nerc.ac.uk

Using a calibrated upper living position of marine biota to calculate coseismic uplift: a case study of the 2016 Kaikōura earthquake, New Zealand

Reid, Catherine; Begg, John; Mouslopoulou, Vasiliki; Oncken, Onno; Nicol, Andrew; Kufner, Sofia-Katerina ORCID: https://orcid.org/0000-0002-9687-5455. 2020 Using a calibrated upper living position of marine biota to calculate coseismic uplift: a case study of the 2016 Kaikōura earthquake, New Zealand. Earth Surface Dynamics, 8 (2). 351-366. https://doi.org/10.5194/esurf-8-351-2020

Before downloading, please read NORA policies.
[img]
Preview
Text (Open Access)
© Author(s) 2020.
esurf-8-351-2020.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (13MB) | Preview

Abstract/Summary

The 2016 Mw=7.8 Kaikōura earthquake (South Island, New Zealand) caused widespread complex ground deformation, including significant coastal uplift of rocky shorelines. This coastal deformation is used here to develop a new methodology, in which the upper living limits of intertidal marine biota have been calibrated against tide-gauge records to quantitatively constrain pre-deformation biota living position relative to sea level. This living position is then applied to measure coseismic uplift at three other locations along the Kaikōura coast. We then assess how coseismic uplift derived using this calibrated biological method compares to that measured using other methods, such as light detection and ranging (lidar) and strong-motion data, as well as non-calibrated biological methods at the same localities. The results show that where biological data are collected by a real-time kinematic (RTK) global navigation satellite system (GNSS) in sheltered locations, this new tide-gauge calibration method estimates tectonic uplift with an accuracy of ±≤0.07 m in the vicinity of the tide gauge and an overall mean accuracy of ±0.10 m or 10 % compared to differential lidar methods for all locations. Sites exposed to high wave wash, or data collected by tape measure, are more likely to show higher uplift results. Tectonic uplift estimates derived using predictive tidal charts produce overall higher uplift estimates in comparison to tide-gauge-calibrated and instrumental methods, with mean uplift results 0.21 m or 20 % higher than lidar results. This low-tech methodology can, however, produce uplift results that are broadly consistent with instrumental methodologies and may be applied with confidence in remote locations where lidar or local tide-gauge measurements are not available.

Item Type: Publication - Article
Digital Object Identifier (DOI): https://doi.org/10.5194/esurf-8-351-2020
ISSN: 2196-632X
Date made live: 25 May 2020 07:49 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/527811

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...