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Abstract  

Understanding and quantifying the processes and geochemical cycles associated with 

catchment erosion, the development of soils and weathering horizons, and terrestrial 

habitat change beyond the scales of modern observations remain challenging. Such 

research, however, has become increasingly important to help predict future landscape 

change in light of increasing land use and rapid global warming. We herein review 

organic and inorganic geochemical tools applied to depositional archives to better 

understand various aspects of landscape evolution on geological time scales. We 

highlight the potentials and limitations of inorganic geochemical analytical methods, 

such as major element geochemistry, metal and radiogenic isotopes, and in-situ 

cosmogenic nuclides, as qualitative, semi-quantitative, and quantitative proxies for the 

transformation of bedrock material via regolith and soils to sediments. We also show 

how stable isotope geochemistry applied to lacustrine endogenic carbonates can be used 

to infer rock-water interactions, vegetation change, and soil development in limestone-

rich catchments. Proxies focusing on the silicilastic element of sediment formation, 

transport and deposition are also ideally combined with organic geochemical proxies for 

vegetation change and soil organic matter evolution in a catchment to gain a 

comprehensive picture of the Critical Zone’s evolution over time. Multi-proxy and 

multidisciplinary research combining organic and inorganic geochemical techniques 

from several sedimentary archives in the same catchment have high potential to provide 

comprehensive information on Quaternary landscape evolution and thus improve the 

robustness of associated forecasting models.  

Keywords  

Quaternary landscape evolution, catchment erosion, terrestrial habitat change, land use, 

fluvial, lacustrine, inorganic geochemistry, organic geochemistry, radiogenic isotopes, 

metal isotopes, uranium isotopes, cosmogenic nuclides 
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Highlights 

1. Introduction 

Geochemical and physical processes forming and modifying the landscape by 

weathering and erosion play an essential role in controlling atmospheric greenhouse gas 

concentrations on geological time scales (e.g. Berner 1994). Silicate weathering and 

carbonate deposition controls the fixation of atmospheric CO2 in marine sediments (e.g. 

Gaillardet et al. 1999; Kump et al. 2000). Large tropical and boreal forests as well as 

permafrost landscapes play a crucial role in biologic greenhouse gas drawdown from the 

atmosphere. Simultaneously, landscape evolution depends strongly on climate, 

vegetation, tectonic uplift, and, since the expansion of human settlements and 

technological advancements, on land use (e.g. Cogez et al. 2015; Marston 2010; 

Dotterweich 2008). In the light of anthropogenic climate warming and increasing land 

use, soils, one of our most important but finite resources, are expected to experience 

considerable modifications in the near future. Up to 65% of ice-free areas are predicted 

to be directly affected by climate change, which increases to 80% when the impact of 

human land use is considered (Ostberg et al. 2018). Deforestation of large forest areas 

(boreal and tropical) and subsequent accelerated erosion, but also thawing of 

permafrost landscapes, are frequently an irreversible loss of (biogenic) atmospheric CO2 

sinks. The destruction of such landscapes has consequently been identified as a climate 

tipping point, i.e. a process that can lead to irreversible warming of the climate system 

(Lenton et al. 2019). 

Studying Quaternary landscapes and (geochemical) processes in the Earth’s Critical 

Zone, (i.e. the near-surface environment, where interactions between rock, soil, air, 

water, and biota determine the availability of nearly every life-sustaining resource, 

National Research Council 2001), can help us better understand landscape responses to 

climate forcing and land use on centennial to millennial time scales where modern 

observations are not possible. Only geological archives can provide records of long-term 

trends and/or tipping points of the landscape response and Critical Zone evolution to 

climate or anthropogenic forcing. Crossing tipping points in landscape evolution can 

have significant implications for the preservation of soil resources across the globe. This 

is probably best illustrated by findings from the Balkan Peninsula, where two studies on 

lake sediment cores have demonstrated that natural and anthropogenic vegetation 
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changes have controlled threshold-like responses in catchment-wide erosion processes, 

leaving their trace in the landscape for several millennia (Francke et al. 2019; Rothacker 

et al. 2018). The study of Quaternary archives has also shown that it may take millennia 

for landscapes to recover from major modifications (e.g. Holtvoeth et al. 2017), and that 

anthropogenic changes can make the Critical Zone more sensitive to climate oscillations 

(Regattieri et al. 2019). Evidence for extensive land use for over two millennia is 

widespread in Europe, and in particular in the Mediterranean region (Dotterweich 

2008). Understanding underlying geochemical cycles and processes is thus crucial for 

the mitigation of, and adaption to, threshold-like modifications of the Critical Zone. This 

also applies to parts of the world where substantial human impact could be of shorter 

duration but higher severity due to technical advancements since the advent of 

agriculture practises (Dotterweich 2013).  

Quantitative modern measurements and modelling of sediment mobilisation and 

storage are of high importance for understanding soil erosion (see for example the 

special issue summarised in Panagos and Katsoyiannis 2019). Measurements of present 

day erosion rates provide spatially and temporally highly-resolved data but do not 

provide insights into the Critical Zone’s evolution under unprecedented climate 

conditions, such rapid climate warming of >2°C as predicted for the near future (IPCC 

2014). The amplitude of the landscape’s response to such dramatic modifications can 

only be approximated in geological archives spanning glacial-interglacial transitions 

(e.g. termination 1 – Last Glacial to Holocene transition; termination 2), and by applying 

suitable geochemical methods, such as those reviewed herein. Research into the 

landscape’s response to peak warm climate conditions (i.e. similar to those predicted for 

the next century) is also required. This can be achieved by focusing on past periods with 

climate conditions similar to the predicted climate conditions, such as MIS5e (marine 

isotope stage 5e, Eemian), MIS11c and MIS19 (Yin and Berger 2015). Research on 

Quaternary landscape evolution is thus essential to accurately predict the terrestrial 

response to a changing future climate, and provide crucial data for the implementation 

of local, regional, and global (such as IPCC, Intergovernmental Panel on Climate Change) 

landscape management plans.  

Research on Quaternary landscape and Critical Zone evolution usually focuses on 

depositional archives, such as colluvial deposits, alluvial fans, river (fluvial) sediments, 

and lacustrine archives, and aims to provide insights into hillslope erosion, land-use 

impact, and climate change (Dotterweich 2013). Lithological analyses and chronological 
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work is applied to detect the timing and characteristics of agricultural activity-induced 

hillslope erosion causing the deposition of colluvium at the footsteps of slopes, enhanced 

riverbed activity, sediment load transportation, and total sediment flux in a given 

catchment (e.g. Dotterweich 2008, 2013; Dreibrodt et al. 2010; James 2013). With the 

advent of novel (bio-)geochemical analytical methods and tools, research on Quaternary 

landscape evolution now focuses on more quantitative approaches in estimating 

catchment-wide erosion rates, and on the understanding of (bio-)geochemical cycles 

and terrestrial habitat change controlled by climate parameters (temperature, amount 

and seasonality of rainfall) and land use.  

Here, we review a variety of new tools to decipher Quaternary landscape and Critical 

Zone evolution from detrital and non-detrital sedimentary archives using geochemical 

and biogeochemical methods, and discuss the potential and limitations of these 

methods. The techniques presented encompass high-resolution geochemical 

characterisation of continuous to semi-continuous sedimentary archives, using X-ray 

fluorescence (XRF) core scanning, non-metal (O, C, N) and metal (U, Hf, Nd, Pb) isotope 

geochemistry, cosmogenic nuclides, and lipid biomarker analysis, (Fig. 1, Table 1). The 

review is intended to assist the reader in selecting the appropriate analytical methods 

for studying landscape evolution on geological time scales. This is achieved by providing 

a comprehensive overview of the potential and limitations of geochemical methods in 

Quaternary research. The selection of the appropriate analytical method depends not 

only on the type of the depositional archive (e.g. fluvial, lacustrine) at the study site (Fig. 

1, Table 2), but also on the characteristics of the sedimentary archive (such as grain size, 

mineralogy, sediment composition) and of the catchment (such as bedrock geology, 

topology).  

 

Fig. 1: Depositional archives and analytical techniques discussed in this review.  

2. Sediment chronology and accumulation 

The simplest methods to evaluate hillslope erosion in a catchment are qualitative, semi-

quantitative, and quantitative assessments on the timing and amount of detrital matter 

deposition in colluvial, alluvial fans, fluvial and lacustrine deposits (Fig. 1). Colluvial 

sediments being deposited at foothills of slopes with open vegetation and bare soils 

(Dreibrodt et al. 2010), alluvial fan deposits as product of gullying evolving upslope 

(Valentin et al. 2005), and modern and palaeo-fluvial sediments can provide insights 
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into detrital matter mobility (erosion and river activity) in a given catchment by 

combining detailed structural and textural investigations with precise chronological 

work. Chronological information can be inferred from radiocarbon dating (of charcoal, 

plant remains, pottery artefacts), luminescence dating (of buried medium-sized 

sediment grains), or archaeological age estimation (Dreibrodt et al. 2010). In particular, 

colluvial and fluvial deposits benefit from the direct proximity to, and connectivity with, 

hillslopes and provide a high spatial resolution. However, such records are frequently 

discontinuous temporally, and occasionally destroyed by ploughing (Dreibrodt et al. 

2010). The quality of information on hillslope erosion, as determined from riverbed 

activity and sediment flux estimates derived from dating of fluvial deposits, depends 

strongly on site-specific factors, i.e. the connectivity of the landscape and complexity of 

catchment morphology (Baartman et al. 2013). The same limitations apply for estimates 

of catchment erosion as derived from detrital matter sediment yields (in t/km2/yr) to a 

lacustrine basin. Lake sediments, however, benefit from the more continuous, 

temporally-highly-resolved information provided. For lake basins, the detrital matter 

sediment yield is difficult to assess since lacustrine sediments are typically composed of 

a complex mixture of authigenic (such as organic matter or carbonate minerals) and 

allogenic (detrital matter) components. Zolitschka (1998) modelled total sediment yield 

using chronological, physical, and (bio-)geochemical proxy analyses to account for non-

detrital matter in bulk lacustrine sediment compositions. Firstly, a robust chronology is 

used to calculate sedimentation rates over time (cm/yr). Physical (density in g/cm3) and 

geochemical analyses (such as inorganic and organic carbon contents, biogenic silica 

contents) of the sediment then allow total sediment accumulation rates to be estimated, 

as well as individual accumulation rates for organic matter, authigenic/endogenic calcite 

and biogenic diatoms (mainly diatoms frustules and sponge needles). The detrital 

matter accumulation rate is then derived from subtracting modelled accumulation rates 

for non-detrital matter from the total sediment accumulation rate (Zolitschka 1998). 

Finally, the total sediment yield to the lake can be calculated by normalizing the detrital 

matter accumulation rate to the catchment size. Estimated sediment yields can be biased 

by direct aeolian deposition in the lake (resulting in over-estimation), loss of fine-

grained detrital matter via outflowing streams (under-estimation), shoreline erosion 

and mobilisation of lacustrine material by wave action (over-estimation), trapping of 

coarser material in delta systems (under-estimation), and sediment redistribution in the 

lake by wind-induced currents and contourite drift (e.g. Martin-Puertas et al. 2012; 
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Zolitschka 1998; Wennrich et al. 2013; Vogel et al. 2010b). Incomplete supply of detrital 

matter to the lake and loss of material through outflowing streams can be estimated 

semi-quantitatively but can vary significantly in different landscapes and over time. 

Further uncertainties on derived sediment accumulation rates depend on the accuracy 

of the age-depth relationship in the archive. The chronology of Zolitschka (1998) was 

based on varve counting, i.e. the number of annually deposited layers in the lake. Varved 

layers, however, are not available in all sedimentary archives. Age-tie points, for 

example as derived from tephrochronology and/or radiocarbon dating at low resolution 

(e.g. Vogel et al. 2010c), might introduce uncertainties to modelled accumulation rates if 

distributed unevenly across the analysed sequence. This issue can partly be addressed 

by considering the sediment’s lithological features and by using a robust, Bayesian age-

depth modelling approach (Blaauw et al. 2018). Alternatively, geochemical techniques 

can be used to infer catchment erosion rates, as these techniques do not rely on the 

amount of material deposited in the basin.  

3. Inorganic geochemical proxies for catchment erosion, 

weathering, and terrestrial habitat change 

3.1 Element geochemistry as a proxy for erosion and weathering 

The advent of X-ray fluorescence (XRF) core scanning techniques over the past decades 

has made it increasingly fast and efficient to obtain continuous, highly-resolved records 

of elemental intensities (measured as counts integrated over exposer time of analyses) 

from sedimentary successions (e.g. Croudace et al. 2006; Croudace et al. 2019a). 

Elements associated with minerogenic matter (traditionally Al, Si, K, Ti, Fe, Rb, Zr) can 

be used qualitatively to semi-quantitatively for estimating detrital matter abundances in 

sedimentary sequences, which is a measure for the amount of detrital material delivered 

to a sedimentary basin (Davies et al. 2015). The amount of sediment delivered to a lake 

basin is then often used as qualitative proxy for catchment erosion (e.g. Wennrich et al. 

2014; Davies et al. 2015; Francke et al. 2016). Such interpretations can however be 

biased by mutual dilution with other sedimentary matter deposited at the coring site. 

Low intensities in siliciclastic-related elements can then for example be controlled by 

the deposition of more authigenic matter at the coring location, often misleadingly 

interpreted as less detrital matter supply to the lake and less erosion in the catchment. 

High-resolution, qualitative to semi-quantitative variability in XRF elemental intensities 
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is thus ideally supported by quantitative information about the amount of detrital 

matter in the sediments, which can be modelled (usually at lower resolution) as outlined 

in section 2. Where quantitative estimates of detrital sediment deposition at the coring 

site are not available (for example where chronological data are not robust, cf. section 

2), the interpretation of elemental intensities as proxy for detrital sediment 

accumulation is often (qualitatively) evaluated in the light of authigenic matter 

concentrations and sedimentation rates as inferred from the age-depth model. For 

example, decreasing K intensities in the sediments of Lake Ohrid (North Macedonia, 

Albania) during the Early Holocene, are not indicative of decreasing detrital matter 

supply and reduced catchment erosion (Fig. 2, Francke et al. 2019). Instead, increasing 

TOC contents (total organic carbon as proxy for the amount of organic matter) and low 

and steady sedimentation rates imply that decreasing Early Holocene K intensities are 

rather driven by mutual dilution. Low K intensities during the Mid-Holocene are 

balanced by moderate TOC and very high TIC (total inorganic carbon as proxy for the 

amount of endogenic calcite), whilst sedimentation rates are similar to those of the Early 

Holocene. This might imply that detrital sediment supply to the coring site was 

decreasing during the Mid-Holocene compared to the Early Holocene (Francke et al. 

2019).  

 

Fig. 2: Late Glacial to Holocene (bio-)geochemical proxy data from the sediments of Lake 

Ohrid (North Macedonia, Albania). Relative variability in TIC (total inorganic carbon as 

proxy for endogenic calcite), TOC (total organic carbon as proxy for organic matter), K 

intensities (as proxy for the amount of detrital matter) and sedimentation rates (as 

inferred from an age-depth model based on tephrochronology) can be used to semi-

quantitatively infer the amount of detrital matter supplied to the lake. Detrital matter 

supply to a lake can be used as proxy for catchment erosion but is ideally supported by 

quantitative data, which can be modelled as outlined in section 2. Ti/K and the carbon 

isotope composition of organic matter (δ13Corg) are used as proxies for soil development in 

the catchment (section 3.1 and 3.2). Decreasing soil development during the Late Holocene 

is a result of increasing human land use and soil degradation. All data from Francke et al. 

(2019). Carbon isotope analyses was previously conducted at lower resolution by 

Zanchetta et al. (2018), who also provide proxy interpretation. 
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Information about the degree of chemical weathering in detrital matter as a measure for 

soil development in the catchment is usually inferred by normalizing chemically mobile 

(K, Sr, Ca) to more immobile elements (Ti, Al, Si, Rb, Zr) (Brown 2011; Unkel et al. 2010; 

Vogel et al. 2015). Ti/K ratios have for example successfully been used as proxy for soil 

development in the catchment of Lake Ohrid during the Late Glacial to Holocene (Fig. 2, 

Francke et al. 2019). Decreasing Ti/K ratios in response to Early to Mid-Holocene 

warming have been interpreted as increasing K mobilisation by chemical weathering in 

the catchment. The aqueous K is then taken up in the interlayer spaces of phyllosilicates, 

in interstitial sites of calcite, and adsorbs to clay surfaces and organic matter . Other 

elemental ratios, such as Rb/Sr, Rb/inc (incoherent scatter), Sr/inc, Zr/Fe, Fe/Si, Fe/Ti 

have been used as indicators for variations in the particle size diameter in a sediment 

core. These variations can provide crucial insights into erosion, sediment transport 

energy, and incision rates in rivers and creeks draining into the lake (Van Daele et al. 

2014; Marshall et al. 2011). Extensive analysis of catchment and surface sediment at 

Lake Towuti have for example revealed that the sediment’s Al/Mg ratios in the northern 

part of the basin are closely related to the kaolinite-to-serpentine ratio. This ratio is 

controlled by tectonic activity and mass wasting, river incision into the un-weathered, 

kaolinite-poor, ultramafic bedrock, and grain size (Hasberg et al. 2019; Morlock et al. 

2018; Vogel et al. 2015). On geologically short time scales, Al/Mg is then used as proxy 

for hydrological changes since it responds sensitively to river incision in the catchment 

and grain size at the drill site, the latter being a measure for shoreline distance and lake 

level (Morlock et al. 2018; Vogel et al. 2015).  

Information about landscape evolution as inferred from elemental intensities and ratios 

might be biased by a poor connectivity of the catchment (connectivity between hillslope, 

fluvial system and lake basin), sediment redistribution by lake-internal currents, and the 

additional deposition of aeolian material as discussed previously (section 2). 

Interpretations from elemental intensities and ratios need to be evaluated additionally 

in the light of site-specific settings including bedrock geology and grain size, since 

changes in sediment source and grain size sorting might impact the geochemical 

composition of detrital sediments (Kylander et al. 2011; Davies et al. 2015). For 

example, Ti/K ratios have been used as proxy for the intensity of chemical weathering at 

lakes Ohrid (North Macedonia, Albania, cf. Fig. 2) and Bourget (France) (Francke et al. 

2019; Arnaud et al. 2012), but as an indicator for grain size variability at Lake Tana 

(Marshall et al. 2011). The site-specific characteristics might even vary between cores 
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from the same basin if detrital matter is supplied from areas of different bedrock 

geologies in the same catchment. Interpretations are thus ideally supported by 

additional proxy analyses and statistical analyses, conducted on a robust set of 

subsamples from the depositional archive and the source material (weathering horizons 

and bedrock in the catchment). Additional proxy analyses of depositional archives 

usually encompass particle size, mineralogical, and/or traditional XRF analyses, whilst 

catchment samples are analysed for their geochemical and mineralogical properties.  

Care has to be taken when interpreting data for elements such as Si, Ca and Sr that occur 

in both detrital and non-detrital matter. High Si intensities, in particular if normalized to 

Ti, have been used as indicator for the amount of diatom frustules and/or sponge 

needles in sediments (Wennrich et al. 2014), whilst other authors used it as a proxy for 

detrital matter flux or grain size (e.g. Cuven et al. 2010; Vogel et al. 2015). Similarly, Ca 

and Sr intensities are frequently used as indicators for the amount of calcium carbonate 

in the sediments (e.g. Vogel et al. 2010a), since Sr has a high affinity to replace Ca in 

crystal lattices (De Choudens-Sanchez and Gonzalez 2009). At sites with an insufficient 

supply of dissolved Ca2+ and HCO3− ions (where carbonate bedrock is scarce or absent), 

authigenic or endogenic calcium carbonates can be absent in sediments. In such cases, 

both Ca and Sr may originate from Ca-bearing feldspars, and consequently provide 

insights into the geochemical composition of detrital matter (e.g. Wennrich et al. 2014; 

Vogel et al. 2015).  

The occurrence of mm-scale, detrital laminae in the lithological record can be a useful 

tool to reconstruct past flood events if they are identified as an indicator of greater 

hydrodynamic energy of streams draining into the lake (Schillereff et al. 2014). 

Detecting flood layers in a depositional archive requires highly detailed 

sedimentological and grain size analyses for differentiation against (tectonic-induced) 

aerial or subaerial mass wasting and hemi-pelagic background sedimentation (Arnaud 

et al. 2016). Where flood-related deposition has been confirmed for a specific site, high-

resolution records of the frequency and intensity of floods can be established by means 

of µ-XRF scanning. µ-XRF scanning allows identification of flood layers either by 

highlighting distinct differences in geochemical composition compared to the 

hemipelagic background sedimentation, or by providing analyses of grain-size-sensitive 

elemental ratios, since flood layers are usually associated with coarser grain size 

distributions (Schillereff et al. 2014). The abundance of flood events is then directly 

related to the frequency of detected flood layers in the record. Flood intensity can be 
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inferred either by flood layer thickness or grain size distribution (Arnaud et al. 2016). 

Determining the particle size (directly or indirectly by µ-XRF scanning) is considered to 

be the more appropriate approach over measuring the thickness of discrete layers 

(Lapointe et al. 2012). As for the application of elemental ratios and intensities to 

hemipelagic sediments, the validity of the palaeoflood record depends strongly on a 

detailed understanding of lake internal sediment re-distribution processes (Schillereff et 

al. 2014; Arnaud et al. 2016). For instance, a comparison of two cores from different 

locations at Lake Allos (Mediterranean French Alps) has shown that hyperpycnal-

dominated sites have more complex flood sediment redistribution patterns, requiring 

the investigation of several cores (Wilhelm et al. 2015). Grain size variability has been 

proposed as the only suitable method for flood reconstructions at sites dominated by 

hyperpycnal flows (Wilhelm et al. 2015). Contrastingly, at the second site at Lake Allos, 

which is dominated by homopycnal flows, deposit thickness could be used as a palaeo-

flood indicator, and the analysis of one single core yielded sufficient results.  

 µ-XRF scanning on palaeoflood records can be applied to wet sediment cores or to 

resin-impregnated sediment blocks used for thin section preparation (Cuven et al. 

2010). XRF on resin-impregnated sediment blocks facilitate for matrix effects resulting 

from different water contents in wet core samples. The preparation of thin sections from 

sediment blocks sampled from a core includes freeze-drying and resin saturation under 

low vacuum, and is therefore relatively time consuming compared to µ-XRF scanning on 

fresh, wet sediment core surfaces. µ-XRF on resin-impregnated sediment blocks is 

consequently only useful if it can provide a significant improvement in data quality, or 

where sediments are poorly consolidated. Other approaches to overcome the problem of 

poorly consolidated sediments being difficult to analyse with a XRF core scanner, mainly 

in very young, historical sedimentary successions, includes the recently introduced 

iBox-FC containment vessel for µ-XRF scanning on freeze cores since it prevents thawing 

by up to two hours (Gregory et al. 2019).  

Additional confidence in the interpretation of elemental intensities and ratios can be 

gained by calibration methods and comparisons of XRF scanning data to conventional 

XRF analyses at lower resolution. Several calibration methods have been proposed in 

the literature, for example by accounting for the sediment’s water content (Boyle et al. 

2015). If a lower sample resolution (cm to dm resolution) has been identified as 

sufficient for a given sediment core, discrete, powdered samples can be analysed using 

an XRF core scanner. This minimizes matrix effects (water content, grain size, 
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mineralogy) while still making use of a higher cost- and time-efficiency compared to 

traditional bench top XRF analyses (Profe and Ohlendorf 2019). Univariate and 

multivariate log-ratio calibration methods have been proposed by Weltje and Tjallingii 

(2008) and Weltje et al. (2015). Multivariate log-ratio calibrations can provide 

“absolute” concentrations at a precision similar to those of traditional XRF analyses, but 

require the analyses of a robust calibration dataset by means of conventional XRF 

(Weltje et al. 2015). Absolute element concentrations as obtained from XRF scanning 

can be used for flux or mass-balance calculations at high resolution over time, which is 

of particular interest for comparisons between several sites (Weltje et al. 2015). The 

determination of absolute concentrations could even allow the calculation of traditional 

chemical alteration indices, such as the Chemical Index of Weathering (CIW), the 

Weathering Index (WI), the Weathering Potential Index (WPI), or the Chemical Index of 

Alteration (CIA, Price and Velbel 2003; Harnois 1988). These indices essentially 

measure the degree of depletion between mobile and immobile elements derived from 

molar mass concentrations of aluminium oxide (Al2O3), calcium oxide in silicates (CaO), 

sodium oxide (Na2O), and potassium oxide (K2O). The CIA, for example, is modelled as 

follows (Nesbitt and Young 1982). 

 

 CIA=[Al203/(Al203+CaO+Na20+K20)] x100    (1) 

 

Complications arise from difficulties in accounting for the contributions of detrital, 

endogenic, and/or authigenic Ca-bearing carbonates, mineral sorting during 

transportation, and post depositional addition of K due to processes such as illitisation 

(Goldberg and Humayun 2010). If analyse by core scanning technologies, the application 

of such indices is still limited since current XRF scanner are not able to detect Na. 

Elemental ratios are thus still the preferred approach for inferring the degree of 

chemical alteration in sediments (Arnaud et al. 2016). 

3.2 Bulk inorganic carbon isotopes for rock, soil and vegetation interactions 

During precipitation of (endogenic) inorganic materials, such as carbonates (e.g. calcite, 

aragonite) in epilimnetic waters or speleothem, the newly formed mineral captures the 

relative proportion of 12C and 13C isotopes present in the dissolved inorganic carbon 

pool (δ13CDIC). This makes endogenic inorganic materials a useful tracer for landscape 

evolution and an archive of terrestrial environmental change.  
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For most hard water lakes in limestone catchments, δ13CDIC can be approximated to the 

δ13C of bicarbonate (HCO3‒), which is the main carbon species present at neutral-

alkaline pH. As there is only a minor change in δ13C during the precipitation of carbonate 

from lake water (Romanek et al. 1992), the C isotope composition of the mineral phase 

(δ13Ccarb) can provide information of past variations in δ13CDIC (Leng and Marshall 2004). 

The isotope signal of epilimnetic waters is ideally retrieved from inorganically-

precipitated formed carbonates, since biological carbonates (e.g. shell fragments) can be 

affected by different isotope fractionation processes (vital effects), temperature 

differences between surface (where endogenic carbonate formation takes place) and 

bottom waters, the timing of carbonate precipitation, and productivity-controlled 

stratification of the DIC pool (Leng and Marshall 2004; Lacey et al. 2018). Vital effects 

might have only limited impact on recorded δ13C in biogenic carbonates, whilst 

temperature, timing, and stratification might play a more dominate role (Lacey et al. 

2018). 

A primary source of DIC in lake water is CO2 derived from the oxidation of organic 

matter in terrestrial soils, which is transferred to the lake through surface and 

groundwater inflows. The δ13C of DIC supplied to the lake is dependent on the type of 

photosynthetic metabolism used by the source vegetation (C3 vs. C4; see section 4.1). As 

organic matter accumulates in soils and degrades, CO2 is produced with a negligible δ13C 

offset (Sharp 2007). Following dissolution in superficial waters, the soil-derived CO2 is 

hydrated to produce carbonic acid that dissociates, depending on pH, to HCO3‒ with a 

consistent δ13C offset from the parent CO2 (Mook et al. 1974). Therefore, the extent and 

type of vegetation cover in a catchment, rate of soil development, and amount of CO2 

leaching are primary controls on the availability and δ13C of soil-derived CO2. In turn, 

these variables are driven by palaeoenvironmental and hydroclimate changes, which is a 

function of oscillations between contrasting glacial and interglacial climates on orbital 

timescales (Zanchetta et al. 2018). Soil-derived CO2 may be considered a source of low 

δ13C to lake DIC, even when taking into account differences between C3- and C4-

dominated catchments, in comparison to geological sources of carbon. Supply of soil-

derived CO2 with low δ13C can also be recorded in the carbon isotope composition of the 

organic matter pool (δ13Corg), if organic material preserved in the sediments is mainly of 

aquatic origin (Zanchetta et al. 2018). In such a scenario, decreasing δ13C can be used as 

an indicator for soil development in the catchment. This has for example been shown for 

the Late Glacial to Holocene sediments of Lake Ohrid, where the interpretation of δ13Corg 
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is further supported by elemental ratios as inferred by XRF core scanning (cf. section 3.1 

and Fig 2, Francke et al., 2019). 

Weathering and dissolution of catchment carbonate rocks, typically of a marine affinity, 

produces significantly higher δ13C compared to respired soil organic matter (Diefendorf 

et al. 2008). However, an increased rate of soil respiration lowers the pH of surficial 

waters and soil-derived CO2 may be consumed by carbonate dissolution (Jin et al. 2009), 

thereby buffering any decrease in δ13CDIC of lake water. Dissolution processes can also 

impart a threshold behavior for carbonate precipitation in lakes. Catchment soil 

development, decay, and subsequent CO2 liberation may be catalysts for the enhanced 

dissolution of geological carbonates, increasing the supply of Ca2+ and HCO3‒ ions to a 

lake and supporting epilimnetic carbonate precipitation (Lacey et al. 2016). 

Whilst the presence of forested catchments, and the associated availability and transfer 

of soil-derived CO2 and dissolved geological carbon, are often driven by regional-scale 

hydroclimate evolution, changes in vegetation cover also affect evapotranspiration. This 

applies to natural, climate-driven shifts in landscape development and also 

anthropogenic catchment deforestation (Woodward et al. 2014). A decrease in forest 

cover and lower evapotranspiration rates may facilitate enhanced water yield from a 

catchment area and increase the contribution from geological carbon sources with 

higher δ13C to lake DIC. In catchments with a constant vegetation assemblage or when 

considering multi-millennial timescales, as well as in recent sediments, variations in the 

concentration and δ13C of atmospheric CO2 (δ13CCO2) ultimately influences δ13CDIC via the 

soil CO2 leaching-HCO3‒ pathway or by direct exchange with lake water. For extended 

records that cover several glacial-interglacial cycles, a traceable change in δ13C of 

vegetation and subsequent soil-derived CO2 may be the product of variations in δ13CCO2 

assimilated during photosynthesis (Hare et al. 2018). Similar changes have been brought 

about in recent decades due to the anthropogenic burning of fossil fuels resulting in 

lower δ13CCO2, which will be reflected in the δ13C of terrestrial biomass and can be taken 

into account when interpreting isotope records (Keeling 1979). 

Following the transfer and incorporation of soil-derived CO2 or geological sources of 

carbon to lake DIC, internal lake processes can act to modify δ13CDIC. Whilst alteration of 

δ13CDIC can be the result of natural factors, such as enhanced primary productivity 

(higher δ13C) or greater recycling of organic matter (lower δ13C), human impact on 

catchment areas may also drive and exacerbate in-lake modification of δ13CDIC. 

Agricultural intensification over the 20th century and increased external nutrient loading 
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on lakes can lead to eutrophication and excess carbon sequestration (Anderson et al. 

2014), driving higher δ13CDIC given the preferential use of 12C by aquatic primary 

producers. Although the influence of human impact on δ13CDIC may overprint variations 

imparted by environmental change, δ13CDIC may still ultimately be a product of 

landscape change during anthropogenic modification of catchments. In lakes that are 

dominated by autochthonous organic matter production, the dependence of δ13CDIC on 

catchment-derived soil CO2 can mean that the presence of terrestrial organic matter 

components is not necessarily a prerequisite for understanding past landscape change. 

Past variations in δ13Ccarb and δ13Corg in such systems, albeit with a δ13C offset imparted 

during photosynthesis, may be positively correlated as both are driven by δ13CDIC 

(Zanchetta et al., 2018).  

The carbon isotope signal recorded in speleothem archives preserves the same soil 

development and/or vegetation dependent δ13C variability as discussed for lake records. 

The interpretation of speleothem-derived δ13C records are frequently simplified in 

comparison to lacustrine archives since previously discussed lake-internal modifications 

of the desired catchment signal do not apply. Speleothem records furthermore benefit in 

particular from a high-precision, independent chronology, as derived from uranium-

thorium dating. Most non-metal isotope studies applied to speleothem records focus in 

particular on the recorded hydro-climatic history mainly inferred from oxygen isotope 

(δ18O) compositions of carbonate minerals (e.g. Bar-Matthews and Ayalon 2004), and 

carbon isotopes are traditionally an essential part of such studies. The potential of stable 

carbon isotope compositions of speleothem records as key data for soil stability and 

pedogenesis has recently been highlighted by Regattieri et al. (2019). The authors report 

a complex interplay between climate, vegetation development, human land use, and soil 

erosion in the European Alps during the last 10,000 years, as inferred from δ13C, δ18O, 

and magnetic susceptibility. 

3.3 Metal stable and radiogenic isotopes for erosion and weathering 

3.3.1 Uranium isotope activity ratios as indicator for catchment erosion 

The activity ratio of uranium isotopes (234U and 238U) in fine-grained detrital matter can 

provide quantitative estimates of catchment-wide erosion processes (e.g. DePaolo et al. 

2006; DePaolo et al. 2012; Dosseto and Schaller 2016; Lee et al. 2010b; Francke et al. 

2019; Rothacker et al. 2018; Martin et al. 2019). Mineral grains undergo on-going 

depletion of 234U, which is measurable in the <63 µm size fraction characterised by a 
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high surface-to-volume ratio. This depletion occurs by a) direct recoil of 234Th, an 

intermediate product between 238U and 234U, (b) preferential leaching of 234U embedded 

in the recoil tracks, and (c) preferential oxidation of 234U compared to 238U (Dosseto et 

al. 2008; Suresh et al. 2014b, 2013; Ma et al. 2010; Gontier et al. 2015, cf. Fig. 3) . Recoil 

describes the physical displacement of the daughter nuclide (herein: 234Th) during 

radioactive α-decay (herein of 238U) and can result in the ejection of the daughter 

nuclide into the surrounding pore space in an open system (Fig. 3). Whilst the decay to 

234Th is responsible for the physical displacement, 234U is targeted during isotope 

analyses for this method since 234Th and 234Pa rapidly decays into 234U (Fig. 3). 

 

Fig. 3: Uranium isotopes (234U and 238U) in fine-grained sediment. Half-lives of 238U, 234U 

and intermediate nuclides 234Th and 234Pa are also shown. Recoil during the α-decay of 

238U to 234Th results in a physical displacement of the daughter nuclide by ~30nm (in most 

silicates). Half-live for 234Th and 234Pa (hours to days) are not relevant on geological time 

scales. Loss of 234U occurs mainly in the outer rim of fine-grained (<63µm) detrital grains 

by recoil of 234Th (and subsequent decay to 234U) or preferential leaching of 234U. Non-

detrital matter (organic matter, authigenic and endogenic minerals) are usually enriched 

in 234U and have to be removed carefully from the bulk sediment prior to analysis. Modified 

from Martin et al. (2015). 

 

The (234U/238U) activity ratio of fine-grained sediments (Ameas) decreases on geological 

time scales mainly in response to recoil (process (a)) and is thus a measure of the time 

elapsed since comminution of the bedrock or coarse (>63µm) regolith (both not 

showing depletion of 234U) into fine-grained detrital matter, termed comminution age 

(DePaolo et al. 2006; Lee et al. 2010b; Dosseto and Schaller 2016). For a sedimentary 

deposit, the sediment residence time of detrital matter in the catchment (tres, in yr) is the 

difference between the comminution age and the deposition age, and can be calculated 

as follows (Francke et al. 2019, Fig. 4): 

 

𝑡𝑟𝑒𝑠 = −
1

𝜆234
ln [

[𝐴𝑚𝑒𝑎𝑠 −(1−ƒ𝑝𝑜𝑠𝑡)]𝑒
−𝜆234 𝑡𝑑𝑒𝑝 +(1−ƒ𝑝𝑜𝑠𝑡 )−(1−ƒ𝑝𝑟𝑒 )

𝐴0 −(1−ƒ𝑝𝑟𝑒 )
]     (2) 

 

with λ234 as the 234U decay constant (in yr-1), Ameas and A0 as the measured (234U/238U) 

activity ratios (unitless) and at time zero (i.e. onset of comminution), and ƒ pre and ƒpost are 
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the recoil loss factors prior and after to deposition (unitless). The recoil loss factor is the 

fraction of 234U that is recoiled out of mineral grains. It is calculated as follows (Maher et 

al. 2006; Kigoshi 1971): 

 

𝑓 =  
1

4
𝐿𝑆𝜌           (3) 

 

where L is the recoil length of 234Th (30 nm on average in common silicate minerals; 

Dosseto and Schaller, 2016), ρ the density of the sediment (usually 2.6 g/cm3), and S the 

surface area of the sediment (m2/g) as measured by gas sorption analysis. Thus, in 

depositional archives where the deposition age is known, it is possible to reconstruct 

past variations in sediment residence time. 

 

Fig. 4: Conceptual model of detrital matter transit and 234U depletion from source to sink. 

Depletion of 234U starts in fine-grained detrital matter that is produced as the weathering 

front on the hillslopes migrates downward over time. Further lowering of the (234U/238U) 

activity ratio occurs in any process related to hillslope and fluvial storage and transport, 

and during final deposition in a sedimentary basin.  The (234U/238U) activity ratio can be 

used to estimate the palaeo-sediment residence times if the time since final deposition is 

excluded. Modified after Dosseto and Schaller (2016). 

 

The application of U-isotopes as a proxy for catchment erosion requires several 

considerations (e.g. Dosseto and Schaller 2016; DePaolo et al. 2012). Firstly, authigenic 

and organic phases need to be eliminated during pre-treatment without altering the 

outer rim of detrital grains such that the U isotope composition of detrital grains is 

measured only. Several sequential extraction protocols have been proposed (Suresh et 

al. 2014a; Martin et al. 2015; DePaolo et al. 2006; Maher et al. 2004; Lee et al. 2010a; 

Menozzi et al. 2016; Francke et al. 2018). Recently, Francke et al. (2018) have 

introduced a pre-treatment protocol that allows for the fast processing of large sample 

sets while meeting the requirements for detrital grain isolation.  

The second consideration addresses the initial (234U/238U) activity ratios, which is often 

assumed to be 1, representing secular equilibrium in an un-weathered bedrock. Secular 

equilibrium is achieved within a time equivalent five times the daughter’s half-life. This 

restricts the application of U isotopes to comminution ages of sediments younger than 1 
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Ma. Moreover, bedrock often shows 238U-234U disequilibrium even in bedrock older than 

1 Ma as a result of deep weathering and fracturing (Handley et al. 2013b; Dosseto and 

Schaller 2016; Martin et al. 2019). Three potential scenarios have been proposed to 

address 238U-234U disequilibrium in bedrock material: Firstly, Dosseto and Schaller 

(2016) argued that the depletion of 234U in source rocks is irrelevant since the isotope 

ratio is “reset” during comminution as illustrated by glacial outwash measured close to 

secular equilibrium (DePaolo et al. 2012). This implies that an initial activity ratio A0 of 1 

can be used for equation (2). Secondly, Martin et al. (2019) propose that A0 used in 

equation (2) can be calculated for a given catchment by accounting for the relative 

spatial contribution of each rock type and their (234U/238U) activity ratios. This requires 

an a priori knowledge of (234U/238U) activity ratios in each rock type, which can be 

measured for any given catchment on a statistically robust set of bedrock samples or 

inferred from the literature. Finally, the assumption of an initial activity ratio A0 of 1 can 

be relaxed if A0 is randomly chosen by Monte-Carlo simulations between set values, with 

the set values being inferred from literature data or direct measurements (Francke et al. 

2019). 

A third consideration addresses the impact of preferential leaching of 234U on 

(234U/238U) activity ratios of fine-grained detrital matter after comminution. Martin et al. 

(2019) calculated comminution ages for fluvial sediments in northern Australia based 

on an formulation introduced by Dosseto and Schaller (2016). This formulation accounts 

for preferential leaching, thus relaxing the assumption that loss of 234U in fine-grained 

detrital matter is controlled by recoil only. Sensitivity tests revealed that estimated 

comminution ages depend in particular on the chosen 238U leaching rate (Martin et al. 

2019). Using the formulation to account for preferential leaching, however, resulted in 

poor correlations between sediment residence times, vegetation cover, and annual 

rainfall, which were otherwise evident if not accounting for preferential leaching (loss of 

234U by recoil only). This can probably be attributed to a complete dissolution of the 

weathering-active surface on geologically short time scales (Li et al. 2018). This implies 

that measured (234U/238U) activity ratios of fine-grained detrital matter reflect the 

recoil-induced loss of 234U from the weathering-inactive mineral surface only, and that 

preferential leaching is insignificant for the comminution dating approach (Li et al. 

2018). 

The fourth consideration addresses the requirement of accurate determination of the 

recoil loss fraction ƒ (equation 3). Because there is a two-order magnitude difference 
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between the length scale of 234Th recoil and the length of the molecule N2 (0.354 nm) 

used for surface area quantification, the estimated the recoil loss fraction using gas 

sorption analysis can result in an overestimation of the surface area relevant to 234Th 

recoil. To address this difference, a fractal correction has been proposed (Bourdon et al., 

2019). Francke et al. (2018) have shown, however, that the fractal correction should 

only be applied if micro- (<2 nm) or/and meso-pores (2-50 nm) are present in the 

sediments, which can be assessed during gas sorption analysis. Gas sorption analysis of 

selected fluvial sediments from northern Australia (Martin et al. 2019) and lacustrine 

sediments from Lake Ohrid in the Mediterranean (Francke et al. 2019) has shown that 

both scenarios (i.e. presence or absence of micro- and meso-pores) are possible, and the 

assessment of whether a fractal correction is necessary has to be undertaken  for each 

study. 

The comminution dating approach assumes a constant recoil loss fraction since 

comminution, i.e. before and after final deposition. Further considerations have recently 

been made to address the possibility that the recoil loss fraction after final deposition 

may be different than that during sediment transport throughout the catchment. Loss of 

234U could be significantly inhibited in densely compacted sediments with small pore 

space, where 234Th could be recoiled from one grain into another and is thus not lost 

from sediments (Francke et al. 2019). Whilst such considerations are probably not 

significant for relatively unconsolidated modern stream samples and for Late Glacial to 

Holocene deposits (Francke et al. 2019), a reduced loss of recoiled 234Th after deposition 

in marine or lacustrine sediment cores at greater depths could result in a significant 

underestimation of calculated catchment sediment residence times. Equation (2) allows 

accounting for different recoil loss fractions before and after final deposition enabling 

the assessment of loss in 234Th after final deposition in future studies focusing on older 

time intervals. 

The use of U isotopes to infer sediment residence times, sometimes referred as 

comminution dating was first applied to a marine sediment core and revealed that the 

provenance of the clastic matter deposited in the North Atlantic might have changed 

dramatically on glacial-interglacial time scales between Iceland and northern Europe 

(DePaolo et al., 2006). The inferred variability in comminution ages was thereby 

attributed to changing sediment sources. During glacial periods, the sediments were 

dominated by material being previously stored in soils, continental shelves, or 

elsewhere on the seafloor. Supply of young sediment sourcing from Iceland during 
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interglacial periods results in lower comminution ages, i.e. shorter sediment residence 

times. Since then, comminution dating has mainly been applied to fluvial environments 

in Australia, China and California (Dosseto et al. 2010; Handley et al. 2013a; Lee et al. 

2010b; Martin et al. 2019; Li et al. 2017). This has provided insights about catchment-

wide erosion processes in response to vegetation cover and climate parameters on 

modern to geological time scales.  

Martin et al. (2019) reported moderate to strong correlations of (234U/238U) activity 

ratios in modern stream samples from the Gulf of Carpentaria (northern Australia) to 

annual and seasonal distribution of rainfall, and to vegetation cover in the catchment. 

(234U/238U) activity ratios of modern stream samples from China have been reported to 

show an excellent agreement to previously published erosion rates as inferred from 

cosmogenic nuclides (Li et al. 2017). Palaeo-channel sediments samples in SE Australia 

show a strong correspondence to glacial-interglacial climate variability, which has been 

attributed to erosion of young upland soils during glacial periods and re-working of old 

fluvial sediments during interglacials (Dosseto et al. 2010). Comprehensive multi-proxy 

studies using the (234U/238U) activity ratio alongside traditional palaeoclimate and 

palynological proxy data have been conducted on two Late Glacial to Holocene 

lacustrine sediment sequences from the Balkan Peninsula (Francke et al. 2019; 

Rothacker et al. 2018, lakes Ohrid and Dojran). These lakes drain small catchments 

(1002 km2 for Lake Ohrid and 275 km2 for Lake Dojran). Whilst in large catchments 

(~>1 × 106 km2), the (234U/238U) activity ratio can be modified during fluvial transport 

and storage (Dosseto et al. 2010; Martin et al. 2019), the sediment residence time in the 

small catchments that lack significant lateral channel migration mainly reflects hillslope 

storage. Since the weathering front moves downwards over time, the residence time 

should decreases with increasing depth in weathering profiles (e.g. Suresh et al. 2013). 

Consequently in small catchments where fluvial storage is negligible, variations in 

sediment residence time in depositional archives can reflect changes in hillslope erosion 

depth over time (Rothacker et al. 2018; Francke et al. 2019). It is thus possible to assess 

changes in the type of erosion processes, such as deep gullying or mass wasting versus 

shallow sheet wash, and how these variations relate to changes in vegetation cover and 

climatic conditions. At Lake Ohrid in North Macedonia and Albania, Late Glacial to 

Holocene palaeo-sediment residence times and catchment erosion is strongly controlled 

by climate conditions during the Late Glacial and Early Holocene (Francke et al. 2019, 

Fig. 5). Shallow erosion of thick soils (long palaeo-sediment residence time) prevails 
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during cold and dry climates (Late Glacial, Younger Dryas), and deep erosion of thin soils 

(short palaeo-sediment residence time) persists during wet and warm intervals 

(Bølling/Allerød, Early Holocene). The expansion of a dense vegetation cover, as 

indicated by tree-versus-herb pollen percentages >90% (Fig. 5B, C), suggests that a 

threshold is crossed in catchment erosion processes during the Early to Mid-Holocene 

transition. Dense woodland vegetation expanding to high elevations prevents the 

erosion of thin soils by deep erosion in response to climate forcing. These outcomes 

display in particular how changes in vegetation cover can impart a threshold-like 

response in catchment erosion to climate variablity, information that is crucial in the 

light of increasing anthropogenic deforestation and climate warming. 

 

Fig. 5: A: Late Glacial to Holocene palaeo-sediment residence times and tree versus herb 

pollen percentages from Lake Ohrid (Francke et al. 2019). YD: Younger Dryas, B/A = 

Bølling/Allerød. Cold and dry intervals highlighted in blue are derived from Francke et al. 

(2019). Grey bar indicates tree-versus-herb pollen percentages >90% indicating the 

expansion of dense woodland vegetation at all elevations in the catchment. B: Profile 

across the catchment of Lake Ohrid and conceptual model of Late Glacial to Holocene 

catchment erosion showcasing how the expansion of dense woodland vegetation restricts 

deep erosion of thin soils at high elevation since the Early to Mid-Holocene transition. Thus, 

as the vegetation cover becomes dominated by trees, climate variability has a more muted 

role on catchment erosion (compared to the Late Pleistocene and Early Holocene). 

Modified from Francke et al. (2019). 

3.3.2 Hafnium (Hf), neodymium (Nd) and lead (Pb) isotopes as indicators for sediment 

source and weathering 

The application of radiogenic isotopes to sedimentary records can provide information 

on both sediment provenance and the degree of silicate weathering in corresponding 

soils, which, taken together, can be used to disentangle the impact of climate change and 

human activities on landscapes. To a first approximation, radiogenic isotope 

compositions of detrital sediments are mainly set by the parent-daughter ratios and the 

mean age of the source rocks (e.g. Banner 2004). Compared to other geochemical 

tracers, neodymium (Nd) isotopes are unique in the sense that their isotopic 

composition remains mostly unchanged during continental weathering and sediment 

transport (e.g. Goldstein and Jacobsen 1988). This particularity can be used to 
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fingerprint sediment sources and quantify terrigenous fluxes, which help identifying 

recent periods of enhanced erosion related to land use (e.g. Wan et al. 2015; Giosan et al. 

2017; Chatterjee and Ray 2017; Bayon et al. 2019). In contrast to Nd, the distribution of 

Hf and Pb isotopes in detrital sediments is also controlled by weathering and mineral 

sorting effects. The grain-size and weathering dependence of Hf and Pb isotopic ratios in 

sediments reflects the strong decoupling of corresponding parent-daughter elements 

(i.e. Lu-Hf and U-Th-Pb) during magmatic processes. The relatively large degree of 

fractionation between Lu and Hf and U-Th and Pb during magmatic crystallization 

results, with time and radioactive decay of 176Lu to 176Hf and U-series, to markedly 

different radiogenic isotope compositions in minerals (Banner 2004; Blum and Erel 

2003). Because weathering does not affect rocks uniformly, these characteristics 

provide a mean for investigating silicate weathering processes in soils and detrital 

sediments (Blum and Erel 1995; Aubert et al. 2001; Bayon et al. 2016; Harlavan et al. 

1998). Over recent years, this principle was applied to marine sediment records 

recovered off the Congo River, in which a particular sediment horizon is associated with 

the export of clays with distinctively high Al/K ratios and radiogenic Hf isotopic 

signatures, indicative of more intense weathering conditions in the watershed (Bayon et 

al. 2019; Bayon et al. 2012). Because the timing of sediment deposition, around 2500 

years ago, coincided with the widespread migration of Bantu-speaking peoples across 

Central Africa, these particular geochemical signatures were partly linked to the 

intensification of human activities and enhanced soil erosion in the rainforest at that 

time. Similarly, Fontanier et al. (2018) also documented a sudden increase in radiogenic 

Hf signatures in the upper part of a sediment core offshore north-western Madagascar, 

interpreted as the result of intensifying weathering due to enhanced land use and 

deforestation over the last 60 years. As emphasized by these examples, silicate 

weathering can respond rapidly, within a few decades only, to major climatic and/or 

anthropogenic disturbances on continents.   

In addition to detrital sediments, authigenic mineral phases such as iron (Fe) oxides can 

be also used in sediment records as archives of past weathering and/or anthropogenic 

activities. Iron oxides form directly in soils upon chemical weathering, being 

subsequently transported as suspended particulates in rivers prior to deposition as 

sediments (Bayon et al. 2009). Authigenic Fe oxide phases also commonly precipitate 

from water in the ocean, rivers and lakes, concentrating substantial amounts of 

dissolved trace elements such as Nd, Hf and Pb, initially released during weathering 
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processes or from anthropogenic pollution sources (Boyle et al. 1977; Süfke et al. 2019). 

A recent investigation of Fe-oxides extracted from sediments deposited in a lake in 

Switzerland reported a trend towards suddenly increasing radiogenic Pb signatures 

from ~2200 cal. years B.P., departing from the natural weathering signal of the earlier 

Holocene period (Süfke et al. 2019). This abrupt change of the Pb isotopic composition 

of Fe-oxides coincided exactly with the rise of the Roman Empire and intensifications of 

mining activity all over Europe, hence suggesting that it corresponded to an atmospheric 

Pb pollution signature, in agreement with earlier studies (Renberg et al. 2002). All the 

examples listed above clearly show the utility of radiogenic isotopes and other 

weathering proxies in studies aiming to investigate the impact of humans on the 

environment.  

3.4 In-situ cosmogenic nuclide analysis for catchment erosion 

Several of the in situ cosmogenic nuclides, including the stable 3He and 21Ne, and the 

radioactive 10Be, 14C, 26Al, and 36Cl, are now routinely measured and have been used in 

geomorphological studies for the last three decades (Dunai 2010; Granger and Schaller 

2014; Bierman 2004). Of these nuclides, however, 10Be (T1/2=1.387 Myr, Chmeleff et al. 

2010; Korschinek et al. 2010) produced in quartz is the ‘workhorse’ for in situ 

applications, and the majority of in situ cosmogenic nuclide studies have used 10Be, 

either alone or in conjunction with other cosmogenic nuclides such as 26Al, 21Ne, and 14C. 

Given the long half-life of 10Be and the increasingly low analytical backgrounds that can 

be realized (Wilcken et al. 2019), it is now possible to analyse samples covering a wide 

range of temporal settings, including historic times (Schaefer et al. 2009). The rate at 

which cosmogenic nuclides are produced is extremely low – a couple of atoms per gram 

of rock per year (Borchers et al. 2016) – and the rapid attenuation of cosmic radiation 

with depth (Fig. 6) confines the production of cosmogenic nuclides to the upper few 

meters of the crust, the production rate decreasing roughly exponentially with depth 

(Argento et al. 2015a, b). Production rates of cosmogenic nuclides are mainly a function 

of geomagnetic latitude and altitude above sea level (Balco et al. 2008; Lifton et al. 

2014). Site-specific production rates are also subject to several other factors, such as the 

geometry of the surrounding topography, which shields part of the incoming cosmic 

radiation (Dunne et al. 1999; Codilean 2006; DiBiase 2018). 
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Fig. 6: Production rates of in situ 10Be in quartz as a function of depth.  Note how the 

production rate by high-energy neutrons (spallation), although substantially higher at the 

surface than that by muons, attenuates more quickly with depth. This means that whereas 

in the upper few metres of rock, spallation reactions are dominant, at greater depths, 

muons account for the production of virtually all 10Be. Modified from Dunai (2010) and 

based on Heisinger et al. (2002a,b). 

 

The application of cosmogenic nuclides to the study of sedimentary archives is based on 

two principles: (i) cosmogenic nuclide concentrations are directly proportional to the 

exposure time to cosmic radiation – i.e., nuclides accumulate in surficial deposits over 

time such that their concentration will be directly related not only to the exposure age 

but also to the rate at which the surface is eroding (Granger and Schaller 2014), and (ii) 

two radionuclides will be produced at a fixed ratio but will decay at different rates 

dictated by their half-lives (Granger and Smith 2000; Granger and Muzikar 2001) – i.e., 

when previously exposed river sediment become temporarily or permanently shielded 

from cosmic radiation, the differential decay of two cosmogenic radionuclides results in 

a change in the ratio of these nuclides in proportion to the duration of burial. Given that 

the majority of cosmogenic nuclide studies have used 10Be for exposure dating and 

quantifying denudation rates, and the 10Be – 26Al pair for burial dating, we refer to these 

nuclides in the following sections. However, the principles discussed below apply to all 

in-situ produced cosmogenic nuclides.  

3.4.1 Quantifying basin-wide denudation rates 

As a parcel of rock or sediment is brought toward the surface by erosion on a hillslope, 

its 10Be concentration (𝑁) increases at a rate that depends mainly on the rate of erosion 

(𝜀), and the 10Be surface production rate (𝑃(0)) at that locality. The temporal evolution 

of the 10Be concentration in this parcel is accurately described by (Lal 1991; Dunai 

2010): 

 

𝑁(𝑧, 𝑡) = ∑
𝑃(0)

𝑖

𝜆 + 𝜌𝜀/Λ𝑖

𝑒−𝜌(𝑧𝑜−𝜀𝑡)/Λ𝑖[1 − 𝑒−(𝜆+𝜌𝜀 Λ𝑖⁄ )𝑡]

𝑛

𝑖=1

 (4) 

 

where 𝜆 is the 10Be decay constant,  𝑧𝑜 is the initial depth beneath the surface [cm], 𝑡 is 

exposure time [yr], 𝜌 is the density of the eroded material [g.cm-3] and 𝑃(0)𝑖 and Λ𝑖  are 
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the surface 10Be production rate [atoms.g-1.yr-1] and the mean cosmic ray attenuation 

length with depth [g.cm-2] for a given production pathway, respectively (Granger and 

Smith 2000). Over sufficiently long periods of time (𝑇 ≫ 1/(λ + 𝜌𝜀 Λ𝑖⁄ )), the 10Be 

concentration in the parcel is no longer time dependent, rather it is determined by the 

erosion rate alone (Fig 7). Under these steady-state conditions, equation (4) reduces to: 

 

𝑁 = ∑
𝑃(0)

𝑖

𝜆 + 𝜌𝜀/Λ𝑖

𝑛

𝑖 =1

 (5) 

 

One of the most important prerequisites for equation (5) to be valid is that erosion is 

continuous, occurring by grain-by-grain removal of material, and that it is not episodic, 

occurring by the spontaneous removal of discrete blocks of varying thicknesses .  

 

Fig. 7: Temporal evolution of the surface 10Be concentration under continuous (left) and 

episodic (right) erosion regimes. Under continuous erosion the surface 10Be concentration 

reaches a constant value (red curve), and the amount of 10Be produced by cosmic rays will 

equal the amount removed by erosion and radioactive decay. Episodic erosion processes, 

on the other hand, remove discrete blocks of rock or sediment. The truncation of the 

exponentially decreasing 10Be depth-profile (blue curve) means that a constant surface 

10Be concentration will not be reached; instead this will fluctuate with time as the amount 

of 10Be produced will never match the amount removed by erosion. (1) If the removal of 

blocks is periodic (time between spalling events Ti = constant = T) and the size of the blocks 

is uniform (w constant) the 10Be concentration will fluctuate around a long-term average 

value (Small et al. 1997). (2) If the removal of blocks follows a Poisson process, with both Ti 

and w being stochastic variables, the average 10Be concentration and its spread will 

depend on T (the average time between spalling events) and the probability distribution of 

w (Muzikar 2008, 2009). 

 

When the parcel of rock or sediment reaches the surface, it is transported via hillslope 

processes to the fluvial system, where it mixes with sediment from other parts of the 

contributing basin. Thus, rivers act not only as agents of erosion but also as integrators, 

collecting sediment from all parts of the basin in an amount that is proportional to their 

denudation rates such that the sediment will contain an average concentration of 10Be at 

the outlet of the basin that is a measure of the basin’s mean denudation rate. If (i) the 
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volume of sediment contributed by different parts of the basin is proportional to the 

area of those parts, and (ii) the averaging timescale of denudation in the basin is short 

relative to the 10Be half-life (or that of the nuclide of choice), and (iii) the timescale of 

sediment transport and storage is negligible as compared to the timescale of denudation 

(Brown et al. 1995; Bierman and Steig 1996; Granger et al. 1996), then equation (5) can 

also be used to calculate basin-wide average denudation rates (𝑒̅) from the average 10Be 

concentration of the mix of sediment leaving a basin (𝑁). 

 

Cosmogenic nuclide-based denudation rates have now been determined in more than 

4000 basins world-wide (Codilean et al. 2018), contributing substantially to our 

understanding of the relative effects of climate and topography on denudation rates in a 

wide range of tectonic settings (Granger and Schaller 2014). However, there is still a 

paucity of data from landscapes situated at the extremes of denudation-rate and 

topography spectra, confounding studies aiming to infer global-scale trends from 

compilations of 10Be-based denudation rates (Portenga and Bierman 2011; Willenbring 

et al. 2013; Harel et al. 2016). At one end of the spectrum are the low-gradient arid 

landscapes that occupy large portions of Gondwana remnants such as Australia, Africa, 

and South America. Here lithology plays a key role in controlling landform morphology 

and thus the styles and rates of hillslope evolution, and therefore also cosmogenic 

nuclide inventories (Cazes et al. 2020). The low gradients also mean that sediment may 

spend prolonged periods of time (on the order of 105-106 years) within hillslope soils 

(Struck et al. 2018a; Makhubela et al. 2019) or moving through the fluvial network 

(Struck et al. 2018b). Both cases may lead to increased 10Be inventories and thus 

underestimated denudation rates, and potentially to the alteration of  any source area 

environmental signals travelling from source to sink (Fülöp et al. in press). At the other 

end of the spectrum are the steep (and often wet) tectonically active landscapes where 

episodic erosion processes such as landsliding are the most important means of 

delivering sediment from hillslopes to the drainage network (Korup et al. 2010).  

Episodic erosion processes remove discrete blocks of rock or sediment, and the 

truncation of the exponentially decreasing 10Be depth-profile (Fig. 6) means that a 

constant surface 10Be concentration will not be reached (Fig. 7). Instead the 10Be 

concentration will follow a time independent, equilibrium statistical distribution 

(𝑓𝑒𝑞 (𝑁)) that depends on the magnitude distribution and the recurrence interval of the 
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episodic erosion process (Muzikar 2008, 2009, 2019). For this equilibrium condition, 

the average 10Be concentration on a hillslope (〈𝑁〉) is given by Muzikar (2009): 

 

〈𝑁〉 = ∫ 𝑑𝑁𝑓
𝑒𝑞

(𝑁)𝑁

∞

0

=
𝑃(0)

𝜆 + 1 𝑇⁄ (1 − 𝑒−𝜌𝑤/Λ̅̅ ̅̅ ̅̅ ̅)
 (6) 

 

where 𝑇 is the average time between landslides (or other episodic spalling events) and 

𝑤 is the thickness of the removed block, a stochastic variable governed by a distribution 

𝑔(𝑤). The notation 𝑒−𝜌𝑤/Λ̅̅ ̅̅ ̅̅̅ ̅̅  stands for an average over the thickness distribution 𝑔(𝑤): 

 

𝑒−𝜌𝑤/Λ̅̅ ̅̅ ̅̅ ̅ = ∫ 𝑑𝑤𝑔(𝑤)𝑒−𝜌𝑤/Λ

∞

0

 (7) 

 

The mean square fluctuation in 𝑁 (i.e., the likely spread in 10Be concentrations) is given 

by Muzikar (2009): 

 

〈(Δ𝑁)2〉 = 〈𝑁2〉 − 〈𝑁〉2 = 〈𝑁〉 (
2𝑃(0)𝑇

1 + 2𝑇𝜆 − 𝑒−2𝜌𝑤/Λ̅̅ ̅̅ ̅̅ ̅̅
− 〈𝑁〉) (8) 

 

The brackets 〈 〉 in equations (6) and (8) stand for an average over time. Therefore, 〈𝑁〉 

and 〈(Δ𝑁)2〉 represent the average 10Be concentration and the likely spread in this 

concentration, respectively, observed on a hillslope, or at the outlet of a catchment, over 

a period of time.  Equations (6) and (8) can be applied to a wide range of episodic 

surface erosion scenarios that follow a Poisson process (for more extreme scenarios see  

Muzikar 2019). The essential point is that if the magnitude-frequency distribution of 

landslides in a given catchment is known independently, equations (6) and (8) can be 

used to determine the long-term average and the spread in 10Be concentrations in the 

sediment leaving this catchment. Conversely, if the long-term average and the spread in 

10Be concentrations in the exported sediment are known, equations (6) and (8) can also 

be applied to gain insights to links with the size distribution of landslides, and their 

recurrence intervals. 

Improvements in sample measurement (Wilcken et al. 2019) and enhanced sample 

throughput will enable the large number of sample counts necessary to go beyond mean 

denudation rates of large catchments in the future. Delving deeper into the processes 
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controlling sediment production and sediment transport at the catchment scale could be 

achieved by looking at, for example, single-clast distributions of cosmogenic nuclide 

concentrations (Codilean et al. 2008; McPhillips et al. 2014; Carretier et al. 2019; 

Muzikar 2019; Prush and Oskin 2020). The applications of meteoric 10Be (e.g. Dannhaus 

et al. 2018) and applications of in-situ produced 10Be in minerals other than quartz (e.g. 

Moore and Granger 2019) will also extend the applicability of basin-wide denudation 

rate studies to non-quartz bearing lithologies. 

 

3.4.2 Dating of sedimentary deposits and quantifying palaeo-denudation rates 

As shown in Fig. 6, cosmogenic nuclide production rates decrease roughly exponentially 

with depth, and this property has been exploited as a means of dating the abandonment 

of fluvial deposits (Anderson et al. 1996; Repka et al. 1997).  The principle behind this 

application is illustrated in Fig. 8, and is explained as follows. Clasts building up a fluvial 

deposit arrive at the site with varying cosmogenic nuclide concentrations (fuzzy blue 

band in Fig. 8) but are assumed to have been emplaced with uniform distribution of 

nuclide concentrations with depth (10𝐵𝑒(𝑖𝑛)). Due to the exponential decrease in 

production rate with depth, subsequent accumulation of cosmogenic nuclides will result 

in a shift from the original uniform distribution to one following an exponentially 

decaying curve. Mean nuclide concentrations measured from amalgamated clasts taken 

at the surface (10𝐵𝑒(𝑠1)) and subsurface (10𝐵𝑒(𝑠2)) of the deposit will differ from each 

other in proportion to the amount of time elapsed since terrace abandonment. Thus, 

provided that the subsurface sample is deep enough relative to the mean cosmic ray 

attenuation length (see above), the depositional age of the terrace is simply given by 

10𝐵𝑒(𝑠1) − 10𝐵𝑒(𝑠2). In addition, the basin-wide denudation rate at the time of terrace 

emplacement (i.e., palaeo-denudation rate) can also be calculated using 10𝐵𝑒(𝑠2). The 

technique relies on a couple of assumptions (Anderson et al., 1996): (i) clasts are 

emplaced with uniform distribution of nuclide concentrations with depth, (ii) the 

deposit has not been disturbed or mixed since emplacement (e.g. by bioturbation, 

cryoturbation, pedogenesis, etc.), and (iii) the terrace surface has not been modified, 

either by subsequent erosion or deposition, since emplacement. In most cases these 

assumptions are impossible to test a priori, and a successful application of the technique 

involves the collection of several samples (e.g., n > 10) from a depth profile that is a 

couple of meters in depth, and the use of numerical approaches that allow for 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

complicating factors such as vertical mixing post deposition, varying inheritance with 

depth, erosion of the terrace surface, etc., to be explicitly considered (Hidy et al. 2010).  

 

Fig. 8: Principles of using cosmogenic nuclide depth profiles for dating fluvial deposits 

(modified after Anderson et al. 1996). See text for more details. 

 

Deposits can also be dated using a pair of cosmogenic radionuclides (or a pair consisting 

of one radionuclide and one stable nuclide) by exploiting the property that these 

nuclides are produced at a fixed ratio but have different half-lives (Fig. 9), as long as the 

deposit is old relative to the nuclide pair’s half-lives. The differential decay rates can 

then be used to infer the time elapsed since burial (Granger and Smith 2000; Granger 

and Muzikar 2001). The most common nuclide pair used in burial dating is 26Al and 10Be, 

with a production ratio of Al/Be = ~6.75 and with half-lives of 0.7 Myr and 1.39 Myr, 

respectively. Upon burial and cessation of nuclide production, the differential decay of 

the two nuclides results in a change in the ratio of these nuclides (Fig. 9A), and the burial 

age can be calculated as: 

 

𝑡𝑏 = −ln (
𝑅𝐴𝐵

(𝑡𝑏
)

𝑅𝐴𝐵
(𝑡0

)
) (𝜆𝐴 − 𝜆𝐵

)⁄  (9) 

 

where  𝑡𝑏  is the burial duration (years) , 𝜆𝐴 and 𝜆𝐵 are the half-lives of the two nuclides, 

and 𝑅𝐴𝐵 (𝑡𝑏) and 𝑅𝐴𝐵 (𝑡0) are the measured and production ratios of the nuclide pair, 

respectively (Fig 9A). The useful age range of a burial dating nuclide pair is set by the 

half-lives of the two nuclides; at some point the nuclide with the shorter half-life attains 

a concentration where measurement is no longer possible. Under ideal conditions, the 

useful range of the 26Al and 10Be pair is between 0.5 - 6 Myr (Granger 2006). This range 

can be extended, however by introducing a third nuclide, 21Ne, that is stable. Because 

10Be has a half-life that is nearly double that of 26Al, and because 10Be can be measured 

more precisely at low concentrations than 26Al, the useful range of the 10Be–21Ne burial 

dating pair is more than double that of the 26Al–10Be pair.  Thus, 10Be–21Ne burial dating 

should be applicable even for deposits of Miocene age (Balco and Shuster 2009). 

 

Fig. 9: Diagrams illustrating the principles of burial dating. (A) Fast and complete burial. 

During exposure to cosmic radiation the ratio of a nuclide pair (such as 26Al and 10Be) 
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evolves such that the sample will plot inside the erosion island. Upon burial and cessation 

of nuclide production, the ratio of the nuclide pair will start to decrease following the path 

indicated by the red arrow. This ratio is proportional to the duration of burial and thus can 

be used to calculate the burial age of the sample. The position of the sample in the Al/Be vs. 

Be space also provides information on the pre-burial denudation rate. (B) Incomplete 

burial with variable inheritance. Samples that were subject to a simple and complete 

burial history will rotate along trends indicated by the blue lines. Samples with variable 

inheritance (red circles) but similar post burial production will evolve on displaced lines 

(red lines), parallel to the trends indicated by the blue lines. The slope of the trend defined 

by the samples is used to calculate the burial age. Modified from Dunai (2010) and based 

on Granger and Muzikar (2001) and Balco and Rovey (2008). 

 

The method outlined above is ideal for dating thick sedimentary deposits or cave 

sediments. However, in many cases, post-burial production of cosmogenic nuclides due 

to muons or as a result of intervals of re-exposure, must be taken into account (Fig. 9B).  

The variation in measured 26Al and 10Be (or 21Ne and 10Be) in a group of samples 

collected from the same stratigraphic layer can be used to solve explicitly for the post-

burial component that will be common among the samples. This method, called isochron 

burial dating (Balco and Rovey 2008) was successfully applied to dating of poorly 

preserved fluvial terraces as old as ~4 Myr (Erlanger et al. 2012). 

4. Organic geochemical proxies for terrestrial habitat change 

As vegetation adapts to climate fluctuations or is modified or replaced through human 

activities, the molecular composition of plant litter and soil organic matter exported 

towards a depositional environmental archive changes accordingly. Molecules of known 

biological origin (biomarkers) or their chemical properties such as the carbon isotope 

ratio (13C/12C) can be used to reconstruct such changes even if macro- or 

microscopically identifiable fossil material is absent due to continuous particle break-up 

during transport. The aboveground vegetation typically represents the smaller part of 

the terrestrial organic carbon pool. In undisturbed ecosystems, degrading plant litter 

and belowground biomass consisting of root tissue represent the larger part, in fact, 

two-thirds of the global terrestrial organic carbon is stored in soils  (Post et al. 1982). 

The dynamics of the soil carbon pool can differ substantially in their response to 

environmental change, with slow build-up of the soil carbon pool resulting in lead-lag 
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relationships with climatic parameters or vegetation, for example. In lacustrine 

catchments, lake level fluctuations can introduce an additional level of complexity. 

Changes in lake surface area inversely affect the surface area occupied by the 

surrounding terrestrial habitats and modify the fluxes of terrestrial organic matter 

towards the recording site. For example, organic matter may be supplied directly 

through surface run-off from surrounding slopes during lake-level highstands or be 

trapped in low-lying wetlands during lake-level lowstands, depending on basin 

morphology and lake morphometry. Finally, land-use change fundamentally alters the 

biome in the catchment of an environmental archive with regard to organic matter 

sources and fluxes. Land clearance for farming may replace the natural vegetation 

entirely and modify the soil pool. Slash-and-burn clearance produces large amounts of 

charred material and combustion products while settlements and animal husbandry can 

lead to the supply of fecal material. Organic geochemistry provides a wide range of 

biogeochemical tools to identify both natural and anthropogenic alteration of the 

terrestrial habitats in the catchment of a depositional environmental archive, revealing 

changes in vegetation, soil stability, fire frequency and farming. 

4.1 Molecular indicators for vegetation change  

Waxes are major constituents of the protective outer surface layers of land plants, most 

prominently of the cuticular layer of leaves. Leaf waxes consist of esters of long-chain n-

fatty acids and n-alcohols as well as n-alkanes and ketones, aldehydes, i.e. alkyl lipids 

(Eglinton and Hamilton 1967). The n-fatty acids and n-alcohols of leaf waxes 

predominantly are even-numbered carbon chains in the range of 24 to 38 carbon atoms 

while n-alkanes are dominated by odd-numbered carbon chains of 23-37 carbon atoms. 

Notably, the length of the alkyl lipid carbon chains preferentially biosynthesized by 

plants differs between plant species. For example, the dominant n-alkane in leaf wax of 

the common beech (Fagus sylvatica) is the C27 n-alkane while it is the C29 n-alkane in oak 

(Quercus) and the C31 n-alkane in grass species growing at the same location (Holtvoeth 

et al. 2016, Fig. 10).  

Fig. 10: Comparison of chain-length distributions of n-fatty acids and n-alkanes in oak and 

beech leaf litter and in grasses with those of the underlying topsoils and of sediment from 

the Lake Ohrid Basin, Albania/North Macedonia (modified from Holtvoeth et al. 2016). The 

intramountainous basin features a high altitude gradient and steep slopes, with the lower 

altitudes being dominated by oaks and shrubs and the higher altitudes by beech forests 
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with patchy grassy undergrowth. Note the maximum amount of the C 31 n-alkane in the 

topsoil from the beech forest, which results from higher concentrations of n-alkanes in 

grasses compared to beech leaves and the fact that decaying grass is more likely to being 

directly incorporated into the topsoil whereas the leaves are mobile, altogether leading to 

an over-representation of the grass-derived n-alkane. Also note the generally higher 

proportions of C22 and C24 n-fatty acid in the topsoils compared to the leaf wax-derived C26 

to C32 n-fatty acids in the leaf litter and grass samples. These compounds are assumed to 

derive from suberin, a protective bio-polyester found mainly in root tissue, hence, 

representing belowground biomass. The sediment shown here represents the dry period of 

the 8.2 ka event that led to vegetation recession and destabilization of soils. The higher 

than normal amounts of the suberin-derived C22 and C24 n-fatty acids reflect the increased 

soil erosion rates during this event.  

Considering the vast number of plant species and the narrow range of dominant chain 

lengths typically biosynthesized, it is highly unlikely that average alkyl lipid chain-length 

distributions can be assigned to a specific endmember type of vegetation within the 

catchment of an environmental archive unless biodiversity is extremely lo w, i.e. 

dominated by single species. However, shifts in the predominant carbon chain lengths of 

alkyl lipids observed in a depositional archive will nevertheless be indicative of 

vegetation changes or changes in organic matter fluxes within the catchment and can be 

plotted as variability of the average chain length (ACL): 

 

ACL = Σ(Cn × n)/Σ(Cn)   (10)       

 

n-Alkanes have become the prime targets in biomarker-based palaeoenvironmental 

investigations as they do not contain functional groups, which increases  their 

preservation potential in depositional archives relative to n-fatty acids and n-alcohols 

and minimizes lipid extract preparation for analysis (no derivatization of functional 

groups). The ratio of supposedly grass-derived C31 and C33 n-alkanes over C27 and C29 n-

alkanes assumed to dominate leaf waxes of trees is frequently used as indicator of shifts 

from forests to more open, grassy vegetation and vice-versa. Although not statistically 

sound on a globally applicable level (Bush and McInerney 2013), this approach appears 

suitable for vegetation reconstructions on regional scale, in particular, if the dominant 

species involved can be narrowed down and biogeochemical fingerprinting of the main 
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leaf wax sources, i.e. vegetation and soils, provides a local modern analogue calibr ation 

(e.g. Schwark et al. 2002; Bliedtner et al. 2018). In contrast to the non-specific long-chain 

(≥25) n-alkanes, the mid-chain C23 n-alkane is a rather reliable biomarker for Sphagnum 

peat mosses (Bush and McInerney 2013). Another more specific alkyl lipid biomarker is 

the branched C29 alcohol nonacosan-10-ol, a prominent compound in leaf waxes of 

conifers (Matas et al. 2003).  

In tropical and subtropical settings, compound-specific stable isotope analysis (CSIA) of 

leaf-wax derived alkyl lipids can indicate changes in the openness of the vegetation and 

the relative proportions of trees and grasses. Tropical grasses are typically C 4 plants, 

named after the first photosynthetic metabolic product consisting of four carbon atoms, 

while most other higher land plants are C3 plants. Notably, C4 plants incorporate 

significantly higher proportions of the heavy carbon isotope (13C) into their biomass 

than C3 plants that strongly discriminate against 13C (O'Leary 1981). As a result, the 

13C/12C stable carbon isotope ratio of C4 grass-derived leaf wax compounds distinctly 

differs from those of C3 plants such as tropical trees and is expressed as the 13C value of 

a compound relative to a standard: 

 

𝛿 𝐶13  =  (
( 𝐶0

13 / 𝐶0
12 )𝑠𝑎𝑚𝑝𝑙𝑒

( 𝐶0
13 / 𝐶0

12 )𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
− 1) ∗ 1000𝑜                                                                           (11) 

 

Compound-specific 13C values have been successfully applied in numerous 

palaeoenvironmental studies in tropical settings to reconstruct shifts of C3 and C4 

vegetation zones (e.g. Huang et al. 2001; Tierney et al. 2010; Sinninghe Damsté et al. 

2011). Although n-alkanes are preferentially analysed for ease of sample treatment, n-

fatty acids and n-alcohols can also be targeted, particularly in recent/Quaternary 

sediments where they are often present in significantly higher abundance than n-

alkanes (Hughen et al. 2004; Russell et al. 2009). 

Fig. 11: A: Histograms of stable carbon isotope distributions of C3 and C4 plant biomass 

(from Tipple and Pagani 2007 using data by Cerling and Harris (1999) and B: 

Reconstruction of the decrease in C4 grass-dominated vegetation in the catchment of Lake 

Challa (E Africa) since the Last Glacial using compound-specific stable carbon isotope 

values of the C31 n-alkane in the lake sediments (modified from Sinninghe Damste et al. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

2011). Note that maize is a C4 plant and its introduction as agricultural produce outside 

the tropics can be reconstructed through an equivalent approach.  

In analogy to wax-derived alkyl lipids, vegetation changes can also be seen in changing 

relative amounts of terpenoids that derive from resin, bark and leaf tissue of higher 

plants (Langenheim 1994). Deciduous trees (angiosperms) produce pentacyclic 

triterpenoids while conifers (gymnosperms) produce tricyclic diterpenoids (Otto and 

Simpson 2005; Diefendorf et al. 2012; Giri et al. 2015). Changing ratios of di- and 

triterpenoids have therefore been used as palaeovegetation proxies (Bechtel et al. 2003; 

Schouten et al. 2007). Both the fact that deciduous trees and conifers produce 

substantially different amounts of terpenoids relative to their total biomass and the 

different preservation potential of di- and triterpenoids introduce significant 

uncertainty in terpenoid-based reconstructions of the vegetation, with a likely bias 

towards conifers (Giri et al. 2015). Still, the variability of di- and triterpenoid ratios 

supports other proxy data sensitive to vegetation change from organic geochemical or 

palynological analyses. In recent sediments, changing proportions o f the triterpenoids 

- and -amyrin also indicate changes in the sources of terrigenous plant matter 

(Chávez-Lara et al. 2018), with -amyrin occurring in higher amounts in plant resins 

and resinous tissue of common subtropical dry forest species Bursera and Protium, for 

example (Hernández-Vázquez et al. 2012). 

Lignin phenols, finally, provide another established biomarker-based tool to detect 

vegetation changes. Lignin, after cellulose the second-most abundant structural 

macromolecule in higher land plant tissue, contains a range of phenolic alcohols of the 

syringyl, cinnamyl and vanillyl group. Crucially, these phenols are incorporated into 

lignin in distinctly different proportions, depending on tissue type (woody vs. non-

woody) and the taxonomic group of vascular plants (angiosperms vs. gymnosperms). 

Ratios of syringyl over vanillyl (S/V) and cinnamyl over vanillyl alcohol (C/V) can 

therefore be used to reconstruct, for example, changes in the supply of plant matter 

from conifers (gymnopsperms) or grasslands within the catchment of a depositional 

archive (Hedges and Mann 1979; Fuhrmann et al. 2003; Hyodo et al. 2017) or to trace 

the spatial distribution of terrestrial organic matter in marine sediments (Smith et al. 

2012; Seki et al. 2014). 
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4.2 Molecular indicators for the supply of soil organic matter  

To date, there is no single geochemical proxy to reliably quantify the amount of soil 

organic matter buried in a sedimentary record. This is due to the large molecular 

overlap between plant litter and soil organic matter, resulting from a continuum of 

degradation stages. Very few biomarkers have been found that exclusively represent 

belowground plant biomass, i.e. root material, one of them being ,-alkanedioic acids, 

or diacids, that derive from the protective polyester suberin in root tissue (Mendez-

Millan et al. 2011; Ji et al. 2015). Suberin consists of alternating layers of aromatic and 

aliphatic compounds (n-fatty acids, n-alcohols, -hydroxy acids, ,-diacids), with 

characteristic chains of 22 or 24 carbon atoms in the aliphatic layer (Molina et al. 2006; 

Graca and Santos 2007). The C22 and C24 -hydroxy acids are major compounds of 

suberin but can also derive from other tissue types, leaving the mid-chain diacids as the 

only reliable indicators for root material supply. While root-derived lipids are not 

quantitatively representative for belowground biomass or soil organic matter buried in 

a sediment, variable proportions of C22 and C24 alkyl lipids relative to long-chain (> C24) 

leaf wax-derived compounds indicate changes in the terrestrial carbon pool dynamics 

(Holtvoeth et al. 2016; Holtvoeth et al. 2017). Compound-specific radiocarbon analysis 

(CSRA) of alkyl lipids can also reveal changes in the supply of pre-aged, i.e. soil-derived 

material through age offsets with the sediment age (Smittenberg et al. 2006; Gierga et al. 

2016). Since each alkyl lipid fraction represents a mixture of fresh and fossil compounds 

this approach needs to be combined with other proxies sensitive to soil supply in order 

to assess the relative amount of fossil compounds, thus, enabling an estimation of 

terrestrial residence time.  

Biomarkers from strains of soil bacteria provide an alternative to root-derived 

compounds for reconstructing the variable input of soil organic matter towards a 

depositional archive. A series of branched glycerol-dibiphanyl-glycerol tetraethers 

(brGDGTs) are cell membrane lipids of anaerobic bacteria in soils. A number of 

structurally related isoprenoidal GDGTs (iGDGTs), on the other hand, is exclusively 

produced by aquatic Thaumarchaeota.  The ratio of specific branched and isoprenoidal 

GDGTs, the so-called BIT index, was therefore defined to reflect the changing 

proportions of soil organic matter supply as represented by the bacterial lipids re lative 

to aquatic production (Hopmans et al. 2004; Weijers et al. 2006). The BIT index has been 

applied successfully in reconstructions of environmental change on a range of time 
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scales (Cao et al. 2017; Mayser et al. 2017) and studies tracking the dispersal of 

terrestrial organic matter in the marine realm using marine surface sediments off major 

point sources, i.e. rivers with large terrestrial catchments (Smith et al. 2012; Seki et al. 

2014). The approach assumes that brGDGTs are representative of soil organic matter 

and that iGDGT production in the waterbody does not vary to the same extent as soil 

organic matter supply. It appears, however, that Thaumarchaeota thrive in low-nutrient 

settings (Konneke et al. 2014), i.e. iGDGT production may be lower under eutrophic 

conditions and bias the BIT index towards seemingly increased soil organic matter 

input. In depositional settings with persistently high terrestrial input such as smaller 

lake basins, BIT value variability may thus be driven by iGDGT production under 

variable nutrient levels (Smith et al. 2012), allowing for an alternative interpretation of 

the BIT index as proxy for a changing nutrient regime (Panagiotopoulos et al. 2020). 

Some brGDGTs have been found to also be produced in the marine water column (Zell et 

al. 2015) and in lake water (Weber et al. 2015), requiring a local calibration or 

complementary proxy data. 

4.3 Bulk organic matter characteristics indicating soil organic matter supply 

During microbial breakdown, soil organic matter typically becomes enriched in 13C 

relative to 12C and in total nitrogen (Ntot) relative to organic carbon (Corg) to various 

degrees, i.e. bulk 13Corg values of soil organic matter increase while Corg/Ntot ratios 

decrease. Both bulk 13Corg values and Corg/Ntot ratios have been popular as fast and low-

cost proxies to assess the relative proportions of aquatic and terrigenous organic matter 

in sediments, typically using two end-member values for aquatic and terrestrial plant 

biomass. However, due to the diagenetic continuum from plant litter to heavily degraded 

soil organic matter a single terrestrial end-member does not exist. In fact, degradation of 

terrigenous organic matter in soils can produce a terrestrial sedimentary organic matter 

fraction with bulk 13Corg values and Corg/Ntot ratios similar to those characterizing 

organic matter from aquatic sources, leading to severe underestimation of terrestrial 

organic matter burial and erroneous carbon budgets (Holtvoeth et al. 2005). 

Nevertheless, as bulk 13Corg values and Corg/Ntot ratios of sediments with high 

allochthonous organic matter input can also be determined by changes in terrestrial 

organic matter quality rather than quantity, these proxies can help identifying phases of 

enhanced soil erosion and associated soil organic matter supply, in particular, if bulk 

data of potential soil sources is available. In metal-rich soils such as tropical and 
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subtropical lateritic soils, organic compounds can be bound firmly to the clay fraction 

through coupling to the metal oxyhydroxides that cover the clay mineral surfaces. Such 

stabilized organic matter can be detected by Rock-Eval pyrolysis as it is broken up into 

volatile compounds at significantly higher temperature compared to non-bound soil 

organic matter (Holtvoeth et al. 2005). 

5. Climate forcing versus land-use change 

Untangling climate versus anthropogenic induced landscape change is often challenging. 

This holds particularly true when climate change temporally coincides with the first 

arrival of humans at a study site and/or technological advancements in the society. The 

first step to untangle these two potential causes of landscape change is to reliably 

establish a record of regional climate change and anthropogenic occupation. This can be 

obtained for example by means of traditional palaeo-climate proxy analyses on a 

palaeoclimate archive, and by means of archeological and/or historical research. Human 

presence in a given catchment can also be confirmed by the occurrence of cultivated 

pollen taxa in a depositional archive. In the Mediterranean realm, for example, the 

occurrence of taxa such as Juglans (walnut), Olea (olive), Castanea (chestnut) and 

Cerealia (group of herbaceous taxa indicating the presence of fields) are used as 

widespread indicators of increasing human activity (Mercuri et al. 2013; 

Panagiotopoulos et al. 2013; Masi et al. 2018). Distinction of natural and anthropogenic 

causes of landscape change, as inferred from previously discussed geochemical 

methods, is then often based on the pure absence or presence of climate change , first 

human occupation, or technical advancements in the society (e.g. Rothacker et al. 2018). 

In some cases, the occurrence of distinct depositional features, such as colluvium 

deposits in central Europe (cf. section 2), are interpreted as stand-alone indicators of 

human land use and the erosion of bare soils (Dotterweich 2013). Land-use change for 

settlement and agricultural purposes is often associated with the initial clearance of the 

pre-existing (natural) vegetation and more or less substantial earthworks, from simple 

field clearance or construction of a drainage system to terracing slopes, leading to at 

least temporary soil destabilization and erosion. Both vegetation change and soil erosion 

can be recognised as such in depositional environmental archives through the 

application of geochemical approaches described above.  

In addition, there are biogeochemical tools that identify human activity as the main 

driver of observed environmental change, beyond timing and rate of change. Land 
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clearance is frequently associated with burning of the original vegetation, as are 

agricultural practices such as stubble burning. This can be seen in depositional archives 

as increasing amounts of charred particulate material (charcoal, black carbon) as well as 

molecular combustion products such as monosaccharide anhydrides (MAs) and 

polycyclic aromatic hydrocarbons (PAHs). The latter are produced from incomplete 

combustion of organic matter while the former derive from the combustion of cellulose 

and hemicellulose (Simoneit 2002). While PAHs and MAs are also a product of natural 

wild fires, an increase in the amount of PAHs beyond the natural background level likely 

indicates human activity (e.g. D'Anjou et al. 2012). 

Some crops biosynthesize species-specific biomarkers or have a distinct isotope 

fingerprint and that confirms their cultivation in a catchment if observed in sediments. 

Gramineae produce a range of pentacyclic triterpenoids (Jacob et al. 2005) of which 

miliacin has been successfully used as indicator for the cultivation of millet in a 

lacustrine catchment (Jacob et al. 2008). A more recent major crop in many parts of the 

world outside the Americas is maize, which is a C4 grass and thus produces 13C-enriched 

compounds that can be used to reconstruct its introduction in agricultural production 

(Tankersley et al. 2019). Human settlement and animal husbandry also produce large 

amounts of fecal material that is easily mobilized and exported towards a depositional 

archive. The presence of fecal material is revealed by the sterols coprostanol (5-

cholestan-3-ol) and epicoprostanol (5-cholestan-3-ol) that are formed from 

cholesterol in the intestines of higher mammals, including humans. In human feces, 

coprostanol is the main sterol while epicoprostanol is absent (Leeming et al. 1994). 

Concentrations of both compounds relative to other sterols can therefore be used as 

indicators for manure or sewage contamination in soils and sediments (Sherwin et al. 

1993; Bull et al. 2002; Cordeiro et al. 2008) and also, therefore, in palaeodemography to 

indicate the establishment of larger human settlements or changes in farming practices 

(D'Anjou et al. 2012; White et al. 2018).  

6. Outlook 

Research on Quaternary landscape evolution is a necessity in securing soils as one of our 

most important resources in the light of increasing pressure by rapid climate change 

and land use, (section 1). Applying the reviewed methods in palaeo-records allows for 

the identification and understanding of feedbacks and links between climate forcing, 

vegetation development, and land use. The geochemical methods are typically applied to 
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archives recording millennial to multi-millennial timescales (Table 1), with the 

exception of the geochemical analysis of varved lake sediment records (sections 2, 3.1). 

However, the timescale of socio-economically relevance to securing soil resources is 

decades or centuries. Implementing findings of Quaternary landscape evolution into 

policies based on micro- to macro-scale soil erosion modelling (e.g. Panagos and 

Katsoyiannis 2019) or global-scale land use change projections (e.g. Ostberg et al. 2018) 

remains a challenge. Quantifying the boundaries of (bio-)geochemical and physical 

processes in the Critical Zone’s evolution on geological time scales, in particular at times 

where tipping points in the landscape’s evolution are crossed, can improve the precision 

of modelling attempts on time scales of socio-economically relevance (section 6.1 and 

6.2). 

6.1 Future directions 

Terrestrial land cover change is an essential part of the climate system: it affects the 

albedo (vegetation cover), terrestrial biogeochemical and geochemical cycles, and 

marine fertilisation by nutrient supply. Earth system models (ESM) and general 

circulation models (GCM) implement vegetation and “land-use harmonization” (LUH) 

models to account for feedbacks between the climate system and the landscape (Ma et 

al. 2019). LUHs are thereby based on landscape models such as HYDE (Klein Goldewijk 

et al. 2017) or KK10 (Kaplan et al. 2009), predicting anthropogenic land cover change 

over time. These models are based on population history estimates, population density, 

and gridded datasets of land suitability for agriculture and pasture (Kaplan et al. 2009; 

Klein Goldewijk et al. 2017) and therefore inherently contain large uncertainties (Li et 

al. 2020). Other approaches in modelling land-cover change on geological timescales 

focus on pollen-based reconstructions inferred from palynological archives such as 

peats and/or lake sediments. These models estimate vegetation compositions in the 

geological past at local catchment to regional/continental scale (e.g. Europe, temperate 

China), and are based on pollen reconstructions from individual depositional archives 

(Local Vegetation Estimates, LOVE) and multiple records with large catchments 

(Regional Estimates of Vegetation Abundance, REVEALS, Sugita 2007a, b; Trondman et 

al. 2015; Li et al. 2020). None of the aforementioned models, however, directly 

implements quantitative estimates of erosion, silicate weathering, and soil-biosphere 

evolution, i.e. processes that have a major control on landscape evolution, vegetation 

development and atmospheric CO2 drawdown and, thus, on the climate system. 
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Quantitative models of Quaternary landscape evolution coupling forcing, feedbacks, and 

interaction between climate, vegetation, land use and the Critical Zone are therefore 

needed to improve ESMs and GCMs that focus on decadal to centennial time scales. Such 

models need to be evaluated against quantitative proxy-based reconstructions of 

landscape change. Being capable of feeding such models with quantitative Quaternary 

landscape data can help to improve the accuracy of local to global scale management 

plans. 

Developing model-proxy comparisons is of particular importance for major terrestrial 

carbon sinks such as tropical forests and permafrost soils (Lewis et al. 2009; Koven et al. 

2011). Anthropogenic or natural deforestation in the tropics reduces their capacity as a 

carbon sink while accelerated erosion mobilises old carbon and prevents the recovery of 

tropical forests as carbon sink (Drake et al. 2019). Thawing of permafrost soils in 

response to climate warming could accelerate topsoil erosion and thus the amount of 

greenhouse gases released into the atmosphere from polar regions, which is already 

taking place today (Koven et al. 2011). More quantitative data in space and time about 

landscape evolution in these key areas can help to better understand processes related 

to tipping points in the climate system (Lenton et al. 2019). Implementing information 

inferred from methods reviewed herein could thus help improve catchment-, regional-, 

and global-scale management plans to mitigate the impact of environmental change on 

decadal to centennial time scales. 

6.2 Requirements to achieve future directions  

The ultimate goal of developing and improving quantitative models describing the 

Critical Zone’s evolution on geological time scales still requires significant progress in 

our capability to quantify biogeochemical, physical, and chemical processes in the 

Earth’s surface. Advancements in more sophisticated geochemical analytical methods, 

further developments of existing methods, more inter-comparisons between the 

different methods (interdisciplinary approaches), and accessible data storage of 

quantitative Quaternary landscape change through space and time are all required , as 

outlined in more detail below. 

More analytical techniques to better infer palaeo-erosion rates that are independent of 

the amount of material deposited are still required to improve our capability to quantify 

landscape evolution at a given time in the geological past. Erosion rates inferred from 

the amount of detrital matter being deposited (e.g. in colluvial deposits or a lake basin) 
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are biased since not all mobilised material is stored in the analysed archive. Most 

promising methods for estimating palaeo-erosion rates are in-situ cosmogenic nuclides 

and U isotopes. U isotopes benefit from its applicability to fine-grained sedimentary 

archives, which form most continuous, highly resolved palaeoenvironmental archives. 

Such archives can also be used to study past weathering intensities (radiogenic 

isotopes) and terrestrial habitat change (organic geochemistry) simultaneously. Ideally, 

geochemical data is also combined with biogenic proxies (pollen) and archaeological 

data to reconstruct the separate evolution of past climate, vegetation, soil erosion, 

weathering and their relationships to human activities over the last few millennia 

(Bayon et al. 2019).  

Databases such as for example OCTOPUS for cosmogenic nuclide-derived denudation 

rates (Codilean et al. 2018) need to be extended to store different types of data provided 

by the geochemical methods reviewed herein. Expansion of such databases will require 

larger datasets, both in terms of sample count and the number of methods applied, and a 

database structure that provides fast and easy navigation through space and time. 

Combining the information obtained from different archives and methods also requires 

precise chronological alignments, which are particularly difficult to obtain in non-

continuous sedimentary environments.  

If data from different geochemical methods are increasingly combined there is also a 

need for the development of more sophisticated numerical models to analyse large sets 

of quantitative data. Challenges might also arise in the combination of different methods. 

For instance, cosmogenic nuclides and uranium isotopes provide quantitative estimates 

about catchment erosion, but the numerical output is provided in loss of soil thickness 

per year (usually in mm/yr) for cosmogenic nuclides, and as catchment residence time 

(usually in kyr, i.e. time between comminution and final deposition) for uranium 

isotopes. This task becomes even more complex when quantitative data (e.g. for 

catchment erosion) is compared to more semi-quantitative and qualitative data (e.g. 

biogeochemical cycles, terrestrial habitat change, or weathering intensities) across 

different sites. 

7. Conclusions  

An extensive portfolio of organic and inorganic geochemical methods have become 

available to study the three main elements controlling the Critical Zone’s evolution over 

time: (a) silicate weathering and the in-situ formation of regolith (using elemental 
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ratios, Sr, Hf, inorganic C isotopes), (b) erosion and transport (sediment accumulation, 

cosmogenic nuclides, U isotopes, elemental ratios), and (c) terrestrial habitats and 

biogeochemical cycles (organic geochemistry). Some methods are now routinely applied 

in Quaternary landscape research (such as for example cosmogenic nuclides, element 

geochemistry and organic geochemistry), while other relatively new methods show 

increasing evidence about their potential (e.g. metal stable and radiogenic isotopes). 

Developing and implementing new methods (such as U isotope as quantitative measure 

for catchment erosion) is in particular necessary to improve our capabilities in inferring 

more quantitative estimates about Quaternary landscape change. 

There is a strong need for further multiproxy and multidisciplinary studies combining 

the methods in sedimentary archives reviewed. For instance, organic geochemical 

methods (providing insights soil organic matter mobilisation, BIT index) compared with 

methods used for the reconstruction of weathering and erosion (e.g. element 

geochemistry, metal and radiogenic isotopes) can provide a comprehensive picture 

about Critical Zone’s evolution over time. Such research has a high potential to provide 

better insights on internal feedback mechanisms between weathering, erosion, and 

terrestrial habitat change that can amplify or mitigate the Critical Zone’s response to 

climate forcing and land use. Such findings would also have a high significance to 

improving Earth System and General Circulation Models, since terrestrial-atmospheric 

interactions are an essential part of our climate system.  

 

Table 1: Key literature for each reviewed geochemical method. This list encompasses 

journal articles introducing new methods and comprehensive reviews. 

Reference  Reference 

Type 

Significance  

Dreibrodt et 

al. (2010) 

Review Review about the potential and limitations using geochronolgical 

and classical sedimentary in formation from continuous and 

discontinuous archives displayed in Fig. 1. 
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(Dotterweich 

2008, 2013) 

Reviews European (2008) and global (2013) synthesis on catchment 

erosion: Methods and major findings  

Croudace et Journal Descriptions, evaluations, and introduction of XRF-core scanning E l e m e n t g e o c h e m i s t r y
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al. (2006) Article technologies  

Davies et al. 

(2015)  

Book Chapter In-depth review of literature using XRF-core scanning elements 

and elemental rat io on lacustrine sediments for reconstruction of 

catchment erosion 

Arnaud et al. 

(2016) 

Review Review focusing on methodological approaches to reconstruct 

erosion using XRF core scanning technologies with a part icular 

focus on flood dynamics. Regional focus on the European Alps. 

(Croudace et 

al. 2019a, b) 

Journal 

Articles 

State of the art and future perspectives of X-ray core scanner 

technologies. Both manuscripts are part  of a special issue 

“Advances in Data Quantification and Application of high 

resolution XRF Core Scanners” 

Leng and 

Barker (2006) 

Book Comprehensive introduction to the application of stable (carbon) 

isotopes in palaeoenvironmental research for lacustrine, marine, 

and speleothem archives. 
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Leng and 

Marshall 

(2004) 

Review  Comprehensive review on the application of stable, non-metal 

isotope analyses as palaeoclimate and –environmental proxy. 

DePaolo  et al. 

(2006) 

Journal article Introduction of U isotope analyses as measure for sediment 

transport time and catchment erosion 
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Dosseto and 

Schaller 

(2016) 

Review article Comprehensive review of limitations and potential of uran ium and 

cosmogenic nuclide analyses as measure for catchment erosion 

Banner (2004) 

and Blum and 

Erel (2003) 

 

 

Review 

articles 

These two articles provide generalities on radiogenic isotope 

systems and on their general behaviour during continental 

weathering.  Various examples are g iven on their application in 

the sedimentary record  (Banner, 2004) and in hydrological studies 

(Blum and Erel, 2003).   

Dunai (2010) Book Provides a comprehensive and accessible introduction to 

cosmogenic nuclide analysis. More recent reviews also include 

Granger et al (2013) and Granger and Riebe (2014). Also relevant, 

although now outdated, is the EPSL Frontiers paper by von 

Blanckenburg (2005). 

In
-s

it
u

 c
o

sm
o

g
e
n

ic
 n

u
c
li

d
e
 (

S
e
c
ti

o
n

 3
.4

) 

(Bierman et 

al. 2002;  

Niedermann 

2002) 

Book chapters Despite their age, both texts are useful to those looking for an 

introduction to the technique in that they present details on sample 

preparation and Be and Al chemistry (Bierman et al, 2002), and 

Ne and He isotope systematics (Niedermann et al 2002). 

Granger 

(2006) 

Book chapter Comprehensive review of 
26

Al-
10

Be burial dating with examples 

of applications to geology and geomorphology. 

Balco and Journal article The first paper to describe an 
26

Al-
10

Be isochron method for 
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Rovey (2008) cosmogenic-nuclide dating of buried soils and sediments. 

Hidy et al. 

(2010) 

Journal article Describes a Monte Carlo approach to modelling exposure ages 

from depth-profiles of cosmogenic nuclides. Also produced a set 

of MATLAB scripts for this purpose that have been widely used 

by the research community. 

Peters et al. 

(2005) 

Book Detailed introduction of the biomarker concept, explaining the 

origins of biomarkers, analytical techniques and applications in 

environmental and archaeological research. 
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Freeman and 

Pancost 

(2014) 

Book/Review Compact rev iew of biomarker applications for the reconstruction 

of terrestrial environmental change. 

Holtvoeth et 

al. (2019) 

Review Comprehensive review of princip les and applications of 

compound-specific isotope analyses (CSIA) for lacustrine 

sediments. 

Fuhrmann et 

al. (2003) 

Journal article Example of a multi-method palaeoenvironmental study applying 

bulk proxies, biomarker analyses , compound-specific isotope 

analyses and organic petrology. 

 

Table 2: Applicability of the methods reviewed 

Method Sediment 

composition / 

mineralogy 

Grain size Applicable 

time s pan 

(ka) 

Catchment 

geology 

Information 

derived 

Quantitative 

/ 

Qualitative* 

Sediment 

chronology 

Depending on 

dating method 

Depending 

on dating 

method 

Depending 

on dating 

method 

Depending 

on dating 

method 

Sediment 

accumulat ion 

/ erosion 

Quantitative 

/ Qualitative 

Element 

geochemistry 

Usually 

siliciclastic 

sediments  

No 

limitations 

No 

limitations 

No 

limitations 

Erosion and 

weathering 

Qualitative 

Bulk 

inorganic 

carbon 

isotopes 

Authigenic or 

endogenic 

carbonates 

n/a No 

limitat ions / 

depending on 

preservation 

No 

limitat ions, 

limestone-

rich 

catchment 

for 

application 

on 

carbonates 

Soil 

evolution, 

limestone 

weathering 

Qualitative 

U isotopes siliciclastic 

sediments 

<63µm (silt 

and clay) 

>1 ka 

< 400 ka 

Usually 

bedrock 

older 1 Ma 

Erosion, 

sediment 

residence 

time (in  

kyrs) 

Quantitative 

Hf, Nd, Pb  

isotopes 

siliciclastic 

sediments, 

authigenic Fe-

oxide minerals 

Clay-size 

sediments 

No 

limitations 

No 

limitations 

Weathering, 

sediment 

provenance 

Qualitative 

(weathering), 

quantitative 

(provenance) 

Cosmogenic 

nuclides 

Quartz >150 µm. 

Most 

common for 

Limited by 

half-life of 

chosen 

Quartz 

bearing 

lithologies 

Erosion rate 

(in  mm/kyr);  

sediment 

Cosmogenic 

nuclides 
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basin wide 

denudation 

studies: 250 

– 500 µm. 

depth-

profile 

dating and 

burial dating 

studies: 

pebbles to 

cobbles 

nuclide or 

nuclide pair;  

Burial ages 

from a few 

ka (
14

C-
10

Be 

pair) to 10 

Ma (
10

Be-
21

Ne pair) 

deposition 

age (kyr to 

Myr) 

Organic 

geochemistry 

Organic matter No 

limitations 

No 

limitations 

No 

limitations 

Terrestrial 

habitat 

change, soil 

organic 

matter 

supply 

 Qualitative 

*Highlights if quantitative or qualitative data about landscape evolution (e.g. erosion 

rates in mm/yr) are provided. 
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