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a b s t r a c t

Toxic metals have been linked to a range of adverse health effects in freshwater organisms. However, for
higher vertebrates, there is little understanding of the large-scale drivers of exposure. We quantified
toxic metal/semi-metal concentrations in a sentinel freshwater top predator, the Eurasian otter (Lutra
lutra), across England and Wales, and determined how this varied with key natural and anthropogenic
factors. We related liver concentrations in 278 otters that died between 2006 and 2017 to habitat
biogeochemistry, proximity to point source contamination and to biological characteristics (length, sex,
condition). Evidence for any positive association with putative anthropogenic sources (mining, human
population, known discharges) was weak or lacking in nearly all cases, with the exception of a positive
association between lead and human population density. Despite concerns that burgeoning use of
nanosilver in consumer products might increase silver concentrations in waste waters, there was no
increase over time. Spatial variation in soil/sediment pH, precipitation, and soil calcium oxide are indi-
cated as significant predictors of metal concentrations in otters (higher cadmium and silver in areas with
lower pH and higher rainfall, and higher chromium and lead in areas of lower calcium oxide). Liver
chromium and nickel concentrations declined significantly over time (Cr 0.030 ± 1.2 to 0.015 ± 1.3 mg/g
dry weight, Ni 0.0038 ± 1.2 to 0.00068 ± 1.5 mg/g, between 2006e2009 and 2014e2017), but other
metals showed no temporal change. Biotic associations were important, with age related accumulation
indicated for mercury and cadmium (as well as interactions with body condition). Our results suggest
that larger-scale geochemical and hydrological processes are important in determining metal exposure in
otters, and we provide an indication of risk factors that may be of relevance for freshwater vertebrates in
other countries with well-developed water pollution management.
© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Industrialisation and associated anthropogenic activities have
resulted in significant inputs of heavy metals into freshwater eco-
systems (Tchounwou et al., 2012; Schwarzenbach et al., 2006).
These elements are of concern because they do not degrade and can
accumulate in living organisms in which they may exert toxic ef-
fects ranging from carcinogenicity and genotoxicity to lethality
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(Chen et al., 2000; Croteau et al., 2005). Although regulatory in-
terventions in various parts of theworld have reduced discharges of
toxic metals such as mercury (Hg), historic contamination persists
in many places. Furthermore, development and use of new prod-
ucts has also resulted in newer metal inputs to freshwaters. For
example, increased use and disposal of electronic products are
associated with leaching of lead (Pb) from landfilled waste
(Robinson, 2009) and recognition of the antibacterial properties of
silver (Ag) has led to increased use in a wide variety of consumer
products, particularly in nanoparticle form (Wei et al., 2015). Con-
cerns have been raised over the risks associated with these metals
for both human and environmental health (Fabrega et al., 2011).

The risk to biota frommetals depends upon their bioavailability
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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and subsequent accumulation. Metals can be present as different
species, and form complexes or interact with organic and inorganic
ligands. Various geochemical properties influencemetal speciation,
complexation and bioavailability in waters. These include acidifi-
cation of freshwater ecosystems, salinisation, changes in base
cation concentrations and increased dissolved organic matter
(DOM) (Acosta et al., 2011; Winterdahl et al., 2014; Campbel and
Stokes, 1985; Carpenter et al., 2011); all can be affected by
anthropogenic activities (Winterdahl et al., 2014; Luoma and
Rainbow, 2005). Hence, as well as directly discharging metals to
the environment, humans also modify geochemical parameters
that can alter metal bioavailability and bioaccumulation.

How geochemical conditions impact metal bioavailability, bio-
accumulation and toxicity in aquatic animals has been investigated
under experimental conditions, and through novel modelling ap-
proaches that have combined biokinetic parameters (e.g. ingestion
rate) with environmental chemistry (Acosta et al., 2011; Campbel
and Stokes, 1985; Cusimano et al., 1986; Gundersen et al., 1994;
Peterson et al., 1984; Duman et al., 2007; Winter et al., 2005; Wang
and Rainbow, 2008). In contrast, few studies have explored these
interactions in natural systems. In the current study, we explore
abiotic and biotic factors that might drive metal acquisition in
natural freshwaters, using the Eurasian otter (Lutra lutra) as a
sentinel species. The otter is a non-migratory top predator that
largely feeds on fish in freshwater or coastal habitats (Miranda
et al., 2008). Otter carcasses have been collected from across Brit-
ain for over 20 years for various research purposes (Sherrard-Smith
et al., 2009; Kean et al., 2011; Sherrard-Smith and Chadwick, 2010;
Pountney et al., 2015), providing a means to assess (through tissue
analysis) spatial variation in metal concentrations in this top
predator. We determined the concentrations of major toxic metals
in the livers of Eurasian otters from across England and Wales and
examined the extent to which variation in residues was explained
by the geochemical properties of the environment that the otters
inhabited.

We specifically hypothesised that variation in liver toxic metal
concentrations in otters would be positively correlated with sedi-
ment metal concentrations and anthropogenic discharges (such as
those from industry, domestic wastewater treatment and mining),
and moderated by variation in environmental variables including
rainfall, soil and water chemistry. We also examined the impor-
tance of biotic factors, such as otter length, in explaining variation
in liver metal concentrations. We focused our statistical analyses on
elements with no known biological function (Ag, arsenic [As],
cadmium [Cd], Hg, and Pb) and also chromium [Cr] and nickel [Ni]
which although thought to be essential trace elements (Puls, 1994)
have also been reported to have ecotoxicological significance in
vertebrates at environmentally relevant concentrations (Nordberg
et al., 2014). We also quantified cobalt [Co], copper [Cu], iron [Fe],
zinc [Zn], manganese [Mn], molybdenum [Mo], and selenium [Se]
residues, and summarise the concentrations found. Special atten-
tion was paid to silver since little monitoring is in place to deter-
mine whether nanosilver is entering freshwater environments and
may be subsequently accumulated through the food chain; we
hypothesised that there would be a positive association between
measured Ag concentration in otters, and predicted nano-Ag in
river systems.

2. Materials and methods

2.1. Otter collection and post mortem examination

Otter carcasses sent in to Cardiff University Otter Project (www.
cardiff.ac.uk/otter-project) are submitted by local authorities,
environmental organisations and members of the public. For each
otter, location (National Grid Reference, to a minimum 6 figures)
and date of collection is recorded, and a detailed post-mortem
examination is conducted following a standard protocol
(Simpson, 2000) that includes recording phenotypic characteristics
(e.g. sex, length, weight, age-class). Otters are categorised as juve-
nile, sub-adult or adult based on their size and developmental
features. Length and weight are used to derive a condition score
and thereby control for variation in fat level, using Peig and Green’s
(2009) scaled mass index (SMI). Tissue samples, including liver, are
retained from the post-mortem examination and archived
at �20 �C prior to any analysis.

For the present study, liver samples were analysed from 278
otters. These otters were a stratified random sub-sample of all
animals collected, selected in order to provide a good spatial spread
(predominantly from England and Wales, but including three ani-
mals found in Scotland; mapped, supplementary material, Fig. S1),
and (within the constraints of the samples available) a balanced sex
ratio and consistent age-class ratio, across years. Sampling focused
on the periods 2006e2009, and 2014e2017 for all metals with the
exception of silver, for which sampling was from all years
2008e2017 (see Table S2 for breakdown). Further adjustments to
the sample selection were made based on preliminary exploration
of spatial data describing the number of consented discharges
(Natural Resources Wales, 2018; Environment Agency, 2018) to
ensure that there were individuals from areas with high, medium
and low anthropogenic discharges. The otters had died from
various causes (86% roadkill; 2% emaciation; 1% fighting injuries;
1% respiratory infection; 1% electrocution; 1% separation from
mother; 8% unknown).

2.2. Sample preparation & analysis

We determined the liver concentrations of the thirteen ele-
ments Ag, As, Cd, Cr, Co, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Se and Zn.
Sample preparation and analysis was carried out following vali-
dated methods for the analysis of trace elements in animal tissue
samples. In brief, two 1 g randomly selected liver subsamples were
taken and weighed accurately to three decimal places. The first,
used for trace element analysis, was acid digested and subsequently
analysed using inductively coupled plasma mass spectrometry
(ICP-MS). The second was used for determination of dry matter
content by oven-drying the subsample for 18 h at 105�C and then
re-weighing it. Residue analyses were carried out in 2009, 2011 and
2017 and some refinements to methods were made between years.
A detailed description of the methods used, the limits of detection
applied, and the % recovery data derived from certified reference
materials are provided Tables S3-4. All element concentrations are
expressed on a mg/g dry weight basis and are not recovery cor-
rected, because consistent and satisfactory recoveries were ob-
tained between different periods, for most elements. Recoveries for
lead (Pb) were insufficient for the samples analysed in 2017, hence
those data were excluded from further analysis.

2.3. Sources of spatial data

We collated data describing spatial variation in stream and soil
biochemistry, weather, and potential anthropogenic sources of
contaminants from a range of sources (Table S5). In addition, a map
of predicted nanosilver concentrations in surfacewater was derived
from a model that simulated nanosilver loadings from households
to rivers (Dumont et al., 2015), based on data on connectivity to
sewerage, sewage treatment efficiency, the spatial distribution of
sewage treatment plants, dilution, downstream transport, water
evaporation, water abstraction, and nanoparticle sedimentation. All
spatial data were mapped in ArcGIS® - ArcMap (Version 10.4.1)
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(ESRI, 2016) as continuous raster layers or point data.
The otter’s linear home range along water courses varies be-

tween 5 and 40 km (Kruuk, 1995; Erlinge, 1967). We assumed that
each otter could potentially have ranged across a 20 km diameter
circular area (approximate midpoint of linear range), the centre of
the circle being where the otter carcass was found. We used the
Geospatial Modelling Environment (Version 0.7.4) (Beyer, 2014)
isectpolypoly tool to extract data that pertained to each otter 20-
km-diameter range. For each area, we extracted raster data for a
range of geological and anthropogenic variables (Table S5) that
were summarised either as mean values (soil pH, sediment ele-
ments, stream pH, rainfall, silver nanoparticle concentrations in
surface water, human population density) or sum values (annual
mass inputs of metals to controlled waters). The presence or
absence of past and present mining sites within the circular area
was included as a binary variable. For five otters, one or more of
these environmental variables was unavailable.

Distance of the otter carcass to the coast was also included to
test whether potential differences in the extent of freshwater and
marine derived diets affected metal acquisition. To calculate the
distance between the otter location and the mouth of the river,
otter locations were snapped to the 1:50,000Watercourse Network
layer from the Centre for Ecology & Hydrology (CEH) (Moore et al.,
1994) using ArcGIS® - ArcMap (Version 10.4.1) (ESRI, 2016).
Snapping tolerance was set to 5000 m. Otters outside this zone
(n ¼ 4) were excluded from the scoring, due to uncertainty about
the relevance of the river catchment. The shortest distance from the
otter location to the coast along rivers was calculated using RivEx
(Version 10.25) (Hornby, 2017).

The data and supporting documentation were deposited with
NERC’s Environmental Information Data Centre (EIDC) under the
dataset name: Biological characteristics, liver metal concentrations,
habitat biogeochemistry and habitat contamination sources of UK
otters (2006e2017). The DOI is https://doi.org/10.5285/0fbb2c90-
5b54-427a-a083-55c022802a80 (Brand et al., 2019).

2.4. Statistical analysis

All analyses were carried out in R (R Core Team, 2016) via the R
Studio (Version 1.0.153) interface. Principal component analysis
(PCA) was used to reduce dimensionality among correlated envi-
ronmental variables, namely soil carbon (soil C), soil pH, river pH,
sediment calcium oxide (sedCaO), soil chloride (soil Cl), soil sulphur
(soil S) and rain (using a correlation matrix). Five otters were
omitted from PCA due to missing environmental data.

Biotic and abiotic drivers of metal concentrations in otter liver
were explored using generalised linear models (GLMs). For each
model, metal/semi-metal concentration (Ag, As, Cd, Cr, Hg, Ni, Pb)
was the dependent variable. All independent variables in the initial
model, and all relevant two-way interactions between these vari-
ables, are listed in Table S6. Otter sex, length and body condition
(SMI) were included to control for potential biotic variation. Length
was used rather than age-class because sample sizes differed
greatly between age-classes (juveniles were very poorly repre-
sented, see Table S1); length is significantly associated with age-
class (Fig. S7) and provided a continuously distributed variable.
Liver concentration of Se was included in the model for Hg, based
on well-known biological interaction (Koeman et al., 1973). Change
over time was explored using a categorical term to compare period
1 (2006e2009) with period 2 (2014e2017) for all dependent var-
iables except Ag and Pb. In the model for silver, year was treated as
a continuous variable (2008e2017), whereas for Pb change over
time could not be tested because data from the latter period were
excluded due to poor recoveries. Principle components 1, 2 and 3
were included to describe variation in soil and stream chemistry,
and rainfall. Principle Component 1 (positively associated with soil
C and rain, negatively associated with soil pH and river pH), Prin-
ciple Component 2 (negatively associated with sedCaO and soil S)
and Principle Component 3 (negatively associated with soil Cl)
were also used as independent variables in each GLM (detailed
results of the PCA are reported in Table S8 and Figs. S9-10). Otters
for which PCs were not available (i.e. the five otters for which
environmental data were missing) were initially excluded from
GLMs, but were returned to models where model reduction steps
led to removal of the PCs (this occurred in models of As and Ni, but
not for Ag, Cd, Cr and Hg). Where those individuals could not be
returned, models were run with all individuals but without PCs, to
ensure that the significance of the other independent variables in
the models was not affected. Sediment levels of the relevant metal
(i.e. sediment Ag in the model of otter Ag, etc) were included to
control for background variation. Human population density,
presence/absence of mining sites, and known inputs of the relevant
metal to controlled waters, were included to test for association
with anthropogenic inputs. For Ag, predicted nanosilver in surface
water was also included to test for association between predicted
nanosilver concentrations in water and those in otter tissues. Metal
concentrations were skewed, therefore preliminary models were
fitted using (i) raw data, with Gaussian error family and log link
function, (ii) log transformed data, with Gaussian error family and
identity link and (iii) raw data, with Gamma error family and log
link function. Final models were chosen based on comparisons of
model residual normality, homoscedasticity, and absence of
leverage, and resulted in selection of log transformed data and a
Gaussian error family with identity link function for all models.
Models were simplified using stepwise deletion (using AIC values
from the drop1 function in R) to maximise model efficiency. Final
model checks were made to assess whether the variation of re-
siduals was associated with the year in which the otter was found,
the year in which metal analysis was conducted, or with age-class,
i.e. whether any remaining variation or bias with these variables
was not adequately accounted for by the model. Additionally, we
tested whether residual variance differed between regions (using
UK Environment Agency regional structures, which are based on
river catchments (Environment Agency, 2014), in order to identify
potential spatial autocorrelation. No significant association with
residuals were found. Model predictions were made using the
‘predict’ function in R (R Core Team, 2016) based on the final model
for each determinand. When predicting the nature of association
with each variable in question, all other variables remaining in the
relevant model were fixed at their mean, or at “Female” for the
variable Sex, “2006e2009” for the variable Year and ‘no’ for pres-
ence of mining sites.

3. Results and discussion

Measured metal/semi-metal concentrations in otters varied
over some four orders of magnitude (Fig. 1) (for additional
descriptive statistics see Table S11). Overall concentrations were
broadly similar to those previously reported in Eurasian otters from
other parts of the world (Gutleb et al., 1998; Lanszki et al., 2009;
Kruuk et al., 1997; Lemarchand et al., 2010; Lodenius et al., 2014).
Concentrations of Ag, which can be toxic to mammals, were an
order of magnitude lower than those reported in a small sample of
Eurasian otters from Belarus (n ¼ 9) (Sidorovich, 2000) and in sea
otters (Enhydra lutris) from the USA (n ¼ 17) and Russia (n ¼ 5)
(Kannan et al., 2006, 2008). The current study presents the first
major published dataset for liver total Ag in freshwater otters
anywhere in the world and provides a baseline against which to
detect potential future increases that may arise in the UK because of
increasing use and subsequent discharge of nanosilver.

https://doi.org/10.5285/0fbb2c90-5b54-427a-a083-55c022802a80
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Fig. 1. Median (black band) concentrations (mg/g dry weight) of selected inorganic elements in the livers of otters found dead between 2006 and 2017 in the United
Kingdom. Boxes represent quartiles and whiskers are 1.5 � interquartile range, with points beyond that distance plotted as single points. Metals named in bold were the dependent
variables in our statistical models. Note that the years in which otters were sampled differs for Ag and Pb (see Table S1 for details) and that for Pb there are fewer data overall, and
samples were taken only from years 2006e08.

A.-F. Brand et al. / Environmental Pollution 266 (2020) 1152804
Concentrations of the elements with known biological functions
(Co, Cu, Fe, Zn, Mn, Mo and Se) were generally less variable than the
major toxic elements (Fig. 1), likely reflecting homeostatic control
of essential trace elements, which would render them less likely to
reflect environmental drivers.

Estimation of toxicological significance is challenging because
relevant (species-specific) thresholds are lacking. For As, no rele-
vant toxicological threshold is proposed, but Kubota et al. (2001)
reported concentrations up to 5.7 mg/g in sea otters (Enhydra lut-
ris) with no apparent toxicological consequences. In the present
study, concentrations were all <2.27 mg/g, except in one juvenile
male with 9.38 mg/g; no gross lesions were observed but no his-
topathology was undertaken. For Cd and Pb, kidney concentrations
exceeding 105 mg/g dry weight (Cd, Shore and Douben, 1994a) and
25 mg/g dry weight (Pb, Ma, 1989) have been related to cellular
damage in small mammals. Using reported kidney:liver ratios for
thesemetals (Gutleb et al., 1998; Mason et al., 1986), median kidney
concentrations in the otters were estimated, and did not exceed
either threshold. Sleeman et al. (2010) report liver Hg levels of
221 mg/g wet weight in northern river otter Lontra canadensis,
associated with severe pathology, and assumed to be the cause of
death. Liver Hg concentrations exceeding 25e30 mg/g wet weight
have been linked to adverse effects in non-marinemammals (Shore
et al., 2011), in the current study the maximum concentration was
50.3 mg/g dry weight, equivalent to 15.4 mg/g wet weight (based on
the % dry matter of the sample). Consistent with this, there was an
absence of obvious macroscopic changes in the appearance of the
liver and kidneys or any other post-mortem signs suggestive of
metal toxicity.

A significant amount of variation in tissue concentrations of Ag,
Cd, Cr, Hg, Ni and Pb, but not As, was explained by our models; the
explanatory variables differed between metals. Model outputs are
provided in full in S6; the nature of all significant associations is
discussed here.

A small number of studies have found significant associations
between elevated heavy metal concentrations in biota and
anthropogenic pollution sources (Wren et al., 1988; Kuklina et al.,
2014; Suarez-Serrano et al., 2010; Carrasco et al., 2011). We used
human population density, presence/absence of mining, annual
reported mass inputs of metals to controlled waters, and (for Ag
only) predicted nanosilver in surface waters, to indicate potential
anthropogenic pollution. Predicted nanosilver showed no associa-
tion with Ag concentration in otters, and was dropped from our Ag
model. Presence/absence of mining was retained in models for Cd,
Cr, Hg and Pb but significancewas indicated only for Hg, for which a
significant negative association was found (p ¼ 0.016), however
model predictions show high variation and small differences, with
imbalanced comparison and few data in the group with mining
sites (n ¼ 13/197), and we therefore doubt the validity of this
finding. Annual mass inputs of the relevant metal to controlled
waters was retained for As, Cd, Hg and Pb (dropped from Ni, and
unavailable for Ag and Cr) but significancewas indicated only for As
(a positive association, p 0.049, as might be expected) but the
overall model for As was non-significant so this result is dis-
regarded. Human population density was retained, and significant,
in models of Ag, As, Cd and Pb (p ¼ 0.049, 0.014, 0.015 and < 0.001)
but was dropped from models of Cr, Hg and Ni. Human population
density was strongly positively associated with Pb. Unexpectedly,
the association was negative in all other cases, however the overall
model for As was non-significant, and downward trends for Ag and
Cd were weak (Fig. 2). Fewer otters are found in areas of high hu-
man population density and it is possible that differences in otter
diet, land-use, or waste-water treatment practices are differentially
impacting metal concentrations in rural and urban areas; more
evidence is needed to clarify the drivers of these associations.

There was evidence of a significant decline in liver Cr and Ni
concentrations between the two study periods (p¼ 0.017 and 0.004
respectively), with model predicted mean (±SE) concentrations of
Cr falling from 0.030 ± 1.2 mg/g dry weight in 2006e2009, to
0.015 ± 1.3 mg/g in 2014e2017, while concentrations of Ni fell from
0.0038 ± 1.2 mg/g to 0.00068 ± 1.5 mg/g during the same period. A
nationwide study of metal ambient concentrations between 1980
and 2005 reported significant decreases in ambient concentrations
of metals in the UK since the 1980s and predicted ambient con-
centrations would continue to fall or level off as “background”
levels are approached (Brown et al., 2008). Chromium has a wide
range of industrial uses and commercial wastewater is an impor-
tant source of chromium entering waste water treatment plants.
Decline in otters is likely to reflect the introduction of alternative
products (following environmental concern and regulatory reviews
in Europe) which have resulted in decreases in industrial chromium
use as textile dye (in the form of sodium dichromate) and wood
preservative (in the form of chromated copper arsenate) in the UK
(Zarogiannis, 2005). Declines in nickel correspond with known
reductions in ambient concentration in the UK since the 1980s. The
transition from coal-burning to natural gas, advances in clean
technology and greater regulation of industrial processes have
played an important part in this reduction (Bruckmann, 2001;



Fig. 2. Association between human population density and liver silver (Ag), cadmium (Cd) and lead (Pb) concentrations in otters (mg/g dw). Solid lines indicate model
predicted liver tissue metal concentrations, while other significant variables in each model (see Table S6) were statistically controlled. Dashed lines indicated standard error around
the predicted concentrations.
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Maggs and Moorcroft, 2000), and the increasing substitution of
heavy fuel oil (and more recently, coal) with orimulsion has also
contributed (Bruckmann, 2001). Although year was retained also in
models for Ag, As, and Hg, there was no evidence for any significant
association. It seems possible that concentrations of these elements
have reached their nadir, following earlier reported declines
(Brown et al., 2008).

Spatial variation in metal concentrations was complex, and in
addition to the putative anthropogenic drivers discussed above, we
hypothesised that a range of other environmental variables
including rainfall, and soil/sediment/water geochemistry, and
proximity to the coast, might also be associated with metal con-
centrations in otters. Because many of these variables were corre-
lated with one another it was not always possible to individually
test for associations, and so we used ordination (PCA) to reduce
dimensionality.

PC1 (which negatively represented soil pH, river pH, and posi-
tively represented soil C and rainfall), was positively associated
with liver metal concentrations of Ag and Cd (p ¼ 0.009 and 0.002
respectively) (Fig. 3a and b). A positive association between metal
concentration and PC1 suggests that higher liver concentrations are
found in areas with lower pH (i.e. more acidic conditions). Metals
are more readily mobilised under more acidic conditions (John and
Leventhal, 1995) and increased metal accumulation has been re-
ported in organisms from low pH waters (Meyer et al., 1995;
Scheuhammer and Blancher, 1994; Wren and Stephenson, 1991).
The pH range over which rapid change in sorption capacity occurs
is generally higher for Cd and Ag (pH 5e8) than for other metals
such as Pb and Cu (pH 3e6) (Davis and Leckie, 1978; John and
Leventhal, 1995; Saha et al., 2002; Smith, 1999). Thus, within the
pH range of the rivers in England and Wales (in our data, min 6.1
max 8.1, mean 7.5), Cd and Ag may be the metals most likely to
desorb from the surface of particulate matter, become available for
incorporation in biological processes, and result in elevated liver
concentrations in otters where pH is lowest, thus explaining why
these metals show this association. For Cr, Ni and Pb, PC1 was
dropped from the models, and for As and Hg although retained, the
association with PC1 was non-significant.

A positive association with PC1 also suggests higher metal
concentration in areas of high rainfall. This might result both from
increased deposition of airborne contaminants, and washout of
metal from soils into waterways. Positive associations have previ-
ously been demonstrated between rainfall and otter liver Cd
(Mayack, 2012), but not (as far as we are aware) for Ag. The
increased use of Ag nanoparticles in domestic products has resulted
in higher (airborne) emissions of silver (Quadros and Marr, 2011;
Sung et al., 2008; Reidy et al., 2013) which can undergo long-range
transport (Kimbrough and Suffet, 1995; Reidy et al., 2013). The as-
sociation between Ag in otters and PC1 (and therefore potentially
with rainfall) is consistent with the concept that Ag availability is



Fig. 3. Association between environmental variables and metal concentration in otters (mg/g dw). [A] and [B] represent associations between PC1 and Ag, and Cd, respectively while
[C] represents the association between PC2 and Cr. PC1 is based on principal components analysis of Soil C, Soil pH, River pH and Rainfall; high PC values indicate high Soil C and
Rainfall, and low Soil pH and River pH. PC2 is based on sediment CaO and soil S; high PC values indicate low sediment CaO and low soil S. Solid lines indicate model predicted liver
tissue metal concentrations, while other significant variables in each model (see Table S6) were statistically controlled. Dashed lines indicated standard error around the predicted
concentrations.
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associated with atmospheric Ag deposition, while the absence of
any association with predicted nanosilver in surface waters sug-
gests that releases from wastewater treatment plants may be less
important. More detailed modelling of the behaviour of Ag in
different environments is needed in order to elucidate potential
future exposure of and risks to biota.

The third factor influencing PC1, soil C, seems unlikely to be a
key driver of either liver Ag or Cd in otters. Metals are complexed by
organic matter, and their bioavailability to organisms is thus
reduced by increasing organic matter content (Winter et al., 2005;
Hogstrand and Wood, 1998; McGeer et al., 2002; Voets et al., 2004;
Gorski et al., 2008). Further exploration of our GLMs, using soil C as
a discrete variable in each GLM (instead of PC1), indicated a highly
significant negative association between soil C and liver Cd
(F1,183 ¼ 11.050, p < 0.001), and no association between soil C and
liver Ag, but because of collinearity in our dataset we cannot
separate a potential associationwith rainfall and pH from that with
soil C.
PC2 (which negatively represented sediment CaO and soil S)
was positively associated with Cr (p ¼ 0.025)(Fig. 3c). Although
retained in models of Ag, As and Hg, there was no evidence for a
significant association, and it was dropped from models of Cd, Ni
and Pb. A positive association between metal concentration and
PC2 suggests higher liver concentrations in areas of low sediment
CaO, and low soil S. Based on their geochemistry we suggest that
sediment CaO is the more likely driver of this association. CaO is
alkaline, and a metal-removing sorbent (Bhakta and Munekage,
2013), meaning that metals are more likely to be bound to sedi-
ment high in CaO, and thus less available to freshwater foodchains.
Conversely, elemental sulphur decreases soil pH, which would
contribute to metal mobilisation. Further exploration of our Cr
model, using soil S and SedCaO, in turn, as discrete variables
(instead of PC2), indicated that soil S was not significant, whereas
SedCaO was significant (F1,176 ¼ 3.259, p ¼ 0.04). PC3 (which was
negatively associated with soil Cl) was retained in models for Ag,
As, Hg and Pb but showed no significant association with metal
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concentrations.
We also explored whether variation in otter liver metal con-

centrations reflected spatial variation in average sediment con-
centrations of the samemetal within a 20 km diameter circular area
around the carcass location, or distance to the coast. We found no
significant associations between tissue metal residues and metal
concentrations in sediment. In contrast, associations between
metal concentrations in biotic samples and corresponding soils
have been shown for Cd and Pb in various terrestrial mammals
(Graw�e et al., 1997; Pankakoski et al., 1993; Ma, 1989; Ma et al.,
1991; Shore, 1995), and may be the result of a closer direct con-
tact with (including ingestion of) soil and vegetation in terrestrial
habitats. A previous study of Eurasian otters reported a correlation
between bone Pb concentrations and both Pb emissions and Pb in
stream sediments in Britain (Chadwick et al., 2011). However, lead
concentrations tend to be higher in bone than in liver and reflect
lifetime accumulation as opposed to more recent (approximately a
month) exposure (Shore and Douben, 1994a). It is possible that
associations between tissue and sediment Pb may in fact only
become manifest over a prolonged exposure period in otters; liver
residues may vary with shorter-term, local scale fluctuations in
exposure to environmental Pb concentrations. Consistent with this
is that associations with long term industrial activity and atmo-
spheric deposition of pollutants were found for bone, but not for
liver, in aquatic mustelid species in Canada (Wren et al., 1988b). It
should be noted no associationwith sediments was found for As, Cr,
Ni or Pb, whereas for Ag, Cd and Hg no suitable data describing
sediment concentrations were available, so this was not tested.
Distance from the coast was not retained in models for Cd, Cr, or Ni,
and showed no significant association for Ag, As, Hg or Pb.

A number of caveats should be noted with regard to the envi-
ronmental data used in our models. Although we included soil and
water pH, known to affect metal bioavailability, we could not utilise
more advanced modelling approaches (such as the Windermere
Humic Aqueous Model (WHAM) (Tipping, 1994)) because the
environmental input parameters for our models were not appro-
priate for WHAM. We were unable to include data on river flow, a
potentially important factor (Jobling et al., 2006; Ji et al., 2002)
because of a lack of spatially/temporally explicit data. It should also
be noted that relatively few data were available from sites with low
soil and river pH, or sites with high soil carbon and rainfall
(Figure S4). Spatial (and individual) variation in otter diet might
also contribute to differences in metal exposure, but controlling for
this is beyond the scope of the current study.

It is well known that biotic variables such as age can have a
significant impact on accumulation for some metals (Shore and
Rattner, 2001), and we therefore examined how these might ac-
count for variation in metal concentration in otters (significant
associations are plotted in Figs. S12-14). We found significant as-
sociations with length (in interaction with sex and/or body condi-
tion) for both Cd and Hg, which we presume reflects accumulation
with age. For Cd, both sexes accumulated higher liver Cd concen-
trations with length but the rate of accumulation was steeper in
females (Length:Sex interaction p < 0.001). Accumulation of Cd
with age in the liver and particularly the kidney has been observed
in a wide variety of mammals (Shore and Rattner, 2001; Shore and
Douben, 1994b; Glooschenko et al., 1988) including otters
(Hyv€arinen et al., 2003; Lanszki et al., 2009), but the cause for the
sex difference in accumulation is unclear; it may reflect physio-
logical or dietary differences between males and females (Lanszki
et al., 2014; Moorhouse-Gann et al., 2020). We also found an
interaction with body condition, such that for otters in typical or
good condition (scaled mass index of 0 or greater) there was a
steeper association between length and Cd concentration, whereas
for otters in poorer condition (SMI <0) the increase in
concentrationwas less marked (Sex:SMI interaction, p¼ 0.013). For
Hg, we found a similar (although more extreme) pattern whereby
overall the data suggest a positive association between body length
and liver Hg for typical and good condition otters (presumably
reflecting accumulation with age), but not in otters that were in
poor condition (p < 0.001). Age-related accumulation of liver Hg in
mammals has not been widely observed (Shore and Rattner, 2001;
Lodenius et al., 2014) and non-linear, varying trends have been
described in otters (Kruuk et al., 1997; Mierle et al., 2000). Younger
otters are more likely to forage on crustaceans (Ben-David et al.,
2001) while older otters feed more on large piscivorous fish
(Kruuk,1995;Moorhouse-Gann et al., 2020) that occupy a relatively
high trophic position and accumulate more Hg than omnivorous
and planktivorous species (Zhou andWong, 2000). Surprisingly, we
also found significant but negative associations between length and
concentration of Ni (p ¼ 0.002), and Pb (p ¼ 0.002), which we are
unable to explain. Interactions with condition are difficult to
interpret, as it is not possible to discriminate from a correlative
association whether, for example toxic metal contamination might
drive poor condition (e.g. Lanszki et al., 2009; Kruuk et al., 1997;
Bremle et al., 1997), or whether liver wastage induced by starvation
causes elevated liver pollutant concentrations (Wienburg and
Shore, 2004). Previous studies in otters have found associations
between metal concentrations and body condition but these have
not been consistent. Mercury in river otters (Lontra canadensis)
from Canada was positively correlated with body fat (Evans et al.,
2000) whereas a negative correlation was found in river otters
(Lutra lutra) from Scotland (Kruuk et al., 1997).

We also found a highly significant positive association between
liver Hg and Se concentrations (p < 0.001) and the Hg:Se molar
ratio was close to or below 1 in all of the otters we examined
(Fig. S15). A similar equimolar ratio in liver has been described in
other species that feed at a high tropic level (Koeman et al., 1973;
Palmisano et al., 1995) and reflects a detoxification mechanism in
which Se complexes Hg in a 1:1 M ratio (Koeman et al., 1973).

4. Conclusions

Liver concentrations of toxic metals and semi-metals in otters in
British rivers between 2006 and 2017 were broadly similar to levels
measured in other studies (Lanszki et al., 2009; Lemarchand et al.,
2010; Kruuk et al., 1997; Hyv€arinen et al., 2003; Gutleb et al., 1998)
and were below levels likely to be associated with adverse effects.
Over a broad spatial scale, concentrations were not predominantly
driven by point source inputs of anthropogenic contamination but
were associated with environmental variables such as pH and
rainfall, and biotic factors such as age and sex. Overall, our data
describe the current key drivers of metal acquisition in a key
freshwater sentinel species at a national scale, and provide a
comprehensive dataset against which future change (e.g. from
increased usage, or release of metals from sediment contaminated
by past mining activities (Hudson-Edwards et al., 2008) can be
benchmarked.

CRediT authorship contribution statement

Anne-Fleur Brand: Formal analysis, Investigation, Writing -
original draft. Juliet Hynes: Resources, Formal analysis, Data cura-
tion. Lee A. Walker: Investigation.M. Glόόria Pereira: Investigation.
Alan J. Lawlor: Formal analysis, Investigation, Methodology.
Richard J. Williams: Investigation, Resources. Richard F. Shore:
Conceptualization, Writing - review & editing, Supervision, Fund-
ing acquisition. Elizabeth A. Chadwick: Conceptualization, Writing
- review & editing, Supervision, Funding acquisition, Project
administration.



A.-F. Brand et al. / Environmental Pollution 266 (2020) 1152808
Declaration of competing interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

This research was supported in part by a grant from the Esm�ee
Fairbairn Foundation (grant number 14-1146). The CEH contribu-
tion was supported the Natural Environment Research Council
award number NE/R016429/1 as part of the UK-SCaPE programme
delivering National Capability. The authors of this article thank
Sarah Thacker and Elaine Potter for their support with various as-
pects of laboratory work. This study contains model estimates of
topsoil properties [Countryside Survey] and British Geological
Survey data owned by © NERC as well as Ordnance Survey data
owned by © Crown copyright and database right 2007. Thanks also
to members of the public, Wildlife Trusts, and environmental or-
ganisations including the Environment Agency and Natural Re-
sources Wales, for the reporting and collection of otter carcasses.

Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.envpol.2020.115280.

References

Acosta, J., Jansen, B., Kalbitz, K., Faz, A., Martínez-Martínez, S., 2011. Salinity in-
creases mobility of heavy metals in soils. Chemosphere 85 (8), 1318e1324.

Ben-David, M., Duffy, L.K., Blundell, G.M., Bowyer, R.T., 2001. Natural exposure of
coastal river otters to mercury: relation to age, diet, and survival. Environ.
Toxicol. Chem. 20 (9), 1986e1992.

Beyer, H., 2014. Geospatial Modelling Environment (Version 0.7.4). Spatial Ecology,
LLC. (Accessed December 2011).

Bhakta, J.N., Munekage, Y., 2013. Identification of potential soil adsorbent for the
removal of hazardous metals from aqueous phase. Int. J. Environ. Sci. Technol.
10 (2), 315e324.

Brand, A.F., Chadwick, E.A., Shore, R.F., 2019. Biological Characteristics, Liver Metal
Concentrations, Habitat Biogeochemistry and Habitat Contamination Sources of
UK Otters (2006-2017). NERC Environmental Information Data Centre. https://
doi.org/10.5285/0fbb2c90-5b54-427a-a083-55c022802a80.

Bremle, G., Larsson, P., Helldin, J.O., 1997. Polychlorinated biphenyls in a terrestrial
predator, the pine marten (Martes martes L.). Environ. Toxicol. Chem. 16 (9),
1779e1784.

Brown, R.J., Yardley, R.E., Muhunthan, D., Butterfield, D.M., Williams, M., Woods, P.T.,
Brown, A.S., Goddard, S.L., 2008. Twenty-five years of nationwide ambient
metals measurement in the United Kingdom: concentration levels and trends.
Environ. Monit. Assess. 142 (1e3), 127e140.

Bruckmann, P. (Ed.), 2001. Ambient Air Pollution by as, Cd and Ni Compounds.
Position Paper. Office For Official Publications of The European Communities,
pp. 1e315.

Campbel, P., Stokes, P., 1985. Acidification and toxicity of metals to aquatic biota.
Can. J. Fish. Aquat. Sci. (12), 2034e2049.

Carpenter, S.R., Stanley, E.H., Van der Zanden, M.J., 2011. State of the world’s
freshwater ecosystems: physical, chemical, and biological changes. Annu. Rev.
Environ. Resour. 36 (1), 75e99.

Carrasco, L., Benejam, L., Benito, J., Bayona, J.M., Díez, S., 2011. Methylmercury levels
and bioaccumulation in the aquatic food web of a highly mercury-
contaminated reservoir. Environ. Int. (7), 1213e1218.

Chadwick, E.A., Simpson, V.R., Nicholls, A.E., Slater, F.M., 2011. Lead levels in
Eurasian otters decline with time and reveal interactions between sources,
prevailing weather, and stream chemistry. Environ. Sci. Technol. 45 (5),
1911e1916.

Chen, C.Y., Stemberger, R.S., Klaue, B., Blum, J.D., Pickhardt, P.C., Folt, C.L., 2000.
Accumulation of heavy metals in food web components across a gradient of
lakes. Limnol. Oceanogr. (7), 1525e1536.

Croteau, M., Luoma, S.N., Stewart, A.R., 2005. Trophic transfer of metals along
freshwater food webs: evidence of cadmium biomagnification in nature. Lim-
nol. Oceanogr. 50 (5), 1511e1519.

Cusimano, R.F., Brakke, D.F., Chapman, G.A., 1986. Effects of pH on the toxicities of
cadmium, copper, and zinc to steelhead trout (Salmo gairdneri). Can. J. Fish.
Aquat. Sci. 43 (8), 1497e1503.

Davis, J.A., Leckie, J.O., 1978. Effect of adsorbed complexing ligands on trace metal
uptake by hydrous oxides. ES T (Environ. Sci. Technol.) (12), 1309e1315.
Duman, F., Cicek, M., Sezen, G., 2007. Seasonal changes of metal accumulation and
distribution in common club rush (Schoenoplectus lacustris) and common reed
(Phragmites australis). Ecotoxicology 16 (6), 457e463.

Dumont, E., Johnson, A.C., Keller, V.D., Williams, R.J., 2015. Nano silver and nano
zinc-oxide in surface waterseExposure estimation for Europe at high spatial
and temporal resolution. Environ. Pollut. 196, 341e349.

Environment Agency, 2014. Environment Agency Regional Structure Map. Bristol, ,
U.K. https://assets.publishing.service.gov.uk/government/uploads/system/
uploads/attachment_data/file/302420/EAregions.pdf.

Environment Agency, 2018. Consented Discharges to Controlled Waters with Con-
ditions. Bristol, U.K. https://data.gov.uk/dataset/b3df52da-3e27-4343-9ec3-
e630a9cbb52c/consented-discharges-to-controlled-waters-with-conditions.

Erlinge, S., 1967. Home range of the otter Lutra lutra L. in southern Sweden. Oikos 18
(2), 186e209.

ESRI, 2016. ArcGIS Desktop: Release 10.4.1. Environmental Systems Research Insti-
tute, Redlands, CA.

Evans, R., Addison, E., Villeneuve, J., MacDonald, K., Joachim, D., 2000. Distribution
of inorganic and methylmercury among tissues in mink (Mustela vison) and
otter (Lutra canadensis). Environ. Res. 84 (2), 133e139.

Fabrega, J., Luoma, S.N., Tyler, C.R., Galloway, T.S., Lead, J.R., 2011. Silver nano-
particles: behaviour and effects in the aquatic environment. Environ. Int. 37 (2),
517e531.

Glooschenko, V., Downes, C., Frank, R., Braun, H., Addison, E., Hickie, J., 1988. Cad-
mium levels in Ontario moose and deer in relation to soil sensitivity to acid
precipitation. Sci. Total Environ. 71 (2), 173e186.

Gorski, P., Armstrong, D., Hurley, J., Krabbenhoft, D., 2008. Influence of natural
dissolved organic carbon on the bioavailability of mercury to a freshwater alga.
Environ. Pollut. 154 (1), 116e123.

Graw�e, K.P., Thierfelder, T., Jorhem, L., Oskarsson, A., 1997. Cadmium levels in kid-
neys from Swedish pigs in relation to environmental factorsdtemporal and
spatial trends. Sci. Total Environ. 208 (1e2), 111e122.

Gundersen, D.T., Bustaman, S., Seim, W.K., Curtis, L.R., 1994. pH, hardness, and
humic acid influence aluminum toxicity to rainbow trout (Oncorhynchus
mykiss) in weakly alkaline waters. Can. J. Fish. Aquat. Sci. 51 (6), 1345e1355.

Gutleb, A., Kranz, A., Nechay, G., Toman, A., 1998. Heavy metal concentrations in
livers and kidneys of the otter (Lutra lutra) from Central Europe. Bull. Environ.
Contam. Toxicol. (2), 273e279.

Hogstrand, C., Wood, C.M., 1998. Toward a better understanding of the bioavail-
ability, physiology, and toxicity of silver in fish: implications for water quality
criteria. Environ. Toxicol. Chem. 17 (4), 547e561.

Hornby, D.D., 2017. RivEX. Available from:, Version 10.25. http://www.rivex.co.uk.
Hudson-Edwards, K.A., Macklin, M., Brewer, P., Dennis, I., 2008. Assessment of metal

mining-contaminated river sediments in England and Wales. Science Report
SC030136/SR4. Environment Agency, Bristol, U.K. https://assets.publishing.
service.gov.uk/government/uploads/system/uploads/attachment_data/file/
291646/scho1108bozd-e-e.pdf.

Hyv€arinen, H., Tyni, P., Nieminen, P., 2003. Effects of moult, age, and sex on the
accumulation of heavy metals in the otter (Lutra lutra) in Finland. Bull. Environ.
Contam. Toxicol. 70 (2), 278e284.

Ji, Z., Hamrick, J.H., Pagenkopf, J., 2002. Sediment and metals modeling in shallow
river. J. Environ. Eng. 128 (2), 105e119.

Jobling, S., Williams, R., Johnson, A., Taylor, A., Gross-Sorokin, M., Nolan, M.,
Tyler, C.R., van Aerle, R., Santos, E., Brighty, G., 2006. Predicted exposures to
steroid estrogens in U.K. rivers correlate with widespread sexual disruption in
wild fish populations. Environ. Health Perspect. Suppl. 1, 32e39.

John, D.A., Leventhal, J.S., 1995. Bioavailability of metals. In: du Bray, E.A. (Ed.),
Preliminary Compilation of Descriptive Geoenvironmental Mineral Deposit
Models. US Geological Survey, pp. 10e18.

Kannan, K., Agusa, T., Perrotta, E., Thomas, N.J., Tanabe, S., 2006. Comparison of trace
element concentrations in livers of diseased, emaciated and non-diseased
southern sea otters from the California coast. Chemosphere 65 (11), 2160e2167.

Kannan, K., Moon, H., Yun, S.H., Agusa, T., Thomas, N.J., Tanabe, S., 2008. Chlori-
nated, brominated, and perfluorinated compounds, polycyclic aromatic hy-
drocarbons and trace elements in livers of sea otters from California,
Washington, and Alaska (USA), and Kamchatka (Russia). J. Environ. Monit. 10
(4), 552e558.

Kean, E.F., Müller, C.T., Chadwick, E.A., 2011. Otter scent signals age, sex, and
reproductive status. Chem. Senses 36 (6), 555e564.

Kimbrough, D.E., Suffet, I., 1995. Off-site forensic determination of airborne
elemental emissions by multi-media analysis: a case study at two secondary
lead smelters. Environ. Sci. Technol. 29 (9), 2217e2221.

Koeman, J.H., Peeters, W., Koudstaal-Hol, C.H.M., Tjioe, P., De Goeij, J., 1973. Mer-
cury-selenium correlations in marine mammals. Nature 245 (5425), 385.

Kruuk, H., 1995. Wild Otters: Predation and Populations. Oxford University Press,
Oxford.

Kruuk, H., Conroy, J., Webb, A., 1997. Concentrations of mercury in otters (Lutra lutra
L.) in Scotland in relation to rainfall. Environ. Pollut. 96 (1), 13e18.

Kubota, R., Kunito, T., Tanabe, S., 2001. Arsenic accumulation in the liver tissue of
marine mammals. Environ. Pollut. 115 (2), 303e312.

Kuklina, I., Kouba, A., Buric, M., Horka, I., Duris, Z., Kozak, P., 2014. Accumulation of
heavy metals in crayfish and fish from selected Czech reservoirs. BioMed Res.
Int. https://doi.org/10.1155/2014/306103.

Lanszki, J., Orosz, E., Sug�ar, L., 2009. Metal levels in tissues of Eurasian otters (Lutra
lutra) from Hungary: variation with sex, age, condition and location. Chemo-
sphere 74 (5), 741e743.

https://doi.org/10.1016/j.envpol.2020.115280
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref1
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref1
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref1
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref4
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref4
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref4
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref4
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref5
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref5
http://refhub.elsevier.com/S0269-7491(20)35968-6/optJcyEIMVuxo
http://refhub.elsevier.com/S0269-7491(20)35968-6/optJcyEIMVuxo
http://refhub.elsevier.com/S0269-7491(20)35968-6/optJcyEIMVuxo
http://refhub.elsevier.com/S0269-7491(20)35968-6/optJcyEIMVuxo
https://doi.org/10.5285/0fbb2c90-5b54-427a-a083-55c022802a80
https://doi.org/10.5285/0fbb2c90-5b54-427a-a083-55c022802a80
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref7
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref7
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref7
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref7
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref8
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref8
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref8
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref8
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref8
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref8
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref10
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref10
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref10
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref10
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref11
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref11
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref11
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref12
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref12
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref12
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref12
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref13
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref13
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref13
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref13
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref14
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref14
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref14
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref14
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref14
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref15
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref15
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref15
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref15
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref16
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref16
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref16
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref16
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref17
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref17
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref17
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref17
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref18
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref18
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref18
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref19
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref19
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref19
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref19
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref20
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref20
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref20
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref20
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref20
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/302420/EAregions.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/302420/EAregions.pdf
https://data.gov.uk/dataset/b3df52da-3e27-4343-9ec3-e630a9cbb52c/consented-discharges-to-controlled-waters-with-conditions
https://data.gov.uk/dataset/b3df52da-3e27-4343-9ec3-e630a9cbb52c/consented-discharges-to-controlled-waters-with-conditions
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref27
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref27
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref27
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref28
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref28
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref29
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref29
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref29
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref29
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref30
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref30
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref30
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref30
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref31
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref31
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref31
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref31
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref32
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref32
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref32
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref32
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref33
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref33
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref33
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref33
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref33
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref33
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref33
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref34
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref34
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref34
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref34
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref35
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref35
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref35
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref35
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref37
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref37
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref37
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref37
http://www.rivex.co.uk
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/291646/scho1108bozd-e-e.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/291646/scho1108bozd-e-e.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/291646/scho1108bozd-e-e.pdf
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref40
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref40
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref40
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref40
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref40
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref41
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref41
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref41
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref42
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref42
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref42
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref42
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref42
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref43
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref43
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref43
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref43
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref45
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref45
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref45
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref45
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref46
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref46
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref46
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref46
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref46
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref46
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref47
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref47
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref47
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref48
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref48
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref48
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref48
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref49
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref49
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref50
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref50
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref51
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref51
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref51
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref52
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref52
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref52
https://doi.org/10.1155/2014/306103
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref54
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref54
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref54
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref54
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref54


A.-F. Brand et al. / Environmental Pollution 266 (2020) 115280 9
Lanszki, J., Bauer-Ha�az, �E.A., Sz�eles, G.L., Heltai, M., 2014. Diet and feeding habits of
the Eurasian otter (Lutra lutra): experiences from post mortem analysis. Mamm.
Stud. 40 (1), 1e12.

Lemarchand, C., Rosoux, R., Berny, P., 2010. Organochlorine pesticides, PCBs, heavy
metals and anticoagulant rodenticides in tissues of Eurasian otters (Lutra lutra)
from upper Loire River catchment (France). Chemosphere 80 (10), 1120e1124.

Lodenius, M., Skar�en, U., Hellstedt, P., Tulisalo, E., 2014. Mercury in various tissues of
three mustelid species and other trace metals in liver of European otter from
Eastern Finland. Environ. Monit. Assess. Assessment186 (1), 325e333.

Luoma, S.N., Rainbow, P.S., 2005. Why is metal bioaccumulation so variable? Bio-
dynamics as a unifying concept. ES T (Environ. Sci. Technol.) (7), 1921e1931.

Ma, W., 1989. Effect of soil pollution with metallic lead pellets on lead bio-
accumulation and organ/body weight alterations in small mammals. Arch.
Environ. Contam. Toxicol. (4), 617e622.

Ma, W., Denneman, W., Faber, J., 1991. Hazardous exposure of ground-living small
mammals to cadmium and lead in contaminated terrestrial ecosystems. Arch.
Environ. Contam. Toxicol. (2), 266e270.

Maggs, R., Moorcroft, S., 2000. A Review of Arsenic in Ambient Air in the UK.
Prepared for the Department of Environment, Transport and the Regions,
Scottish Executive SSE/AQ/1465, The National Assembly of Wales. https://uk-air.
defra.gov.uk/assets/documents/reports/empire/arsenic00/arsenic_97v.pdf.

Mason, C.F., Last, N.I., Macdonald, S.M., 1986. Mercury, cadmium, and lead in British
otters. Bull. Environ. Contam. Toxicol. 37 (6).

Mayack, D.T., 2012. Hepatic mercury, cadmium, and lead in mink and otter from
New York State: monitoring environmental contamination. Environ. Monit.
Assess. 184 (4), 2497e2516.

McGeer, J.C., Szebedinszky, C., McDonald, D.G., Wood, C.M., 2002. The role of dis-
solved organic carbon in moderating the bioavailability and toxicity of Cu to
rainbow trout during chronic waterborne exposure. Comp. Biochem. Physiol. C
Toxicol. Pharmacol. 133 (1e2), 147e160.

Meyer, M., Evers, D., Daulton, T., Braselton, W., 1995. Common loons (Gavia immer)
nesting on low pH lakes in northern Wisconsin have elevated blood mercury
content. Water, Air, Soil Pollut. 80 (1e4), 871e880.

Mierle, G., Addison, E.M., MacDonald, K.S., Joachim, D.G., 2000. Mercury levels in
tissues of otters from Ontario, Canada: variation with age, sex, and location.
Environ. Toxicol. Chem. 19 (12), 3044e3051.

Miranda, R., Copp, G.H., Williams, J., Beyer, K., Gozlan, R.E., 2008. Do Eurasian otters
Lutra lutra (L.) in the Somerset Levels prey preferentially on non-native fish
species? Fundament. Appl. Limnol. Arch. für Hydrobiol. 172 (4), 339e347.

Moore, R., Morris, D., Flavin, R., 1994. Sub-set of UK Digital 1: 50,000 Scale River
Centre-Line Network. NERC, Institute of Hydrology, Wallingford.

Moorhouse-Gann, R.J., Kean, E.F., Parry, G., Valladares, S., Chadwick, E.A., 2020.
Dietary complexity and hidden costs of prey switching in a generalist top
predator. Ecol. Evol. 1e14.

Natural Resources Wales, 2018. Consented discharges to controlled waters with
conditions. https://lle.gov.wales/catalogue/item/ConsentedDischargesTo
ControlledWatersWithConditions/?lang¼en.

Nordberg, G.F., Fowler, B.A., Nordberg, M., 2014. Handbook on the Toxicology of
Metals, fourth ed. Academic press, Cambridge, Massachusetts.

Palmisano, F., Cardellicchio, N., Zambonin, P., 1995. Speciation of mercury in dolphin
liver: a two-stage mechanism for the demethylation accumulation process and
role of selenium. Mar. Environ. Res. 40 (2), 109e121.

Pankakoski, E., Hyv€arinen, H., Jalkanen, M., Koivisto, I., 1993. Accumulation of heavy
metals in the mole in Finland. Environ. Pollut. 80 (1), 9e16.

Peig, J., Green, A.J., 2009. New perspectives for estimating body condition from
mass/length data: the scaled mass index as an alternative method. Oikos 118
(12), 1883e1891.

Peterson, H.G., Healey, F.P., Wagemann, R., 1984. Metal toxicity to algae: a highly pH
dependent phenomenon. Can. J. Fish. Aquat. Sci. 41 (6), 974e979.

Pountney, A., Filby, A.L., Thomas, G.O., Simpson, V.R., Chadwick, E.A., Stevens, J.R.,
Tyler, C.R., 2015. High liver content of polybrominated diphenyl ether (PBDE) in
otters (Lutra lutra) from England and Wales. Chemosphere 118, 81e86.

Puls, R., 1994. Mineral Levels in Animal Health: Diagnostic Data. In: Sherpa Inter-
national: Clearbrook, BC, second ed. Canada.

Quadros, M.E., Marr, L.C., 2011. Silver nanoparticles and total aerosols emitted by
nanotechnology-related consumer spray products. Environ. Sci. Technol. 45
(24), 10713e10719.

R Core Team, 2016. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.
org/.

Reidy, B., Haase, A., Luch, A., Dawson, K., Lynch, I., 2013. Mechanisms of silver
nanoparticle release, transformation and toxicity: a critical review of current
knowledge and recommendations for future studies and applications. Materials
6 (6), 2295e2350.

Robinson, B.H., 2009. E-waste: an assessment of global production and environ-
mental impacts. Sci. Total Environ. 408 (2), 183e191.

Saha, U., Taniguchi, S., Sakurai, K., 2002. Simultaneous adsorption of cadmium, zinc,
and lead on hydroxyaluminum-and hydroxyaluminosilicate-montmorillonite
complexes. SSSA (Soil Sci. Soc. Am.) J. (1), 117e128.

Scheuhammer, A., Blancher, P., 1994. Potential risk to common loons (Gavia immer)
from methylmercury exposure in acidified lakes. Hydrobiologia 279 (1),
445e455.
Schwarzenbach, R.P., Escher, B.I., Fenner, K., Hofstetter, T.B., Johnson, C.A., von
Gunten, U., Wehrli, B., 2006. The challenge of micropollutants in aquatic sys-
tems. Science 313 (5790), 1072e1077. https://doi.org/10.1126/science.1127291.

Sherrard-Smith, E., Cable, J., Chadwick, E.A., 2009. Distribution of eurasian otter
biliary parasites, Pseudamphistomum truncatum and Metorchis albidus (family
opisthorchiidae), in England and Wales. Parasitology 136 (9), 1015e1022.

Sherrard-Smith, E., Chadwick, E.A., 2010. Age structure of the otter (Lutra lutra)
population in England and Wales, and problems with cementum ageing. IUCN
Otter Spec. Group Bull. 27 (1), 42e49.

Shore, R.F., Rattner, B.A., 2001. Ecotoxicology of Wild Mammals. John Wiley & Sons,
London, U.K.

Shore, R.F., Douben, P.E., 1994a. Predicting ecotoxicological impacts of environ-
mental contaminants on terrestrial small mammals. In: Ware, G.W. (Ed.), Re-
views of Environmental Contamination and Toxicology. Springer, New York, NY,
pp. 49e89.

Shore, R.F., Douben, P.E., 1994b. The ecotoxicological significance of cadmium intake
and residues in terrestrial small mammals. Ecotoxicol. Environ. Saf. 29 (1),
101e112.

Shore, R.F., 1995. Predicting cadmium, lead and fluoride levels in small mammals
from soil residues and by species-species extrapolation. Environ. Pollut. 88 (3),
333e340.

Shore, R.F., Pereira, M.G., Walker, L.A., Thompson, D.R., 2011. Mercury in non-marine
birds and mammals. In: N Beyer, W., Meador, J.P. (Eds.), Environmental Con-
taminants in Biota: Interpreting Tissue Concentrations, second ed. CRC Press,
Boca Raton, FL, pp. 609e624.

Sidorovich, V., 2000. Distribution and population density of the Otter (Lutra lutra)
and pollution of aquatic ecosystems in Belarus. In: Conroy, J.W.H., Yoxon, P.,
Gutleb, A.C. (Eds.), Proceedings of the First Otter Toxicology Conference, Isle of
Skye, pp. 83e93.

Simpson, V.R., 2000. Post mortem protocol for otters. In: Conroy, J.W.H., Yoxon, P.,
Gutleb, A.C. (Eds.), Proceedings of the First Otter Toxicology Conference,
pp. 159e164. Isle of Skye.

Sleeman, J.M., Cristol, D.A., White, A.E., Evers, D.C., Gerhold, R., Keel, M.K., 2010.
Mercury poisoning in a free-living northern river otter (Lontra canadensis).
J. Wildl. Dis. 46 (3), 1035e1039.

Smith, K.S., 1999. Metal sorption on mineral surfaces: an overview with examples
relating to mineral deposits. Environ. Geochem. Miner. Depos. Part B: Case Stud.
Res. Top. 6, 161e182.

Suarez-Serrano, A., Alcaraz, C., Ibanez, C., Trobajo, R., Barata, C., 2010. Procambarus
clarkii as a bioindicator of heavy metal pollution sources in the lower Ebro River
and Delta. EES (Ecotoxicol. Environ. Saf.) (3), 280e286.

Sung, J.H., Ji, J.H., Yoon, J.U., Kim, D.S., Song, M.Y., Jeong, J., Han, B.S., Han, J.H.,
Chung, Y.H., Kim, J., 2008. Lung function changes in Sprague-Dawley rats after
prolonged inhalation exposure to silver nanoparticles. Inhal. Toxicol. 20 (6),
567e574.

Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K., Sutton, D.J., 2012. Heavy metal toxicity
and the environment. In: Luch, A. (Ed.), Molecular, Clinical and Environmental
Toxicology. Springer, Basel, pp. 133e164. https://doi.org/10.1007/978-3-7643-
8340-4_6.

Tipping, E., 1994. WHAMCda chemical equilibrium model and computer code for
waters, sediments, and soils incorporating a discrete site/electrostatic model of
ion-binding by humic substances. Comput. Geosci. 20 (6), 973e1023.

Voets, J., Bervoets, L., Blust, R., 2004. Cadmium bioavailability and accumulation in
the presence of humic acid to the zebra mussel, Dreissena polymorpha. Environ.
Sci. Technol. 38 (4), 1003e1008.

Wang, W., Rainbow, P.S., 2008. Comparative approaches to understand metal bio-
accumulation in aquatic animals. Comp. Biochem. Physiol. C Toxicol. Pharmacol.
148 (4), 315e323.

Wei, L., Lu, J., Xu, H., Patel, A., Chen, Z., Chen, G., 2015. Silver nanoparticles: syn-
thesis, properties, and therapeutic applications. Drug Discov. Today 20 (5),
595e601.

Wienburg, C.L., Shore, R.F., 2004. Factors influencing liver PCB concentrations in
sparrowhawks (Accipiter nisus), kestrels (Falco tinnunculus) and herons (Ardea
cinerea) in Britain. Environ. Pollut. 132 (1), 41e50.

Winter, A.R., Nichols, J.W., Playle, R.C., 2005. Influence of acidic to basic water pH
and natural organic matter on aluminum accumulation by gills of rainbow trout
(Oncorhynchus mykiss). Can. J. Fish. Aquat. Sci. 62 (10), 2303e2311.

Winterdahl, M., Bishop, K., Erlandsson, M., 2014. Acidification, dissolved organic
carbon (DOC) and climate change. In: Freedman, B. (Ed.), Global Environmental
Change. Handbook of Global Environmental Pollution. Springer, Dordrecht,
pp. 281e287.

Wren, C., Fischer, K., Stokes, P., 1988. Levels of lead, cadmium and other elements in
mink and otter from Ontario, Canada. Environ. Pollut. 52 (3), 193e202.

Wren, C., Stephenson, G., 1991. The effect of acidification on the accumulation and
toxicity of metals to freshwater invertebrates. Environ. Pollut. 71 (2e4),
205e241.

Zarogiannis, P., 2005. Environmental Risk Reduction Strategy and Analysis of Ad-
vantages and Drawbacks for Hexavalent Chromium. RPA report. Under
Framework Contract: CPEC 24. UK. http://www.defra.gov.uk/environment/
chemicals/pdf/hexavalent060203.pdf.

Zhou, H., Wong, M., 2000. Mercury accumulation in freshwater fish with emphasis
on the dietary influence. Water Res. 34 (17), 4234e4242.

http://refhub.elsevier.com/S0269-7491(20)35968-6/sref55
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref55
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref55
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref55
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref55
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref55
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref55
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref56
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref56
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref56
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref56
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref57
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref57
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref57
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref57
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref57
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref58
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref58
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref58
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref59
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref59
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref59
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref59
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref60
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref60
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref60
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref60
https://uk-air.defra.gov.uk/assets/documents/reports/empire/arsenic00/arsenic_97v.pdf
https://uk-air.defra.gov.uk/assets/documents/reports/empire/arsenic00/arsenic_97v.pdf
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref62
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref62
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref63
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref63
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref63
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref63
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref64
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref64
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref64
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref64
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref64
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref64
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref66
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref66
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref66
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref66
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref66
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref67
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref67
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref67
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref67
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref68
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref68
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref68
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref68
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref69
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref69
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref70
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref70
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref70
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref70
https://lle.gov.wales/catalogue/item/ConsentedDischargesToControlledWatersWithConditions/?lang=en
https://lle.gov.wales/catalogue/item/ConsentedDischargesToControlledWatersWithConditions/?lang=en
https://lle.gov.wales/catalogue/item/ConsentedDischargesToControlledWatersWithConditions/?lang=en
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref74
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref74
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref77
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref77
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref77
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref77
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref78
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref78
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref78
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref78
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref79
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref79
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref79
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref79
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref80
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref80
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref80
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref81
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref81
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref81
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref81
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref82
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref82
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref83
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref83
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref83
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref83
https://www.R-project.org/
https://www.R-project.org/
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref86
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref86
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref86
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref86
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref86
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref87
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref87
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref87
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref88
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref88
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref88
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref88
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref89
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref89
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref89
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref89
https://doi.org/10.1126/science.1127291
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref91
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref91
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref91
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref91
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref92
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref92
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref92
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref92
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref93
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref93
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref93
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref94
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref94
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref94
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref94
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref94
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref95
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref95
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref95
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref95
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref96
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref96
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref96
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref96
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref97
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref97
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref97
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref97
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref97
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref98
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref98
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref98
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref98
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref98
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref99
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref99
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref99
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref99
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref100
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref100
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref100
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref100
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref101
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref101
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref101
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref101
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref102
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref102
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref102
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref102
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref103
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref103
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref103
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref103
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref103
https://doi.org/10.1007/978-3-7643-8340-4_6
https://doi.org/10.1007/978-3-7643-8340-4_6
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref105
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref105
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref105
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref105
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref105
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref106
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref106
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref106
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref106
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref109
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref109
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref109
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref109
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref110
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref110
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref110
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref110
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref111
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref111
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref111
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref111
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref112
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref112
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref112
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref112
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref113
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref113
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref113
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref113
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref113
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref114
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref114
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref114
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref115
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref115
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref115
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref115
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref115
http://www.defra.gov.uk/environment/chemicals/pdf/hexavalent060203.pdf
http://www.defra.gov.uk/environment/chemicals/pdf/hexavalent060203.pdf
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref116
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref116
http://refhub.elsevier.com/S0269-7491(20)35968-6/sref116

	Biological and anthropogenic predictors of metal concentration in the Eurasian otter, a sentinel of freshwater ecosystems
	1. Introduction
	2. Materials and methods
	2.1. Otter collection and post mortem examination
	2.2. Sample preparation & analysis
	2.3. Sources of spatial data
	2.4. Statistical analysis

	3. Results and discussion
	4. Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A. Supplementary data
	References


