nerc.ac.uk

Identification and quantification of microplastics in potable water and their sources within water treatment works in England and Wales

Johnson, Andrew C. ORCID: https://orcid.org/0000-0003-1570-3764; Ball, Hollie; Cross, Richard ORCID: https://orcid.org/0000-0001-5409-6552; Horton, Alice A. ORCID: https://orcid.org/0000-0001-6058-6048; Juergens, Monika D. ORCID: https://orcid.org/0000-0002-6526-589X; Read, Daniel S. ORCID: https://orcid.org/0000-0001-8546-5154; Vollertsen, Jes; Svendsen, Claus ORCID: https://orcid.org/0000-0001-7281-647X. 2020 Identification and quantification of microplastics in potable water and their sources within water treatment works in England and Wales. Environmental Science & Technology, 54 (19). 12326-12334. https://doi.org/10.1021/acs.est.0c03211

Before downloading, please read NORA policies.
[img] Text
Mk11a Revised UKWIR Potable water paper.docx - Accepted Version

Download (369kB)

Abstract/Summary

Microplastics were characterized in eight water treatment works (WTWs) in England and Wales (UK). Sources included river water, groundwater, and an upland reservoir. Water treatment varied from disinfection, filtration, sedimentation, and activated carbon techniques. At each WTW, five repeat samples of raw and potable water and two repeat sludge samples were taken over 5 months. Microplastics in water were captured on 10 μm filters and nonplastic materials digested in the laboratory. Microplastics ≥25 μm were analyzed using Fourier-transform infrared microscopy. Blanks revealed consistent polyethylene (PE), poly(ethylene terephthalate) (PET), and polypropylene (PP) contamination. Spike recoveries for 63–90 μm polyamide microplastics demonstrated 101% (standard deviation, SD 27%) and 113% (SD 15%) recovery for raw and potable waters and 52% (SD 13%) for sludge. Only four of the six WTWs sampled for raw water and only two of eight WTWs in their potable water had microplastics above the limit of quantification. Considering only the WTWs with quantifiable microplastics, then on average, 4.9 microplastic particles/L were present in raw water and only 0.00011 microplastic particles/L were present in potable water (99.99% removal). Values in waste sludge were highly variable. PE, PET, and PP were the most common polymers quantified in raw water and sludge, and polystyrene and acrylonitrile butadiene styrene were the most common polymers quantified in potable water.

Item Type: Publication - Article
Digital Object Identifier (DOI): https://doi.org/10.1021/acs.est.0c03211
UKCEH and CEH Sections/Science Areas: Pollution (Science Area 2017-)
Soils and Land Use (Science Area 2017-)
Unaffiliated
ISSN: 0013-936X
NORA Subject Terms: Ecology and Environment
Date made live: 26 Oct 2020 15:24 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/528778

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...