixed 𝛽(1 − 𝜃); with 𝛾 = 1 and 𝑁 = 100.
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or the different values of 𝛽, but does increase slowly in 𝛽. Fig. 7(b)
hows the change in strain diversity in 𝜃. As 𝜃 increases, the number
f strains present increases, so the strain diversity curve flattens out.
or high values of 𝜃, a larger lag is observed between the infectives
nd the whole population, due to the higher diversity. In Fig. 7(c),
he effect of population size is explored. As 𝑁 increases, we observe a
ider number of strains, as one would expect given E𝑄[𝐾]’s behaviour.
owever, unlike the behaviour as 𝛽 changes, the peak moves away from
but the lag between the infectives and the rest of the population

ppears more consistent. For the E-SIRS model explored in Fig. 7(d),
he immune period reduces strain diversity by reducing the expected
umber of infectives.

In applications, one might wish to look further into the lag between
he strain distribution of the infectives and the immunity in the popu-
ation. If a pathogen has a long lag, then vaccination can be effective
n updating the immunity present in the population. However, if the
ag is short, then a vaccine based on a recent strain will have little
ffect in increasing the levels of immunity in the population, as the most
mmunity profiles in the population will already represent the currently
irculating pathogen.

. Conclusions

In this paper we defined an epidemic model for a pathogen un-
ergoing genetic drift, that lies between the well-studied SIR and
 a

9

IS epidemic models. The model appears to capture some qualitative
spects of the evolution of strains of influenza A, despite depending
n just 4 parameters. Compared to models used by [12] and [33],
hich require the storage of a whole antigenic history, our model

s much simpler, which makes simulation, computation and inference
uch easier. Despite these simplifications, the simulated genetic trees

n Fig. 2 show similarities to the tree for H3N2 in Extended Data
igure 9(c) of [12]. It should be noted that the population is much
maller for the demonstration, and runs over a short time period.
his is due to computational limitations with regards to finding an
ppropriate simulation. However, the overall genetic history of the two
athogens is noticeably similar. The model also allows investigation of
ifferent regimes where, for example, the overall epidemic continues
hile a single strain is only short-lived. The relative simplicity of our
odel enables analytical insights into model behaviour, such as the

elationship between our models and the SIS and SIR models discussed
n Theorems 10 and 11. A simulation study showed that there is a
on-linear trade-off between mutation and infectivity when trying to
stimate the number of co-circulating strains under quasi-stationarity.
he development of a novel quasi-stationary reproduction number 𝑅𝑄
llows us to quantify the ability of a pathogen to re-invade a population
rom which it has been eradicated, for example at the start of the next
pidemic season. This work could be further developed to include more
omplex evolutionary models to describe the emergence of new strains;
o account for partial immunity based on the similarity between strains;

nd to incorporate seasonal changes in infectivity.
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