nerc.ac.uk

Identifying geogenic and anthropogenic controls on different spatial distribution patterns of aluminium, calcium and lead in urban topsoil of Greater London Authority area

Meng, Yuting; Cave, Mark; Zhang, Chaosheng. 2020 Identifying geogenic and anthropogenic controls on different spatial distribution patterns of aluminium, calcium and lead in urban topsoil of Greater London Authority area. Chemosphere, 238, 124541. https://doi.org/10.1016/j.chemosphere.2019.124541

Full text not available from this repository. (Request a copy)

Abstract/Summary

Quantifying variation of metals in urban soils is crucial for efficient environmental and public health management. Prior to the interferences of human activities, regional topsoil geochemical distributions were generally primarily controlled by the underlying parent materials (PMs). With the rapid urbanisation, urban topsoil geochemical distributions have been modified with different levels. Three metals, aluminium (Al), calcium (Ca) and lead (Pb), were chosen to investigate the different levels of geogenic and anthropogenic controls in urban topsoil of Greater London Authority (GLA) area. These three metal elements clearly demonstrated the different spatial distribution affected by human activities using analysis of variance (ANOVA) and GIS-based spatial analysis. The high values of Al were in the clay which is located in the north and south GLA area; Pb accumulated in built-up areas and near traffic roads, which was likely associated with leaded paints and leaded petrol, respectively; the high Ca concentrations were in the Chalk bedrock of the southern GLA area and historical deconstruction and reconstruction sites in the city centre. Based on spatial interpolation and hot spot analysis (local Moran's I), this study reveals the different levels of geogenic and anthropogenic controls on different chemicals in urban soils: while the spatial distribution of Pb, which is more easily affected by human activities, can be significantly changed, the inert element Al may still be able to maintain its natural spatial distribution even in the heavily urbanized GLA area, and Ca demonstrates the mixed spatial distribution affected by both natural factors and human activities.

Item Type: Publication - Article
Digital Object Identifier (DOI): https://doi.org/10.1016/j.chemosphere.2019.124541
ISSN: 00456535
Date made live: 04 Mar 2020 14:27 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/527165

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...