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20 Abstract 
21
22 Stable isotope analyses of ostracod shells are a commonly-used proxy for 

23 palaeoenvironmental reconstruction. Although the fundamental controls on isotope 

24 composition of ostracod shells are well understood and, in some instances, quantifiable, the 

25 paleoclimatic and palaeoenvironmental interpretation of records from lake sediments depends 

26 strongly on the characteristics of individual lakes including the climatic setting, depth, volume, 

27 hydrology, aquatic vegetation and catchment properties. This is particularly important for 

28 coastal lakes where physio-chemical variations may occur on diurnal timescales. Here, we 

29 combine variations in δ18Owater, δ18Oostracod and δ13Costracod,  hourly water temperature, and 

30 Mg/Caostracod inferred water temperatures (constraining calcification temperature) to improve 

31 palaeoenvironmental interpretation and provide insights into lake carbon cycle. The dataset 

32 improves understanding of complex coastal lake site systematics and downcore interpretation 

33 of stable isotopes from C. torosa, a geographically widespread brackish water ostracod. The 

34 δ18Oostracod values show a complex relationship with temperature and suggest, in most 

35 circumstances, that δ18Owater is the dominant control on δ18Oostracod. During times of fresher 

36 water, δ13Costracod increases, suggesting increasing aquatic productivity. Above a certain 

37 δ18Owater threshold however, aquatic productivity begins to decline. The interpretation of 

38 δ13Costracod in some coastal lakes, may therefore be dependent on understanding of the range 

39 of expected δ18Owater. Due to short-term (diurnal to seasonal) variations that cause large 
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40 ranges in δ18Owater and δ18Oostracod, stable isotope analyses of C. torosa should be: 1) 

41 undertaken on multiple single shells 2) where carapaces are preserved, paired with trace-

42 element/Ca analyses on the same individual; and 3) undertaken alongside a study of the 

43 modern lake system. 

44
45 Keywords: Cyprideis torosa; ostracods; stable isotopes; oxygen isotope; carbon isotope; 

46 coastal lakes; palaeoenvironmental reconstruction 

47
48
49 1. Introduction 

50 Inorganic and biogenic carbonates precipitated from lake water provide an archive of past 

51 oxygen (δ18O) and carbon (δ13C) isotope composition of host water and dissolved inorganic 

52 carbon (DIC), and, for oxygen, potentially water temperature as well. For palaeoenvironmental 

53 studies, there are advantages in  analysing biogenic over endogenic carbonate. For example, 

54 the use of biogenic carbonate can reflect taphonomic or habitat-specific stable isotope 

55 composition while the use of endogenic carbonate does not guarantee that the material was 

56 formed in water and may include a detrital component. The calcite shells of ostracods (small 

57 bivalved crustaceans) are often abundant and well preserved in sediments, providing a 

58 commonly used proxy for palaeoenvironmental studies. The calcification of carapaces occurs 

59 within hours to a few days with no subsequent addition of calcite, thus providing  a ‘snapshot’ 

60 of  water conditions at the timing of calcification. This is very different  to the ‘averaging’ of 

61 conditions recorded by endogenic carbonate and other types of biogenic carbonates that 

62 accumulate incrementally. Where the life cycle and habitat preferences of a species is known, 

63 isotopic records may therefore reflect seasonal and habitat-specific information (e.g. von 

64 Grafenstein et al., 1999a). 

65 The oxygen-isotope composition of biogenic and endogenic calcite is determined by water 

66 temperature and water-isotope composition, along with any kinetic vital effects. During growth, 

67 the carbonate ions (CO3
2-) are generally thought to be in equilibrium with the isotope 

68 composition of the water. However, since CO3
2- ions are precipitated together with calcium to 

69 form calcium carbonate, heavy isotopes are preferentially incorporated (Kim and O’Neil, 1997; 

70 Romanek et al., 1992). Substantial evidence exists to suggest that ostracod calcite is 

71 precipitated out of oxygen isotope equilibrium with the host water, by +3 ‰ or more (Xia et al., 

72 1997; von Grafenstein et al., 1999b; Chivas et al., 2002; Keatings et al., 2002; Decrouy et al., 

73 2011). The magnitude of offset appears to vary taxonomically; vital offsets are similar for 

74 members of the same genus, or even subfamily. 

75
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76 Since the δ18Ocalcite is a function of temperature and δ18Owater, if the calcification temperature 

77 is known independently, the δ18Owater can be calculated, for example using the equation of Kim 

78 and O’Neil (1997), 1000lnα(calcite-water) = 18.03(103T-1) – 32.42. However, the equation relies on 

79 the assumption that mineral precipitation is controlled by δ18Owater at the time of calcification 

80 and that any vital effects are known and accounted for (von Grafenstein et al., 1999b).  

81 δ18Owater is a function of δ18O rainfall,  δ18O of catchment inputs, evaporative enrichment or a 

82 combination of all three. δ18Oostracod has, therefore, been used to reconstruct: the composition 

83 of rainfall (von Grafenstein, 2002), effective moisture (Hodell et al., 1991; Street-Perrott et al., 

84 2000; Holmes et al., 2010), meltwater influx (Dettman et al., 1995), and changes in seawater 

85 input (Janz and Vennemann, 2005; Williams et al., 2006). 

86
87 The δ13C of ostracod shells is primarily determined by the δ13C of DIC with only a small 

88 temperature effect during calcite precipitation (Leng and Marshall, 2004). Offsets from carbon-

89 isotope equilibrium appear to be negligible although, at present, there is limited understanding 

90 of carbon isotope fractionation in ostracod shells. Since many ostracod species are not 

91 nektonic (including Cyprideis torosa), the δ13C often does not reflect open water conditions, 

92 but more localised dissolved inorganic carbon (DIC) of pore water or water at the sediment 

93 interface, which is often more strongly correlated with the breakdown of sediment organic 

94 matter than primarily productivity. However, in very shallow well-mixed waterbodies with few 

95 submerged macrophytes, there may be little difference in DIC composition between the 

96 ambient water in the water  column and the sediment-water interface. Furthermore, it is still 

97 unknown if ostracod species calcify in the sediment or in the water column. Despite this, 

98 Wrozyna et al. (2012) showed that with increasing productivity, plankton preferentially uptake 

99 12C and the remaining DIC is enriched with 13C, which is consequently incorporated into 

100 carbonates. As a result of decay of organic matter, ambient water is enriched in 12C and 

101 ostracods are consequently depleted in 13C so that δ13C values are more negative. Differences 

102 in species δ13C values are therefore often regarded as habitat effects rather than true vital 

103 effects (Heaton et al. 1995). Given this, ostracod-based δ13C are not straight forward to 

104 interpret, but they have been used to reconstruct aquatic productivity (Anadón et al., 2006; Li 

105 and Liu, 2014) and provide evidence for methane formation (Bridgwater et al., 1999).

106
107 Although the fundamental controls on isotope composition of ostracod shells are well 

108 understood and, in some instances, quantifiable, the paleoclimatic and palaeoenvironmental 

109 interpretation of isotope records from lake sediments depends strongly on the characteristics 

110 of individual lakes including the climatic setting, depth, volume, hydrology, aquatic vegetation 

111 and catchment properties. These are particularly important considerations for coastal lakes, 

112 ponds, and lagoons where complex diurnal mixing of water masses often results in changes 
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113 to solute chemistry, water depth, and, in some cases, temperature. Marginal-marine 

114 environments including estuaries, deltas and coastal lakes/ponds with both direct and indirect 

115 seawater connection are complex, unstable, and often unpredictable environments due to the 

116 variation in physio-chemical conditions from the complex mixing of fresh- and sea- water. 

117 These variations are due to climatic (precipitation/evaporation cycles) and dynamic (tides, 

118 currents, freshwater drainage and sea level changes) factors (Carbonel, 1988; Dix et al., 

119 1999). The mixing of freshwater and seawater results in a theoretical straight mixing line of 

120 δ18O. However, Anadón et al. (2002) suggest that the natural variations in this relationship, 

121 often resulting from a third end member such as groundwater, prohibits the use of δ18Oostracod 

122 as a palaeotemperature proxy unless paired with Mg/Ca-inferred temperatures (e.g. Ingram 

123 et al. 1998). An understanding of the modern isotope systematics of the site, and the life-cycle 

124 and habitat preferences of the target ostracod species are therefore important constraints 

125 when interpreting isotopic signatures (Decrouy et al., 2011). 

126
127 The robust well-calcified carapace of Cyprideis torosa is a valuable source of Quaternary 

128 paleoclimatic information. It is geographically widespread (Wouters, 2017) and tolerant of a 

129 wide range of ecological conditions. Most notably, it is extremely euryhaline, and found in 

130 waters from fresh to hypersaline (De Deckker and Lord, 2017; Pint and Frenzel, 2017; Scharf 

131 et al., 2017) although in saline waters it is restricted to those with a marine-like chemistry. 

132 Furthermore there is a good understanding of the adult life-cycle (e.g. Heip, 1976) and there 

133 are existing Mg/Ca palaeotemperature calibrations (e.g. Wansard 1996; De Deckker et al. 

134 1999).

135
136 Due to temperature and δ18Owater varying on short (diurnal) timescales in coastal lakes, water 

137 conditions at the time of ostracod sample collection can be substantially different to those at 

138 the time of shell calcification. As such, establishing the temperature and δ18Owater at the exact 

139 time of shell calcification for C. torosa is difficult (Marco-Barba et al., 2012; Bodergat et al. 

140 2014). There are therefore two large uncertainties when interpreting C. torosa stable isotope 

141 records from coastal lakes; 1) what the dominant controls are on δ18Oostracodl; and 2) whether 

142 short-term (seasonal) lake variations are recorded in sediment records. There are often large 

143 uncertainties in the interpretation of stable isotope signals from C. torosa, in part arising from 

144 the paucity of studies into the impact of the diurnal and seasonal variations in coastal lakes 

145 on the isotope geochemistry of ostracod shells. Here, we investigate how the isotope 

146 systematics of a coastal pond are recorded in shells of C. torosa using a dataset of water 

147 isotopes, water chemistry and ostracod isotopes in order to improve the interpretation of 

148 ostracod stable isotope signals from sediment records. We combine measurements of 

149 δ18Oostracod with Mg/Caostracod-inferred water temperatures to back calculate δ18Owater, and 
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150 evaluate these using measurements of seasonal and diurnal water temperature and of water-

151 isotope composition. A more limited set of carbon-isotope data is used to investigate seasonal 

152 changes in carbon-cycling within the lake. Understanding the nature of these variations and 

153 their controls has important implications for the interpretation of fossil records from similar 

154 environments.  The results presented here follow a previous study using the Mg/Caostracod of 

155 the same specimens to track the seasonal calcification of individuals within a population 

156 (Roberts et al., 2020).  

157
158 2. Methods 
159
160 2.1 Field methods 
161
162 Material for this study collected from a shallow (< 1 m) coastal pond free from submerged and 

163 floating macrophytes in Pegwell Bay Nature Reserve, Kent, SE UK (Fig. 1), where C. torosa 

164 is particularly abundant, in August and December 2016 and April, June and September 2017. 

165 Ostracods were collected in a 250 µm zooplankton net from the top 1 cm of sediment at 

166 location ‘X’ (Fig. 1). Adult carapaces with soft tissue and appendages (indicating that the 

167 individuals were alive at the time of collection) were selected for geochemical analyses. Water 

168 samples for oxygen and hydrogen isotope composition  were collected as spot samples for all 

169 dates except June 2017 when samples were collected hourly from low to high tide to capture 

170 diurnal hydro-chemical variability. A seawater end-member sample was collected adjacent to 

171 Ramsgate Harbour in April 2017. In situ measurements of conductivity and temperature were 

172 taken using a YSI 30 handheld probe calibrated and recorded at 25 °C. Hourly subsurface (~ 

173 10cm) water temperature was recorded from August 2016 to September 2017  using a Tinytag 

174 Aquatic 2 temperature logger with temperature range –40 °C to +70 °C. For the April and June 

175 2017 sampling, in situ alkalinity as CaCO3 equivalent was determined using a Hach Digital 

176 Titrator, 1.6N Sulphuric acid (H2SO4) cartridge and Phenolphthalein and Bromcresol Green-

177 Methyl Red indicators. 

178
179 2.2 Laboratory methods 

180

181 Stable isotope analysis was undertaken on single left valves using an IsoPrime dual inlet mass 

182 spectrometer plus Multiprep at the British Geological Survey. Isotope values (δ13C, δ18O) are 

183 reported as per mille (‰) deviations of the isotope ratios (13C/12C, 18O/16O) calculated to the 

184 VPDB scale using a within-run laboratory standard calibrated against NBS-19. The Craig 

185 correction was applied to account for 17O. Analysis of the in-house standard calcite (KCM) 
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186 gave good reproducibility of ±0.04 for both δ13C and δ18O over 72 determinations.  Mg/Ca and 

187 Sr/Ca determinations were undertaken on the corresponding right valves of the same 

188 individuals used for stable isotope analyses, as described in Roberts et al. (2020). 

189
190 δ18O analyses of water were undertaken using the CO2 equilibration method on an IsoPrime 

191 100 mass spectrometer plus Aquaprep at the British Geological Survey. Hydrogen isotope 

192 (δ2H) measurements of water were made using an online Cr reduction method with a 

193 EuroPyrOH-3110 system coupled to a IsoPrime mass spectrometer.  Values are reported as 

194 per mille (‰) deviations of the isotope ratios (18O/16O and 2H/1H) calculated to the VSMOW 

195 scale. Internal quality control standards are calibrated against the international standards 

196 VSMOW2 and VSLAP2 with average errors of ±0.05 ‰ for δ18O and ±1.0 ‰ for δ2H. 

197
198 2.3 Calculations 
199
200 If the δ18Ocalcite and water temperature at the time of calcite precipitation are known, the 

201 expected δ18Owater value can be calculated using one of several empirical equations. However, 

202 because ostracod shells do not calcify in oxygen-isotope equilibrium with their host water, 

203 corrections must be made for vital offsets. For Cyprideis torosa, the best estimate for the vital 

204 offset is ~+0.8 ‰ (Keatings et al., 2007).  

205
206 The water temperature at the time of calcification can be determined using the Mg content for 

207 the corresponding valve to that used for isotope analysis, and the equation of De Deckker et 

208 al. (1999):

209
210 T(˚C) = 2.69 + (5230*[Mg/Ca]ostracod/[Mg/Ca]water) 

211 (1)

212
213 A Mg/Cawater of 4.2 mol/mol (the average measured Mg/Cawater value; Roberts et al., 2020) is 

214 used in the equation.

215
216 The Mg/Ca-inferred temperatures are combined with δ18Oostracod values to determine δ18Owater 

217 using Kim and O’Neil (1997):

218
219 1000lnα(calcite-water) = 18.03(103T-1) – 32.42 

220 (2)

221 Where T is in kelvins. 

222

301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360



7

223 The fractionation factor (αcalcite-water) can be calculated using: 

224
225 αcalcite-water = (1000 + δ18Ocalcite) / (1000 + δ18Owater) 

226 (3)

227
228 Where both δ18Ocalcite and δ18Owater are expressed relative to VSMOW. To convert from VPDB 

229 to VSMOW, the conversion proposed by Coplen et al. (1983) was used: 

230
231 δ18OVSMOW = 1.03091* δ18OVPDB + 30.91

232  (4)

233
234 3. Results 

235

236 3.1 Water isotope composition 
237
238 δ18Owater values measured throughout the year ranged from –2.84 to +4.85 ‰. Highest δ18O 

239 values were recorded in August (+3.86 ‰) and June (+4.85 ‰) (Table 1; Fig. 2a). Water 

240 sampled in December to April had lower δ18O values, with the lowest value of –2.84 ‰ 

241 recorded in December. There is a strong relationship (R2 = 0.86) between δ18Owater and 

242 electrical conductivity (EC) (Fig. 3): this relationship is particularly pronounced for the values 

243 recorded in June when the highest δ18Owater values (+4.85 ‰) and EC values (75.2 mS cm-1) 

244 are recorded (Fig. 2b). There is a strong distinction between the summer samples (June and 

245 August) and samples taken in September to April; the summer months are characterised by 

246 high δ18O values. Water temperature and δ18Owater display similar trends with increasing values 

247 between December 2016 and June 2017 (Fig. 2c) In September, the δ18Owater was close to the 

248 seawater equivalent (–0.06 ‰ in the pond, and +0.27 ‰ adjacent to Ramsgate Harbour) (Fig. 

249 4) and reflects a drop in EC (Fig. 2a,b). Spatially there is little variation in isotope composition 

250 of pond water (Table 2); δ2H and δ18O were slightly lower at location 5 and 6 compared to the 

251 southern end of the pond.

252
253 3.2 Ostracod shell chemistry 
254

255 δ18Oostracod values also suggest a seasonal pattern; valves collected in April, June and 

256 September 2017 have lower δ18O (with a mean value –6.10 ‰) and those from December 

257 2016 and February 2017 are higher (a mean value of +1.80 ‰) (Fig 2d; Table 3). All δ18Oostracod 

258 values for April, June, and September 2017 are negative (minimum value of  –11.38 ‰), but 
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259 the mean δ18Oostracod value for August 2016 is +1.24 ‰. For the August 2016, December 2016, 

260 and February 2017 collections, the range of values is similar for all months (± 3.8 ‰, 5.0 ‰, 

261 and 4.3 ‰ respectively). For samples collected in April and September 2017 the range is 

262 smaller at 2.6 and 2.9 ‰. The largest range is 7.2 ‰ for samples collected in June 2017. 

263 Mg/Caostracod is also strongly seasonal with gradually decreasing values recorded in April to 

264 September with the lowest average values in December and February (7.88 and 8.24 

265 mmol/mol) (Fig. 2e; Table 3). The range of values is highest in August 2016 (±22.09 mmol/mol) 

266 and June 2017 (±22.45 mmol/mol) (Fig. 2e).  

267 If the seasonal variation in δ18Oostracod  were being controlled primarily by water temperature, 

268 a negative relationship between Mg/Caostracod and δ18Oostracod would be expected. However, 

269 such a relationship is not seen in this dataset as a whole, although there is a negative 

270 relationship for the samples taken in August 2016, December 2016 and February 2017 (Fig. 

271 5a). The majority of samples from April, June and September 2017 do not follow the 

272 relationship defined by Kim and O’Neil (1997). There is also a distinct separation of the 

273 relationship between δ18Oostracod and Sr/Caostracod  for samples collected in April, June and 

274 September 2017 from samples collected in August 2016, December 2016 and February 2017 

275 (Fig. 5b); the former have δ18Oostracod values equivalent to freshwater (mean of  –6.14 ‰) while 

276 the latter are characterised by high δ18Oostracod values (mean of +1.62 ‰). Unlike δ18Oostracod 

277 and Mg/Caostracod, Sr/Caostracod is similar throughout the year (±2.19 mmol/mol) with the highest 

278 value in June 2017 (4.23 mmol/mol) and lowest in August (2.04 mmol/mol) (Fig. 5b). 

279
280 δ13Costracod values mirror those of δ18Oostracod,  with higher values in April 2017, June 2017, and 

281 September 2017 when δ18Oostracod values are lower (Fig. 2f). The δ13C values for August 2016 

282 are unlike those observed for Summer in 2017; the average δ13C value for August 2016 is –

283 5.69 ‰ compared with –0.59 ‰ in June 2017 and +0.93 ‰ in September 2017. The value of 

284 –5.69 ‰ is similar to those recorded in December (–6.16 ‰) and February 2016(–6.16 ‰) 

285 when δ18Oostracod values are higher. Furthermore, in April, June, and September 2017 there is 

286 a positive relationship between δ18Oostracod and δ13Costracod while the August 2016, December 

287 2016, and February 2017 samples have a negative relationship (Fig. 5c). Whilst the samples 

288 from April, June and September 2017 have a distinct separate clustering in terms of isotopic 

289 composition, this is not reflected in the Mg/Ca and Sr/Ca values with no relationship seen 

290 across the dataset (Fig. 5d). 

291
292 3.3 Back calculated δ18Owater

293
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294 Back calculated δ18Owater values range from +5.37 to –7.65 ‰ (Table 3). For the two 

295 populations identified above (1 – individuals collected in August 2016, December 2016, and 

296 February 2017 and 2 – individuals collected in April, June, and September 2017), the back 

297 calculated values for August 2016, December 2016, and February 2017 are 5.37 to –1.86 ‰ 

298 and 1.80 to –7.65 ‰ for April, June, and September 2017.

299
300 4. Discussion 
301
302 In the pond at Pegwell Bay, the dominant controls on δ18Oostracod are δ18Owater (influenced by 

303 input cycles of seawater and meteoric water) and temperature. Due to the shallow, well-mixed, 

304 and habitat homogeneity of the Pegwell Bay pond, it is reasonable to assume that the 

305 dominant control on δ13Costracod is the breakdown of organic matter in the near surface 

306 sediments from increasing terrestrial and aquatic productivity. For trace-element/Caostracod the 

307 dominant controls in the Pegwell Bay pond are temperature for Mg/Caostracod and Sr/Cawater for 

308 Sr/Cawater  (see Roberts et al., 2020).  

309
310 In a biplot of water δ18O and δ2H, the values for Pegwell lie on a lower gradient to the global 

311 meteoric water line (GMWL) (Fig. 4), demonstrating evaporative loss along the local 

312 evaporative line (LEL), with the seawater end member falling close to the LEL. Seasonal 

313 samples further confirm that evaporation is predominately driving salinity in the pond with high 

314 EC and elevated δ18O values recorded in months with high water temperature and vice versa 

315 (August and December respectively; Table 1, Table 4). Evaporation therefore appears to be 

316 seasonal and to be particularly pronounced in the warmer months, with δ18Owater values 

317 reaching +4.85  ‰ in June 2017 (the pond also dried out in 2009; Google Maps Street View, 

318 2018). Samples from April with similar δ18O values to the seawater δ18O end member suggest 

319 that on occasion there was a direct input of seawater, which may occur at extreme tidal events 

320 such as the spring equinox tide. Furthermore, the Mg/Cawater and Sr/Cawater values of 4.14 

321 mol/mol and 0.010 mol/mol are similar to seawater, although Mg/Ca is slightly lower than that 

322 of average seawater (5.1 mol/mol) suggesting some dilution, while the Sr/Ca is slightly higher 

323 than that of average seawater (0.0089 mol/mol) (Chester, 2000). in summary, therefore, 

324 seawater input and evaporation appear to be a primary controls on δ18Oostracod with summer 

325 samples reflecting high temperatures and high δ18Owater and autumn/winter samples to reflect 

326 lower temperatures, higher precipitation, and therefore lower δ18Owater. 

327
328 On PCA biplots of environmental variables for each collection, δ18Owater explains 79.28 % of 

329 the variance (Fig. 6). August, June, and September 2017 are characterised by higher 

330 temperature, with June and August also having  higher EC and δ18Owater. Autumn/winter waters 
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331 (i.e. October to November) are characterised by low temperature and low δ18Owater. However, 

332 the September δ18Oostracod values show a discrete clustering (Fig. 5a) that may relate to the 

333 lower electrical conductivity and δ18Owater values in this month compared to others (Table 1). 

334 Furthermore, September back-calculated δ18Owater values are as low as –7.65 ‰ (equivalent 

335 to the isotopic composition of rainfall for SE England: Darling et al., 2003), suggesting that 

336 valves calcified in waters with a much greater input of meteoric water. Using the Mg/Ca-

337 inferred temperature and monitored water temperatures to track the calcification months of 

338 collected valves, the September 2017 collection reflects conditions between April and July 

339 2017. June and July 2017 received high rainfall (74.2 and 85.6 mm respectively compared 

340 with a mean of 42.7 and 47.6 mm between 1934 and 2016; Table 4). The monitored waters 

341 (–1.19 ‰ for April 2017 and +4.85 ‰ for June 2017), however, suggest a considerable degree 

342 of evaporative enrichment and/or significant seawater input, which is plausible given the high 

343 temperatures (Table 1) and our basic understanding of site systematics. If the monitored 

344 δ18Owater values are considered when interpreting the dataset, it would appear that the pond is 

345 highly evaporated, however, it is clear that pond water was equivalent to groundwater or local 

346 precipitation during June and July. The composition of the pond can therefore shift quickly (on 

347 a less than monthly timescale).

348
349 The δ18Oostracod values show a complex relationship with temperature. The individual δ18Oostracod 

350 values for collection in August 2016, December 2016 and February 2017 show some scatter, 

351 but follow the relationship between water temperature and calcite oxygen-isotope values 

352 based on the equation of Kim and O'Neil (1997) (Fig. 5a). However, δ18Oostracod values for 

353 collections in April, June and September 2017 do not follow this relationship, suggesting that 

354 δ18Owater is a more important control on δ18Oostracod. Despite this, Mg/Caostracod, Sr/Caostracod, 

355 temperatures and monitored δ18Owater values are not distinctly different than in August 2016, 

356 December 2016 and February 2017. The primary hydrological difference is that in July and 

357 August 2016 there was lower precipitation that the same period in 2017 (10.8 and 18.0 mm 

358 respectively; Met Office 2012), which is reflected in the back calculated δ18Owater values (mean 

359 values of +2.17 ‰ for valves collected in August 2016 compared with –4.75 ‰ for September 

360 2017), suggesting that δ18Owater becomes the primary control on δ18Oostracod during periods of 

361 lower δ18Owater. 

362
363 Changes in δ18O and δ13C in individual shells and in the different sampling periods provides 

364 insight into the influences on carbon-isotope signatures at Pegwell . Shells with lower δ18O 

365 have higher δ13Costracod, suggesting that a greater amount of freshwater in the pond 

366 accompanies  an increase in aquatic productivity, assuming that δ13CDIC is a first-order proxy 

367 for aquatic productivity. Shells with higher δ18O have lower δ13Costracod, suggesting that elevated 
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368 evaporation or input of seawater is accompanied by oxidation of terrestrially-derived organic 

369 matter. This shift in relationship of positive carbon-oxygen covariance at lower δ18Owater to 

370 negative at higher δ18Owater (Fig. 5c) suggests that above a certain δ18Owater threshold, aquatic 

371 productivity begins to decline. The interpretation of δ13Costracod in some coastal lakes, may 

372 therefore be dependent on understanding of the range of expected δ18Owater. Where there is a 

373 shift to a positive relationship between δ18Oostracod and δ13Costracod, it reflects a major change in 

374 hydrological budget (Schwalb, 2003) for example precipitation to seawater as the primary 

375 hydrological input. If this relationship is therefore seen in palaeo-dataset, it may be used to 

376 identify changes in freshwater/seawater input to coastal lakes. Although generally accepted 

377 that coastal lagoons, lakes, and ponds have relatively little freshwater input (Oertel, 2005), it 

378 is possible that some coastal lakes may have very large variations in salinity and at times have 

379 very low salinity as a result of large inputs of meteoric water. In estuaries, increased freshwater 

380 inputs from increased river discharge are known to increase primarily productivity (Underwood 

381 and Kromkamp, 1999) due to increased nutrient loading. It is possible, therefore, that in 

382 Pegwell Bay increased precipitation is driving nutrient loading from surface run-off of the 

383 surrounding salt marsh, and thus increasing productivity. Conversely, during times of 

384 increased seawater input, tidal cycles and direct oceanic connection are increasing turbidity 

385 and thus decreasing aquatic productivity. 

386
387 δ18Owater values in coastal lakes may therefore represent variations in inputs of meteoric water 

388 and seawater, suggesting that δ18Oostracod is related to importance of inputs into the 

389 hydrological budget. Samples that show a relationship with temperature, as defined by Kim 

390 and O’Neil (1997), are those shells with higher δ18O while shells with lower δ18O do not follow 

391 a thermodynamic relationship (Fig. 5a), suggesting δ18Owater, and hydrological budget, as a 

392 more important control than temperature. If bulk multiple shells are analysed (i.e. many shells 

393 combined together as one sample) that contains individuals from multiple generations, which 

394 may not all relate to temperature, it is likely that temperatures cannot be accurately 

395 reconstructed.  Where multiple single individuals are analysed, the spread of Mg/Caostracod 

396 values used alongside the range of δ18Oostracod may aid in identifying where a temperature 

397 signal is present. 

398
399 5. Conclusions 
400
401 The study highlights the importance of modern systematic studies, particularly in highly 

402 complex and variable environments such as coastal lakes. However, even with good 

403 understanding of modern environments, the interpretation of palaeo-stable isotope datasets 

404 for C. torosa is complex. In most circumstances, δ18Owater is a more dominant control on 
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405 δ18Oostracod, but with a dependence on temperature when there is a direct marine influence and 

406 high δ18Owater. Since there is a shift in relationship between δ18Oostracod and δ13Costracod between 

407 the populations that follow the water temperature/δ18Oostracod relationship and those that do 

408 not, if multiple individuals per stratigraphic level are analysed and the resulting δ18Oostracod and 

409 δ13Costracod data combined, it may be possible to determine if the direction of change indicates 

410 a population that can be used as a proxy for temperature. It is clear, therefore, that simplistic 

411 interpretations of δ18Oostracod data with or without modern data may be misleading. We 

412 recommend that for future palaeoenvironmental research in marginal marine environments, 

413 stable isotope analyses should be: 1) undertaken on multiple single shells; and 2) where 

414 carapaces are preserved, paired with trace-element/Ca analyses on the same individual. 

415
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555 18-Apr-2017. The inset map shows the location of samples taken on 27-Jun-2017. Samples 

556 were collected at ‘X’ for all sample dates and the triangle . 

557
558 Figure 2. a) δ18Owater, b) electrical conductivity, c) average water temperature, d) δ18Oostracod 

559 e) Mg/Caostracod, and d) δ13Costracod for each sampling day. Data from individual valves are 

560 represented by the grey circles and the mean is denoted by the black line 

561
562 Figure 3. Relationship between δ18Owater and electrical conductivity over the sampling year. 

563 The triangle denotes the seawater end member sampled adjacent to Ramsgate Harbour on 

564 18-Apr-17.

565
566 Figure 4. δ2H and δ18O values for water sampled in April and June from the coastal pond. The 

567 triangle denotes the seawater end member sampled adjacent to Ramsgate Harbour on 18-

568 Apr-17. The solid black line denotes the Global Meteoric Water Line (GMWL). The dashed 

569 line denotes the local evaporation line (LEL) of y = 4.1x – 4.3 (R2 0.97). 

570
571 Figure 5. Relationships between a) δ18Oostracod and Mg/Ca-inferred temperature b) δ18Oostracod 

572 and Sr/Caostracod, c) δ18Oostracod and δ13Costracod and d) Mg/Caostracod and Sr/Caostracod. The purple 

573 line in (a) shows the relationship between water temperature and calcite oxygen-isotope 

574 value based on the equation of Kim and O'Neil (1997)

575
576 Figure 6. PCA biplots of environmental variables for each sampling day 
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580 Table 1. Electrical conductivity, average water temperature, δ18O, and δ2H for each of the 

581 sampling days. Temperature is the average recorded over a 24-hour period, except for 4-Aug-

582 18, which is averaged from data logger deployment at 14:40. 
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584 Table 2. Water chemistry variables recorded from high to low tide on 27-Jun-17. Numbers 

585 appearing after the 12:00 sampling times (1,2 etc.) relate to the locations in Figure 1.
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587 Table 3. Ostracod Mg/Ca, δ18O and δ 13C for individual carapaces collected on each 

588 sampling day. The trace element/Ca and isotope analyses are from the same carapace.
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590 Table 4. Minimum, maximum and average monthly air and water temperature, and monthly 

591 rainfall for the monitoring period August 2016 to September 2017. Air temperature and 

592 precipitation data were downloaded from Met Office (2012)
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593
594 Table 1. Electrical conductivity, average water temperature, δ18O, and δ2OH for each of the 

595 sampling days. Temperature is the average recorded over a 24-hour period, except for 4-Aug-

596 18, which is averaged from data logger deployment at 14:40. 

597
598

Date Electrical 
conductivity 

(mS cm-1)

Salinity 
PSU

Average water 
temperature (°C)

δ18O
(‰ VSMOW)

δ2H
(‰ VSMOW)

04-Aug-16 55.2 36.6 20.9 +3.86
01-Dec-16 40.2 25.7 3.0 –2.84
02-Feb-17 45.1 29.2 8.3 –1.46
18-Apr-17 44.6 28.8 10.2 –1.19 +1.3
27-Jun-17 75.2 ~53* 17.2 +4.85 +15.48
28-Sep-17 33.3 20.8 18.3 –0.06 –6.3
Ramsgate +0.27 +1.6

599 *above scale for accurate conversion 

600
601 Table 2. Water chemistry variables recorded from high to low tide on 27-Jun-17. Numbers 

602 appearing after the 12:00 sampling times (1,2 etc.) relate to the locations in Figure 1.

603
604

Time / 
Location

δ18O
(‰)

δ2H
(‰)

Electrical 
conductivity 

(mS cm-1)

Water 
Temp.

(°C)

Alkalinity as 
CaCO3 

equivalence 
(mg L-1) 

CO32- HCO3-

06:00 +5.28 +16.7     70.5 15.8 0 266
07:00 +5.20 +16.8 75.0 16.4 0 266
08:00 +5.18 +16.2 75.9 17.6 0 244
08:30 +4.28 +10.6
09:00 +5.14 +16.5 77.8 19.0 0 256
10:00 +5.11 +16.2 76.9 19.4 0 272
12:00-1 +5.17 +15.0 77.8 22.5 0 270
12:00-2 +4.92 +17.4 76.7 21.6
12:00-3 +4.29 +16.2 72.3 21.5
12:00-4 +4.06 +16.2 70.2 23.2
12:00-5 +4.14 +12.9 71.7 21.9
12:00-6 +4.24 +14.8 71.9 22.2
14:00 +5.09 +16.3 77.9 23.3 0 260
15:00 +5.07 +17.8 78.2 24.7 14 254
17:00 +5.11 +17.3 78.8 22.6 0 248
Average +4.82 +15.4 75.2 20.8
Std Dev. ±0.46 ±2.03 ±3.0 ±2.7

605
606
607 Table 3. Ostracod Mg/Ca, Mg/Ca-inferred temperature, δ18Oshell, back-calculated δ18Owater,  

608 and δ 13Cshell for individual carapaces collected on each sampling day. The trace element/Ca 

609 and isotope analyses are from the same carapace.

610
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Collected Mg/Caostracod 
(mmol/mol)

Mg/Ca-
inferred 

Temperatur
e (°C)

δ18Oostracod (‰)
Back-

calculate
d δ18Owater 

(‰)

δ 13Costracod 
(‰)

18.57 25.8 0.19 2.70 –2.91
4.68 8.5 2.9 1.72 –7.67
3.58 7.1 1.56 0.06 –8.35
5.24 9.2 3.00 1.98 –7.45

17.78 24.8 1.65 3.96 –1.84
14.39 20.6 –0.77 0.68 –6.01
3.48 7 2.81 1.28 –8.20

25.57 34.5 1.16 5.37 –4.41

04-Aug-16

21.34 29.3 –1.37 1.83 –4.38
12.75 18.6 2.08 3.11 –6.14
4.93 8.8 2.44 1.33 –6.82
7.64 12.2 3.12 2.77 –7.14
4.35 8.1 4.49 3.22 –9.26
4.42 8.2 0.22 -1.03 –5.64
7.33 11.8 2.69 2.25 –6.88
4.27 8 –0.57 -1.86 –6.97

20.05 27.7 1.07 3.95 –4.09

01-Dec-16

5.19 9.2 3.92 2.90 –6.56
4.57 8.4 –0.56 -1.76 –6.58
4.24 8 –0.41 -1.71 –6.38
5.48 9.5 0.16 -0.79 –5.13
5.92 10.1 0.35 -0.47 –4.55

15.37 21.8 1.1 2.80 –4.52
10.03 15.2 2.84 3.14 –7.41
12.46 18.2 2.14 3.09 –6.58
9.72 14.8 2.79 3.01 –6.25
5.94 10.1 3.77 2.95 –6.76

02-Feb-17

8.66 13.5 2.59 2.53 –7.42
17.56 24.6 –5.45 -3.19 1.62
18.03 25.1 –6.20 -3.83 –0.25
28.67 38.4 –6.89 -1.95 2.64
15.87 22.5 –5.10 -3.26 1.51
17.1 24 –5.41 -3.26 1.78

24.24 32.9 –6.93 -3.03 2.48
19.61 27.1 –5.08 -2.31 0.8
33.32 44.2 –4.79 1.22 0.33
31.91 42.4 –5.06 0.63 0.48

18-Apr-17

26.26 35.4 –4.38 0.00 0.4

961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
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998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
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13.06 19 –8.23 -7.12 –0.71
33.12 43.9 –6.44 -0.49 –0.20
21.34 29.3 –4.31 -1.10 2.14
11.8 17.4 –4.21 -3.44 1.27
23.5 32 –11.38 -7.65 –2.37

15.11 21.5 –6.61 -4.97 –1.15
11.01 27.1 –8.26 -5.49 –1.19
14.18 16.4 –8.03 -7.47 –1.52

27-Jun-17

10.67 20.3 –7.26 -5.88 –1.54
9.89 16 –4.42 -3.95 0.87
8.07 15 –4.93 -4.67 1.95
5.08 12.7 –6.26 -6.50 0.45
8.63 9 –4.59 -5.66 0.53

11.22 13.4 –6.11 -6.20 3.44

28-Sep-17

15.77 16.7 –7.28 -6.65  –1.66
611
612
613 Table 4. Minimum, maximum and average monthly air and water temperature, and monthly 

614 rainfall for the monitoring period August 2016 to September 2017. Air temperature and 

615 precipitation data were downloaded from Met Office (2012)

616
Air temp. (˚C) Water temp. (˚C) Precipitation 

(mm)
Month/Year Max. Min. Average Max. Min. Average
08/2016 23.3 14.4 18.5 27.4 13.0 19.4 18.0
09/2016 22.5 14.4 17.7 26.6 14.7 19.6 76.2
10/2016 15.0 9.4 11.9 17.1 9.8 12.8 34.8
11/2016 10.1 4.4 7.4 12.6 2.1 7.8 103.4
12/2016 9.3 3.8 6.8 10.1 0.4 5.7 9.2
01/2017 6.3 0.7 3.5 7.7 -1.6 3.3 48.2
02/2017 9.2 4.5 6.6 11.3 1.2 6.4 26.4
03/2017 13.0 6.0 9.2 16.4 4.7 10.2 17.2
04/2017 13.7 5.9 9.4 21.6 5.5 13.9 10.8
05/2017 17.9 9.9 13.5 31.0 8.1 17.6 57.8
06/2017 22.4 13.1 17.4 34.2 11.8 21.4 37.8
07/2017 22.8 14.5 18.0 30.9 13.9 20.6 74.2
08/2017 21.4 13.3 16.9 25.9 15.6 20.2 85.6
09/2017 18.3 11.1 14.3 22.9 12.3 16.8 37.0

617

1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
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Sticky Note
The September d18O-water and water temperature data are puzzling.  Did I miss something?
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