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Abstract 23 

 24 

Deep-sea sponge aggregations are widely recognised as features of conservation interest and 25 

vulnerable marine ecosystems that may particularly require protection from the impact of 26 

commercial bottom trawl fishing. In 2011 we revisited deep-sea sponge aggregations in the 27 

Porcupine Seabight (NE Atlantic, c. 1200 m water depth) originally described by Rice, 28 

Thurston and New (1990, Prog. Oceanogr. 24: 179-196) from surveys in 1983/4. Using an 29 

off-bottom towed camera system, broadly comparable to the bottom-towed system originally 30 

employed, we resurveyed four key transects detailed in that publication. In the intervening 31 

years, there has been a substantial increase in deep-water fishing activity; our primary 32 

objectives were therefore to establish the continued presence of Pheronema carpenteri 33 

(Hexactinellida, Pheronematidae), the current status of the sponge population, and whether 34 

there was any evidence of bottom trawl fishing impact on the sponges and their associated 35 

fauna. We noted a very substantial reduction in the standing stock of sponges: in Rice et al.'s 36 

(loc. cit.) peak abundance depth range (1210 – 1250 m) numerical density declined from 1.09 37 

to 0.03 ind m-2, and biomass density from 246 to 4 gwwt m-2, between the surveys. Our 38 

assessment of available vessel monitoring data suggested that commercial bottom trawling 39 

had been occurring in the area, with some indication of focussed effort in the sponge's 40 

bathymetric range. We also recorded the presence of multiple apparent seafloor trawl marks 41 

on two of the transects. Despite the potential disturbance, the presence of sponge 42 

aggregations continued to exert a statistically significant positive influence on the diversity of 43 

the local megafaunal assemblage. Similarly, faunal composition also exhibited a statistically 44 

significant trend with P. carpenteri numerical density. Megafaunal numerical density, 45 

particularly that of ascidians, appeared to be enhanced in the core of Rice et al.'s (loc. cit.) 46 

peak abundance depth range, potentially reflecting the residual effect of sponge spicule mats. 47 

Our observations were suggestive of a substantive impact by bottom trawl fishing; however, 48 

a definitive assessment of cause and effect was not possible, being hampered by a lack of 49 

temporal studies in the intervening period. Other causes and interpretations were plausible 50 

and suggested the need for: (i) a precautionary approach to management, (ii) an improved 51 

understanding of sponge natural history, and (iii) temporal monitoring (e.g. seafloor sponge 52 

habitat cover). 53 

 54 
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Graphical abstract 55 

 56 

 57 

Highlights 58 

 Deep-sea sponge aggregations identified in the 1980s were resurveyed in 2011 59 

 Sponge (Pheronema carpenteri) standing stocks had declined by an order of magnitude 60 

 Seafloor trawl marks were observed in the sponge grounds 61 

 Vessel monitoring data indicated commercial bottom trawling effort in the area 62 

 Without protection this deep-sea habitat, and its species, may continue to decline 63 

 64 
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1. Introduction 70 

The first deep-sea sponge aggregations to be highlighted were those discovered in 1868 from 71 

HMS Lightning at about 1000 m water depth just to the south of the Wyville Thomson Ridge, 72 

NE Atlantic (Thomson, 1873). These aggregations, originally described as the “Holtenia 73 

Ground”, were found to support a high associated biological diversity (Thomson, 1869). 74 

“Holtenia” is the glass sponge now known as Pheronema (Hexactinellida). The UK National 75 

Oceanography Centre (as the Institute of Oceanographic Sciences) undertook extensive 76 

surveys of the Porcupine Seabight, SW of Ireland, between 1977 and 1986 (Rice et al., 1991). 77 

These included the discovery and description of dense aggregations of Pheronema carpenteri 78 

(Thomson, 1869), centred around 1200 m water depth (Rice et al., 1990). Subsequently, the 79 

sponge spicule mat habitat from the core of the sponge aggregation (c. 1240 m water depth) 80 

was found to be associated with substantially increased macrofaunal abundance and diversity 81 

(Bett and Rice, 1992). Rice et al. (1990) estimated a maximum P. carpenteri numerical 82 

density of 1.5 ind m-2 and a biomass density of c. 400 gwwt m-2 and suggested local 83 

enhancement of bottom water currents as the probable cause of the mass aggregations. P. 84 

carpenteri is now known to form aggregations on various NE Atlantic slopes and banks 85 

(Narayanaswamy et al., 2013; McIntyre et al., 2016). Other large populations have been 86 

recorded: off Morocco (Barthel et al., 1996), Bay of Biscay (OSPAR, 2010), Cantabrian Sea 87 

(Sánchez et al., 2008), Greenland (Burton, 1928), Norway (Klitgaard and Tendal, 2004) and 88 

the Mid-Atlantic Ridge south of Iceland (Copley et al. 1996). Modelling the available 89 

presence data, Howell et al. (2016) indicated that water depth and bottom water temperature 90 

were the best predictors of the distribution of these P. carpenteri aggregations. 91 

 92 

The presence of substantial sponge populations can increase local habitat complexity and 93 

may enhance ecosystem functioning by providing refugia to a wide range of organisms 94 

(Kenchington et al., 2013), substratum for sessile fauna, and habitat for an abundant and 95 

diverse associated fauna (Bett and Rice, 1992; Klitgaard, 1995; Beaulieu, 2001; Kazanidis et 96 

al., 2016). As a result of their nutrient remineralisation role in carbon and silicon cycles (Chu 97 

et al., 2011; Maldonado et al., 2011; Rix et al., 2016), sponges may also contribute to pelagic-98 

benthic coupling (Yahel et al., 2007; Bell, 2008; Kahn et al., 2015). Sponge habitats are often 99 

referred to as ecological “hotspots”, areas of enhanced biological diversity (Beazley et al., 100 

2015), and ecosystem function (Cathalot et al., 2015), and of potential importance to fisheries 101 
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(Bailey et al., 2009; Hogg et al., 2010; Priede et al., 2011; Pham et al., 2015). Sponge 102 

aggregations are considered to be vulnerable marine ecosystems (VMEs; UNGA, 2006; FAO, 103 

2009), and are listed as “Threatened and/or Declining” habitats (OSPAR, 2008). Bottom 104 

trawl fishing has likely impacted European deep-sea habitats for over 100 years (Thurstan et 105 

al., 2010). The effects of bottom trawling on benthic communities are often direct and 106 

immediate, and may persist for decades. Direct and indirect effects of bottom-contact fishing 107 

gears include direct biomass removal and other damage to benthic communities, increased 108 

sediment resuspension / redeposition, with consequent changes in the geochemical and 109 

physical properties of the sediments and modified seafloor topography (Puig et al., 2012; 110 

Clark et al., 2016; Amaro et al., 2016; Huvenne et al., 2016). It is, therefore, likely that the 111 

benthic communities of many continental slope areas have already been significantly 112 

modified by bottom trawling (Roberts et al., 2000; Gage et al., 2005; Puig et al., 2012). Our 113 

understanding of these impacts is hampered by limited direct observations, knowledge gaps 114 

concerning the structure and function of deep-sea ecosystems, and natural variations in time 115 

and space (Glover et al., 2010; Ruhl et al., 2011; Levin and Sibuet, 2012; Vieira et al., 2019). 116 

 117 

In the present study, we specifically reoccupy the key photo-transects reported by Rice et al. 118 

(1990) as the core of the P. carpenteri distribution in the Porcupine Seabight. Our aim was to 119 

assess the current status of the sponge aggregations using comparable photographic survey 120 

methods, the intervening decades having seen the development of a substantive deep-water 121 

trawl fishery in the region (Bailey et al. 2009). Specifically, we aimed to address the 122 

following questions: 1) Are P. carpenteri aggregations still a dominant habitat-forming 123 

feature at those sites? 2) If so, have they changed in character, e.g. standings stocks, body 124 

size distribution, etc.? 3) Is there any evidence of bottom trawling in the study area? 4) And 125 

specifically, is there evidence of potential trawl impact within our new survey data? 126 

 127 

2. Material and Methods 128 

2.1. Photographic surveys 1983/4 129 

The surveys described by Rice et al. (1991) were undertaken using an IOS epibenthic sledge 130 

(see e.g. Gage and Bett, 2005), the design and operation of which is detailed by Rice et al. 131 

(1982). The sledge carried an IOS Mark IVa conventional film stills camera recording in 132 

half-frame 35 mm format (image c. 24 × 18 mm) and an IOS 10 J flashgun. The camera lens 133 
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was located c. 80 cm above the seafloor level and angled 30° below the horizontal. The 134 

proximal 3/4 of the resultant oblique image was analysed, representing c. 1.0 m2 (Rice et al., 135 

1982). The sledge was operated by reference to an acoustic telemetry system, enabling the 136 

user to record seabed contact, camera activation, and in situ (calibrated) pressure. The 137 

sledge's geographic position was estimated by 'lay-back' calculation, i.e. a distance behind the 138 

towing vessel based on the length of wire deployed and the water depth (from pressure) of 139 

the sledge. Consequently, geolocation is somewhat approximate, however, the depth of 140 

operation is well constrained and is used in the following comparative assessment. 141 

 142 

2.2. Photographic survey 2011 143 

Photographic transects were conducted in August 2011 from RRS James Cook cruise 062 144 

(Ruhl, 2012), at four sites in the northern Porcupine Seabight (Fig. 1; Table 1), as previously 145 

surveyed during the Institute of Oceanographic Sciences Porcupine Seabight Benthic 146 

Biological Survey (Rice et al., 1990). The 2011 transects were carried out using the National 147 

Oceanography Centre Wide-Angle Seabed Photography (WASP) off-bottom, towed camera 148 

system (Jones et al., 2009). WASP was towed at c. 0.5 knots, at about 1-3 m above bottom, 149 

by reference to an acoustic telemetry system. A vertically mounted, 35 mm film stills camera 150 

(Ocean Scientific International Limited Mk 7) was fitted during all deployments and 151 

augmented with an obliquely mounted digital stills camera (Kongsberg OE14-208). Note that 152 

images from the latter were only used for qualitative assessment. The processed 35 mm film 153 

negatives were digitised to 4096 × 3112 pixels; all faunal analyses reported here are based on 154 

data derived from those digitised images. For quality control, images taken outside a 1-3 m 155 

altitude range were discounted from the analyses, as were those where the full seafloor area 156 

was not visible (e.g. as a result of flash shadowing or sediment resuspension). In the 157 

remaining 1713 images, covering c. 5500 m2 seafloor area (Table 1), all invertebrate 158 

megafauna (body size > 1 cm; Bett, 2019) were identified to morphotype and counted. The 159 

identification process was informed by reference to extensive specimen collections of 160 

Porcupine Seabight megafauna available in the Discovery Collections at the National 161 

Oceanography Centre (Chidgey, 1983; Jackson et al., 1991) and by direct consultation with 162 

taxonomic experts (see Acknowledgements). Specimen body size and seafloor area imaged 163 

were estimated from camera altitude and the known optical geometry of the camera system 164 

(Jones et al., 2007). Geolocation and water depth data for the camera platform were derived 165 
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from an ultra-short baseline navigation transponder attached directly to the WASP vehicle 166 

(Ruhl, 2012). 167 

 168 

Figure 1. a) General location of the Porcupine Seabight (PSB; Porcupine Abyssal Plain, 169 

PAP; Rockall Trough, RT). b) General location of the study area (*) within the PSB 170 

(Porcupine Bank, PB; Goban Spur, GS). c) Locations of photosledge transects (lines) and 171 

other benthic samples (symbols) reported by Rice et al. (1990); solid symbols represent the 172 

presence and open symbols the absence of Pheronema carpenteri; thickened lines similarly 173 

mark the regions where P. carpenteri was present on transects (numbering, 5xxxx, refers to 174 

original station numbers). d) Location of the 2011 WASP camera system transects of the 175 
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present study, with corresponding station numbers (JC062-xxx) and site names (SITE x). 176 

Mercator projection.<1.5 column>  177 
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Table 1. Details of the photographic transects undertaken in the present study (2011), with 178 

corresponding station numbers as occupied by Rice et al. (1990) in 1983/4. 179 

Site 

1983/4 

station 

no. 

2011 

station 

no. 

Water 

depth 

(m) 

Central position Vertical 

images 

assessed 

Seabed area 

imaged 

(m2) 

Oblique 

images 

reviewed 

Latitude 

(°N) 

Longitude 

(°E) 

1 51709/24 JC062-141 1236-1249 51.676 -12.962 90 243 - 

1 51709/24 JC062-143 1203-1288 51.675 -12.963 353 1256 497 

2 52018 JC062-140 1227-1249 51.653 -13.007 221 563 - 

2 52018 JC062-142 1193-1266 51.656 -13.010 401 1183 37 

3 51734 JC062-144 1114-1184 51.515 -13.224 389 1422 471 

4 52022 JC062-145 1186-1246 51.350 -13.318 259 827 324 

 180 

2.3. Pheronema carpenteri 181 

The equatorial diameter of each observed specimen was measured and converted to estimated 182 

biomass using the equation provided by Rice et al. (1990): wet weight (g) = 0.0501 × 183 

(diameter, cm)3 + 27.9205. Sponge count and wet weight data from individual photographs 184 

were then compiled into 10 m bathymetric intervals and standardised to unit seabed area 185 

photographed. Differences in sponge numerical density and body size were assessed using 186 

the Wilcoxon paired sample signed-rank test and the two-sample Kolomogorov-Smirnov test 187 

respectively (e.g. Siegel and Castellan, 1988). 188 

 189 

2.4. Megabenthos assemblage analysis 190 

Composite samples were formed by pooling data from individual images, in water depth 191 

order within site, to contain c. 100 individuals. This was done to achieve a similar level of 192 

accuracy and precision in morphotype diversity and composition measures across the 193 

sampling units (Durden et al., 2016; Benoist et al., 2019). Variations in faunal diversity, as 194 

Hill’s diversity numbers N0 (species richness), N1 (exponential form of the Shannon index), 195 

and N2 (inverse form of Simpson’s index), together with corresponding 95% confidence 196 

intervals, were estimated for a rarefied sample size of 100 individuals using the iNEXT R 197 

package (Hsieh et al., 2016). Although rarefied, interpretation of variations in diversity was 198 

complicated by covariation in the seabed area assessed resulting from variation in megafauna 199 

density with depth and Site (see Sections 3 and 4). Among individual composite samples, the 200 

seafloor area assessed varied from 22 to 290 m2 (median 41 m2, interquartile range 60 – 88 201 

m2). Consequently, we carried out some exploratory assessments by simple and partial non-202 
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parametric Spearman’s rank correlation. Partial correlations were calculated using the R 203 

package 'ppcor' (Kim, 2015), and the p-values associated with the simple correlation values 204 

were adjusted for multiplicity using the false discovery rate method (Benjamini and 205 

Hochberg, 1995) in the R function 'p.adjust'. The relationships between diversity measures 206 

and the physical area of the sampling units indicated the need for caution in the interpretation 207 

of the diversity data (see Section 3). This was addressed by reference to the general case of 208 

the species-area-relationship, where a power function is thought to most appropriately 209 

describe that relationship (Dengler, 2009). Variations in diversity between sites were then 210 

assessed by an analysis of covariance incorporating that power function (i.e. log[number of 211 

taxa] ~ log[sampled area]) in a linear model, as implemented in Minitab 18.1 (Minitab Inc.). 212 

 213 

Variations in faunal composition were visualised by 2D non-metric multidimensional scaling 214 

(MDS) ordination following transformation of faunal density data to log(x + 1), to down-215 

weight the significance given to numerically dominant taxa, and the calculation of Bray-216 

Curtis similarities between samples. Follow-up investigations were carried out using 217 

Spearman’s rank correlation to assess trends, and analysis of similarities (ANOSIM) to assess 218 

variation between sites and apparent levels of bottom trawling. The multivariate techniques 219 

were implemented using PRIMER (V6.1.11, Quest Research Ltd; Clarke and Gorley, 2006). 220 

We should here note that the process of forming composite samples involved depth ordering 221 

of images within site; consequently, the resultant composite samples do not represent 222 

independent replicates of a given site and so violate the underlying assumptions of ANOSIM. 223 

This process enabled the examination of bathymetric trends; however, the results of direct 224 

between-site comparisons should be viewed with some caution. Consequently, we examined 225 

variations for the full 2011 data set and for a restricted set that included data only from a 226 

common water depth range. 227 

 228 

2.5. Bottom trawling indicators 229 

Seafloor images, including the oblique digital stills (Table 1), were reviewed for any 230 

evidence of bottom contact fishing activity. We recorded the number of trawl marks, 231 

discerned as various forms of parallel lineations in the seafloor, which could be ascribed to 232 

the effects of bottom-towed fishing gear (e.g. Bett, 2000). In addition, we examined the 233 

recorded annual bottom fishing intensity data available for the area in the OSPAR Data and 234 
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Information System (ODIMS; period 2009-2017; data accessed February 2019). These data 235 

estimate swept area ratio, seafloor area trawled per year / seafloor area, at a grid resolution of 236 

0.05 × 0.05 degrees. 237 

 238 

3. Results 239 

Our initial observations of the seafloor photographs from the 2011 survey indicated that 240 

individuals and aggregations of a hexactinellid sponge consistent with Pheronema carpenteri 241 

were still present at the locations originally documented by Rice et al. (1990), and indeed 242 

were abundant at Site 4 where they were previously rare (Fig. 2). Accepting differences in the 243 

angle of view and the camera altitude, there were no obvious gross differences in the 244 

appearance of the sponges or the seafloor environment between the surveys conducted in 245 

2011 and 1983/4 (or 1991; Rice, 1992; Bett and Rice, 1992). 246 

 247 

3.1. Pheronema carpenteri 1983/4 versus 2011 248 

Across commonly assessed 10 m depth intervals, 1110-1290 m, the geometric mean density 249 

of P. carpenteri appeared to have dropped c. 20-fold between the 1983/4 surveys and the 250 

2011 survey. The geometric mean density in 1983/4 was 0.39 (95% CI 0.27-0.56) ind m-2; in 251 

2011 the geometric mean density for Sites 1-4 was 0.02 (0.01-0.05) ind m-2, and for Sites 1-3 252 

(most directly comparable with Rice et al., 1990) it was 0.02 (0.01-0.03) ind m-2. When 253 

compared as samples paired by depth, across the commonly assessed 10 m depth intervals, 254 

Wilcoxon paired-sample signed rank tests of 1983/4 and 2011 suggested a highly significant 255 

difference (V = 171, p < 0.001) for both the Sites 1-4 and Sites 1-3 combined data (Fig. 3). A 256 

similar change in biomass density seems likely, although this cannot be formally assessed 257 

(see further in section 4.2.). Maximum recorded biomass declined by an order of magnitude 258 

between the 1983/4 and 2011 surveys (Table 2). 259 

 260 
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 261 

Figure 2. (a-e) Examples of Pheronema carpenteri observed in 2011 oblique and vertical 262 

images. (f, g) Examples of abundant large ascidians observed in 2011. (h, i) Examples of 263 

presumed seafloor trawl marks observed (at Site 4) in 2011.<2 column>  264 
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 265 

Figure 3. Variation in the numerical density of Pheronema carpenteri with water depth, in 266 

10 m horizons, as recorded during 1983/4 and 2011 surveys.<1.5 column> 267 

 268 

Table 2. Summary statistics of Pheronema carpenteri specimens assessed in the present 269 

survey, 2011, and during 1983/4 surveys by Rice et al. (1990). 270 

 Site 1 Site 2 Site 3 Site 4 

Survey 1983/4 2011 1983/4 2011 1983/4 2011 2011 

Total specimens assessed 156 30 130 62 170 54 168 

Overall mean diameter (cm) 17 12 13 14 16 14 5 

Max. density in 10 m depth band (ind m-2) 1.60 0.04 1.40 0.07 0.80 0.20 0.64 

Max. biomass in 10 m depth band (gwwt m-2) 453 4 204 16 199 14 21 

Max. density in single image (ind m-2) 4.00 1.15 5.00 1.48 2.50 1.89 7.80 

Max. biomass in single image (gwwt m-2) 1131 310 729 111 498 82 235 

 271 

There was a substantial shift in the distribution of sponge equatorial diameters between the 272 

1983/4 and the 2011 surveys (Fig. 4). Two-sample Kolmogorov-Smirnov tests of all 1983/4 273 

data with 2011 data from Sites 1-4 (D = 0.660) and Sites 1-3 (D = 0.296) yielded statistically 274 

significant differences in both cases (p < 0.001). Similar results were returned when those 275 

comparisons were limited to the commonly reported range of equatorial diameters between 276 
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1983/4 and 2011 (5-23 cm); all 1983/4 data with all 2011 data from Sites 1-4 (D = 0.521) and 277 

Sites 1-3 (D = 0.277), with statistically significant differences in both cases (p < 0.001; Fig. 278 

4). 279 

 280 

 281 

Figure 4. Size frequency distribution of Pheronema carpenteri as observed in 1983/4 and 282 

2011 surveys. For presentation, sponge size range was truncated to the commonly observed 283 

range (5-23 cm diameter).<1 column> 284 

 285 

A formal statistical comparison of temporal change in the standing stock biomass of P. 286 

carpenteri between surveys is not possible. However, we are able to make a first order 287 

estimation using Rice et al.'s (1990) equation relating individual wet weight mass to 288 

equatorial diameter (Section 2.2). When assessed over the common water depth range 289 

surveyed at the same sites (1110 – 1290 m, Sites 1-3): the 1983/4 survey had a mean sponge 290 

diameter of 15.8 cm and a standing stock of 83 gwwt m-2 while the 2011 survey had a mean 291 

sponge diameter of 13.0 cm and a standing stock of only 2 gwwt m-2. When that assessment 292 

was limited to Rice et al.'s (1990) peak density depth range (1210 – 1250 m) the decline was 293 

even more marked, from 246 gwwt m-2 in 1983/4 to 4 gwwt m-2 in 2011. The modest 294 

reduction in equatorial diameter from 16 to 13 cm at Sites 1-3 between 1983/4 and 2011, 295 

nevertheless corresponds with a c. 50% drop in average individual body mass from 229 to 296 



15 

 

140 gwwt. That decline was even greater at Site 4, where average equatorial diameter in our 297 

2011 survey was only 4.7 cm, and the corresponding individual body mass 33 gwwt. 298 

 299 

3.2. Megafaunal diversity 2011 300 

The patterns in rarefied diversity measures were somewhat complex (Fig. 5), with enhanced 301 

diversity at the shallower Site 3, and some indication of a common increase in diversity with 302 

water depth among the data from Sites 1, 2, and 4. In terms of simple correlations, assessed 303 

across all samples, sampled seabed area was substantially and statistically significantly 304 

positively correlated (rs = 0.58-0.78, p < 0.001) with all three diversity measures (N0, N1, 305 

N2; Table 3). Note, however, that these relationships were not apparent when the data from 306 

individual Sites were assessed separately, i.e. the range in megafaunal density and therefore 307 

seabed area sampled was much reduced. Within individual Sites, there were appreciable and 308 

statistically significant positive correlations (rs = 0.45-0.71, p < 0.05) between water depth 309 

and rarefied taxon richness (N0). The apparent relationship between P. carpenteri density 310 

and faunal diversity was complicated; across all Sites there was a statistically significant 311 

moderate negative correlation (rs = -0.37, p < 0.05) with taxon richness (N0). In contrast, 312 

within Site 1, there were statistically significant strong positive correlations (rs = 0.82-0.89, p 313 

< 0.001) between P. carpenteri density and the N1 and N2 diversity measures. When water 314 

depth, P. carpenteri density, and seabed area sampled were jointly assessed in partial 315 

correlations with the diversity measures, all diversity measures exhibited statistically 316 

significant strong positive partial correlations (prs = 0.68-0.78, p < 0.001) with seabed area 317 

sampled. All diversity measures also exhibited statistically significant moderate positive 318 

partial correlations (prs = 0.29-0.45, p < 0.05) with P. carpenteri density. In addition, water 319 

depth exhibited a statistically significant modest positive partial correlation (rs = 0.28, p < 320 

0.05) with rarefied taxon richness (N0). 321 

 322 
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 323 

Figure 5. Variations in megafaunal assemblage diversity with water depth and Site observed 324 

in 2011 survey. Shown as Hill’s diversity numbers: (a) N0 (species richness), (b) N1 325 

(exponential Shannon index), and (c) N2 (inverse Simpson's index) rarefied to 100 326 

individuals and illustrated with corresponding 95% confidence intervals.<1.5 column> 327 

 328 

Table 3. Simple and partial Spearman’s rank correlations between rarefied diversity 329 

measures (N0, N1, N2) and potentially related variables (water depth, Pheronema carpenteri 330 

density, and sampled seabed area); adjusted p-values: * p < 0.05, *** p < 0.001. 331 

 332 

  

N0 

Species 

richness 

N1 

Exponential 

Shannon 

N2 

Inverse 

Simpson’s 

Simple correlation     

All sites (n = 77) Water depth 0.091 0.052 -0.019 

 P. carpenteri -0.364* -0.215 -0.086 

 Sampled area 0.778*** 0.709*** 0.583*** 

Site 1 (n = 15) Water depth 0.711* 0.579 0.475 

 P. carpenteri 0.457 0.825*** 0.893*** 

 Sampled area -0.231 0.055 0.086 

Site 2 (n = 31) Water depth 0.448* 0.294 0.180 

 P. carpenteri 0.142 0.302 0.346 

 Sampled area -0.128 0.099 0.195 
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Site 3 (n = 12) Water depth 0.636* 0.643 0.455 

 P. carpenteri 0.126 -0.189 -0.545 

 Sampled area 0.387 0.352 0.169 

Site 4 (n = 19) Water depth 0.574* -0.007 -0.240 

 P. carpenteri 0.318 -0.133 -0.291 

 Sampled area -0.418 0.163 0.431 

Partial correlation     

All sites (n = 77) Water depth 0.278* 0.222 0.095 

 P. carpenteri 0.292* 0.444*** 0.448*** 

 Sampled area 0.777*** 0.768*** 0.685*** 

 333 

Given the strong relationships between seabed area sampled and all three diversity measures, 334 

whether assessed by simple or partial correlation (Table 3), our subsequent analyses of 335 

between Site variations in diversity were undertaken with reference to covariation with 336 

seabed area sampled. In the case of rarefied species richness (N0), there was no statistically 337 

significant interaction between Site and sampled area (LM F[3,69] = 0.41, p = 0.748), but a 338 

statistically significant relationship between richness and area (ANCOVA F[1,72] = 34.48, p < 339 

0.001), and a statistically significant effect of Site (ANCOVA F[3,72] = 5.49, p = 0.002). 340 

Subsequent pairwise comparisons (5% Tukey) between Sites indicated statistically significant 341 

differences in richness in all comparisons with Site 4, but not in any other comparisons (Fig. 342 

6). In the case of the exponential Shannon index (N1), there was no statistically significant 343 

interaction between Site and sampled area (LM F[3,69] = 2.42, p = 0.073), but a statistically 344 

significant relationship between diversity and area (ANCOVA F[1,72] = 16.89, p < 0.001), and 345 

a statistically significant effect of Site (ANCOVA F[3,72] = 7.42, p < 0.001). Subsequent 346 

pairwise comparisons (5% Tukey) between Sites indicated statistically significant differences 347 

in diversity between Site 4 and Sites 1 and 3, but not Site 2 (Fig. 6). In the case of the inverse 348 

Simpson’s index (N2), there was a statistically significant interaction between Site and 349 

sampled area (LM F[3,69] = 3.75, p = 0.015). Consequently, between Site comparisons were 350 

limited to a one-way ANOVA, which indicated a statistically significant effect of Site 351 

(Welch’s test F[3,30.3] = 19.23, p < 0.001). Subsequent pairwise comparisons (Games-Howell 352 

5%) indicated statistically significant differences in diversity between Site 4 and Sites 1 and 353 

3, but not Site 2 (Fig. 6). 354 

 355 
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 356 

Figure 6. Summaries of ANCOVA (a, b) and ANOVA (c) assessments of variations in 357 

megafaunal assemblage diversity with seafloor area surveyed and Site in 2011. Illustrated as 358 

Hill’s diversity numbers: (a) N0 (species richness), (b) N1 (exponential Shannon index), and 359 

(c) N2 (inverse Simpson's index) for samples of c. 100 individuals, shown with trend lines by 360 

Site.<1 column> 361 

  362 
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3.3. Megafaunal assemblage composition 2011 363 

Ordination of the full set of composite samples demonstrated an obvious separation of all 364 

four Sites in terms of assemblage composition (Fig. 7a). Additional exploratory analyses also 365 

indicated statistically significant trends in the ordination scores with key variables: 366 

Spearman’s rank correlations between MDS y-ordinate and P. carpenteri density (rs = 0.613, 367 

p < 0.001; Fig. 7b) and between MDS x-ordinate and water depth (rs = 0.680, p < 0.001; Fig. 368 

7c). A global ANOSIM test confirmed the initial visual assessment of the ordination, 369 

indicating substantial, statistically significant variation in assemblage composition between 370 

Sites (R = 0.738, p < 0.001), with follow-up pairwise tests suggesting modest, statistically 371 

significant differentiation of Sites 1 and 2 (R = 0.272, p < 0.001), and substantial, statistically 372 

significant differentiation in all other cases (R > 0.697, p < 0.001). 373 

 374 
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 375 

Figure 7. Variations in megafaunal assemblage composition by: (a) Site (2D stress = 0.091), 376 

(b) numerical density of Pheronema carpenteri, and (c, d) water depth. Faunal composition 377 

was assessed by 2D non-metric multidimensional scaling ordination (nMDS; see main text 378 

for detail).<2 column> 379 

 380 

When the composite sample set was reduced to only those in a common depth range (Sites 1, 381 

2, and 4), statistically significant Spearman's rank correlations between the MDS x-ordinate 382 

and water depth were detected among all samples (rs = 0.755, p < 0.001) and for Sites 1 and 2 383 

assessed separately (rs = 0.793, p < 0.001), and Site 4 assessed separately (rs = 0.943, p < 384 

0.001; Fig. 7d). The corresponding global ANOSIM test yielded a substantial, statistically 385 

significant difference in assemblage composition between Sites (R = 0.657, p < 0.001), with 386 
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follow-up pairwise tests indicating modest, statistically significant differentiation of Sites 1 387 

and 2 (R = 0.228, p = 0.036), and substantial, statistically significant differentiation between 388 

Site 4 and both Sites 1 and 2 (R ≥ 0.823, p < 0.001). When the composite samples from Sites 389 

1 and 2 were combined as a single ‘low / no trawling’ case and Site 4 considered as a 390 

‘trawled’ case (see Section 3.4), the corresponding ANOSIM test yielded a very substantial, 391 

statistically significant difference in assemblage composition between those cases (R = 0.893, 392 

p < 0.001). 393 

 394 

3.4. Bottom trawling activity 395 

The available fishing intensity data suggests that bottom trawling is likely to have occurred in 396 

the general study area in recent years (Fig. 8). Visual inspection suggests that there may be a 397 

notable concentration of effort around the 1000 m bathymetric contour. Conversely, there 398 

was little or no indication of trawling pressure in the 600 to 800 m water depth range, or 399 

below the 1200 m bathymetric contour (Fig. 8). In our photographic assessment (2011 400 

survey), we recorded 32 apparent seafloor trawl marks at Sites 3 and 4 (Fig. 2), but none at 401 

Sites 1 or 2. 402 

 403 
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 404 

Figure 8. Annual fishing intensity, as swept area ratio, for selected years in the northern 405 

Porcupine Seabight: (a, b) 2009, (c, d) 2012. Red dashed polygon bounds the area of the 406 

present study (see Fig. 1). Depth contours are illustrated at 500 m intervals in (a, c) and at 407 

100 m intervals in (b, d). Mercator projection. Data source: https://odims.ospar.org/.<2 408 

column> 409 

 410 

4. Discussion 411 

Our assessment of the current status of deep-sea sponge aggregations in the Porcupine 412 

Seabight suggests that they may have been impacted by bottom trawling. The 2011 photo-413 

transects, repeating those of Rice et al. (1990) in 1983/4, confirmed that aggregations of the 414 
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hexactinellid sponge Pheronema carpenteri were still present (Fig. 2). However, there 415 

appeared to have been a very substantial reduction in the standing stock of sponges. Our 416 

observations also revealed what appeared to be seafloor trawl marks, and our assessment of 417 

the available OSPAR fishing pressure data indicated the occurrence of commercial deep-sea 418 

demersal trawling in the area. Although we cannot provide direct evidence of bottom trawl 419 

fishing impact on these deep-sea sponge aggregations, there is certainly reason for suspicion 420 

and consequently cause for concern. 421 

 422 

4.1. Demersal fishing pressure 423 

The available OSPAR fishing pressure data (2009-2017) indicates that commercial bottom 424 

trawling may have occurred in the general area of our survey. Indeed, those data potentially 425 

indicate targeted fishing in the 1000-1200 m water depth range (Fig. 8) coincident with the 426 

previously established core of the local P. carpenteri bathymetric distribution (Rice et al., 427 

1990), and that predicted more generally in recent modelling studies (Ross and Howell, 2013; 428 

Ross et al., 2015). In addition, it has been suggested that the indirect effects of demersal 429 

trawling extend to greater water depths than the fishing activity itself (Bailey et al., 2009; 430 

Puig et al., 2012; Trueman et al., 2014). These effects may cause a reduction in the biomass 431 

of both target and bycatch species, and may be reflected in the secondary production, 432 

population body size, and trophic structure of benthic assemblages (Jennings et al., 2001; 433 

Jennings and Blanchard, 2004; Hiddink et al., 2016). We did directly observe apparent 434 

seafloor trawl marks at Sites 3 and 4 (Fig. 2), though cannot unequivocally attribute these to 435 

commercial fishing operations. Broader-scale seafloor mapping, done visually or 436 

acoustically, would likely provide a better assessment of these features (see e.g. Huvenne et 437 

al., 2016; Meyer et al., 2019). Given the very marked decline in P. carpenteri numerical 438 

density between the 1983/4 and 2011 surveys, considered in Section 4.2, it is conceivable that 439 

all four sites may have been impacted by demersal trawling. Consequently, the between Site 440 

differences in faunal diversity and composition recorded in the 2011 survey may represent 441 

local ecological variations, for example bathymetric and / or near-bottom tidal current 442 

velocities, rather than variations in fishing pressure per se. 443 

 444 

4.2. Temporal change in Pheronema carpenteri standing stocks 445 
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Rice et al. (1990) reported high densities of P. carpenteri (mean 0.3 ind m-2) at water depths 446 

between 1000 and 1300 m, with a maximum density of 1.6 ind m-2 at 1210 m water depth. 447 

Our best comparable estimate of numerical density for 2011 was 0.03 ind m-2, i.e. an order of 448 

magnitude lower. Similarly, peak recorded sponge density (in any 10 m depth band) reduced 449 

by a factor of seven between 1983/4 and 2011, and most notably, average sponge density in 450 

Rice et al.'s (1990) peak density depth range (1210 – 1250 m) declined by a factor of 36 451 

between the surveys (Section 3.1; Fig. 3). We characterise this decline as dramatic. Estimated 452 

P. carpenteri standing stock numerical density is certainly variable geographically, for 453 

example: Rosemary Bank 0.1 ind m-2 (McIntyre et al., 2016); Morocco Margin 0.2 ind. m-2 454 

(Barthel et al., 1996); Goban Spur 1.5 ind m-2 (Hughes and Gage, 2004); and Le Danois Bank 455 

7.4 ind m-2 (Sánchez et al., 2008). Nevertheless, our results suggest a very substantial decline 456 

in the Porcupine Seabight sponge population between the 1983/4 and 2011 surveys. Change 457 

in standing stock biomass, potentially, offers a more valuable assessment as it incorporates 458 

change in both numerical density and individual body mass. Our first order approximation of 459 

that change was a factor of 40 decline generally, and a factor of 60 decline in Rice et al.'s 460 

peak density depth range (Section 3.1). Again, we would tend to characterise that decline as 461 

dramatic.  462 

 463 

We cannot provide any direct evidence that demersal fishing was the direct or indirect cause 464 

of the apparent decline in sponge standing stocks observed. However, we would suggest that 465 

it is one plausible cause (Section 4.1). Our observations of somewhat variant response / 466 

change at Site 4 are intriguing, but it is difficult to assess their potential ecological 467 

significance. Rice et al. (1990) provide very little information for this Site (their Station 468 

52022), simply noting that only three sponge specimens were photographed. Indeed, the latter 469 

authors considered the Site 4 location to represent the western limit of the distribution of P. 470 

carpenteri in the Porcupine Seabight. In contrast, our 2011 survey data from Site 4 suggest an 471 

abundant population of small sponges in a narrow bathymetric band centred on 1190 m water 472 

depth (Fig. 3). Given that we observed apparent seafloor trawl marks at Site 4, but not at 473 

Sites 1 and 2, it is conceivable that the marked shift in sponge body size distributions might 474 

be attributable to more, or more recent, demersal trawling at Site 4. However, given the 475 

absence of earlier data on sponge body size distributions for Site 4, and the appreciable shift 476 
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in the centres of bathymetric distribution between these sites, it is at least equally likely that 477 

other environmental factors may have been involved. 478 

 479 

4.3. Spatial variation in the megafaunal assemblage 480 

Despite the apparently substantial decline in the standing stock of P. carpenteri between the 481 

1983/4 and 2011 surveys, our results suggest that the presence of sponge aggregations 482 

continued to exert a positive influence on the diversity of the megafaunal assemblage 483 

(Fig. 6). These results are consistent with the identification of deep-sea sponge aggregations 484 

as 'hotspots' of biological diversity (Thomson, 1873; Bett & Rice, 1992; Hawkes et al., 2018; 485 

Meyer et al., 2019), even in an apparently degraded state. If we accept that Site 4 was subject 486 

to more, or more recent, trawling impact than Sites 1 and 2, then that impact may have 487 

resulted in a statistically significant reduction in species richness (Section 3.2; Fig. 6). There 488 

are likely to be multiple mechanisms by which the presence of sponges, and their spicule 489 

mats, enhance the biological diversity of the associated assemblage. Perhaps most obviously 490 

in the present case is a habitat-mosaic effect (see e.g. Benoist et al., 2019). The environment 491 

studied here, in effect, comprises three habitats: (i) open sediment surface, (ii) sponge spicule 492 

mats, and (iii) living sponges. Each of the constituent habitats may have associated unique 493 

species and preferentially occurring species. Consequently, when these habitats are assessed 494 

in toto as a composite environment, biological diversity is increased both by an increase in 495 

species richness (addition of unique species restricted to individual habitats) and by a 496 

reduction in dominance (amalgamation of different dominant species from individual 497 

habitats). The influence of the presence of spicule mats on the diversity of the benthic fauna, 498 

and on the occurrence of particular taxa, has previously been examined by Bett & Rice 499 

(1992) for the macrobenthos. The potential significance of spicule mats in the present study is 500 

further considered in Section 4.4. 501 

 502 

In common with our assessment of assemblage diversity, faunal composition also exhibited 503 

statistically significant trends with both P. carpenteri numerical density and water depth (Fig. 504 

7b-d). These results suggest that the presence of sponges, even at markedly reduced standing 505 

stock levels, continues to exert an appreciable influence on the composition of the 506 

megafaunal assemblage, and equally cautions the comparison of assemblages drawn from 507 

different bathymetric horizons. If we accept that Site 4 was subject to more, or more recent, 508 
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trawling impact than Sites 1 and 2, then that impact may have resulted in a statistically 509 

significant change in faunal composition (Fig. 7d). Assessed only over the common water 510 

depth range surveyed, the faunal composition of Sites 1 and 2 was jointly highly distinct from 511 

that of Site 4. However, as considered in Section 4.2, note that Rice et al. (1990) only 512 

encountered three P. carpenteri specimens at Site 4, with a fourth specimen taken in a nearby 513 

trawl, and considered the location to be at the Westerly limit of the sponges' core distribution 514 

in the Porcupine Seabight. Consequently, we must similarly caution that it is certainly 515 

conceivable that other environmental factors might also have been involved in the 516 

differentiation of Site 4 from Sites 1 and 2. 517 

 518 

4.4. Potential impact of demersal fishing 519 

Differences in benthic faunal assemblage composition and diversity have been observed 520 

between locations subject to different trawling intensities (Hiddink et al., 2006; Ramalho et 521 

al., 2017). The degree of assemblage change has been linked to the frequency and / or 522 

intensity of disturbance (Rooper et al., 2011; van Denderen et al., 2015; Sorte et al., 2017). In 523 

the present case, it is conceivable that the status of Site 4 represents a more recent and / or 524 

more intense impact than had been experienced at Sites 1-3, though our limited prior 525 

knowledge of Site 4 suggests the need for cautious interpretation (Section 4.3). Nevertheless, 526 

the evidence of demersal fishing activity in the general area of our study (Section 4.1), and 527 

the dramatic reduction in P. carpenteri standings stocks between 1983/4 and 2011 (Section 528 

4.2) is suggestive of a substantive impact by demersal fishing. The continental slope of the 529 

Porcupine Seabight has been subject to increased demersal trawling since at least 1989 530 

(Priede et al., 2011; Vieira et al., 2019). Previous surveys in the Hatton Bank area of the NE 531 

Atlantic have suggested that bottom trawling was a plausible cause for reduced standing 532 

stocks of corals and sponges (Muñoz et al., 2012). Similarly, long-term changes in the 533 

numerical and biomass density of deep-water fish populations in the Porcupine Seabight have 534 

been attributed to commercial fishing pressure (Bailey et al., 2009; Godbold et al., 2013; 535 

OSPAR, 2017). 536 

 537 

It is both the mass occurrence, and habitat forming characteristics, of deep-sea sponges that 538 

primarily attract their classification as features of conservation interest and as vulnerable 539 

marine ecosystems (e.g. FAO, 2009; ICES, 2009). Taken in total, our 2011 survey data 540 
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indicate an order of magnitude decline in the numerical density of P. carpenteri in the core of 541 

the previously determined distribution (1210-1240 m water depth; Rice et al., 1990) and a 542 

narrow dramatic 'spike' in sponge density at c. 1180-1200 m, that reaches values broadly 543 

comparable with Rice et al.'s (1990) observations (Fig. 9). Our data also appear to indicate an 544 

enhanced numerical density (>1.5 ind m-2) of all megafauna in a comparable total depth range 545 

(1180-1250 m). It is perhaps notable that there are two 'spikes' in megafauna density, one 546 

corresponding to peak sponge density at c. 1190 m water depth, and one approximately 547 

corresponding with the 1983/84 peak in sponge density at c. 1225-1245 m. The first 548 

megafauna density spike potentially representing the expected enhancement of the fauna 549 

associated with a living sponge aggregation, the second potentially reflecting the residual 550 

effect of sponge spicule mats (skeletal remains) from the former sponge aggregation (see e.g. 551 

Bett and Rice, 1992; Laguionie-Marchais et al., 2015). Some evidence for the latter effect 552 

may be present in the markedly enhanced densities of large ascidians (Fig. 2) in a 553 

bathymetric range (1210-1250 m; Fig. 10) that is well matched to the zone of abundant 554 

sponges identified by Rice et al. (1990). It is at least conceivable that these filter feeders have 555 

'opportunistically' replaced the former dense aggregation of sponges, using the remaining 556 

spicule mats as a substratum. 557 

 558 

  559 
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 560 

Figure 9. Variation in the numerical density of the megafaunal assemblage, and that of 561 

Pheronema carpenteri alone, with water depth. Data presented as 5-sample running mean 562 

with water depth across Sites 1-4 for 2011 and Sites 1-3 for P. carpenteri 1983/4.<1.5 563 

column> 564 

 565 

 566 

Figure 10. Variation in the numerical density of ascidians in 2011, and that of Pheronema 567 

carpenteri in 1983/4. Data presented as 5-sample running mean with water depth across Sites 568 

1-3.<1 column> 569 

  570 
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While demersal fishing is a highly plausible cause for the very substantial reduction in the 571 

standing stocks of P. carpenteri that we have recorded in the present study, a definitive 572 

assessment of cause and effect is not possible. In particular, we are hampered by a lack of 573 

temporal studies (see e.g. Boolukos et al., 2019) that would assist in disentangling the effects 574 

of natural change from those that might arise from the direct and / or indirect effects 575 

commercial fishing. The need for more widespread, and more frequent, time-series 576 

monitoring of features of conservation interest and vulnerable marine ecosystems in the deep 577 

sea is clear (Vieira et al., 2019; Levin et al., 2019). We are also bound to note potential 578 

alternative explanations, perhaps the most interesting of which is the suggestion of a 579 

"wandering" population of P. carpenteri on the Continental Slope off Morocco (NE Atlantic) 580 

proposed by Barthel et al. (1996). These authors reported the observation of an abundant 581 

living sponge population located immediately upslope of an equally abundant occurrence of 582 

dead and dying sponges. They further hypothesized that this reflected a natural, successional 583 

spatial drift in the centre of the population distribution, potentially driven by changes in local 584 

hydrography and / or the sponge population optimising to the best feeding horizon. 585 

 586 

We similarly note the exceptional long-term observations of Dayton et al. (2016) that indicate 587 

the potential for very dramatic shifts in sponge recruitment and growth in an Antarctic shelf 588 

sea environment. Works by Kahn et al. (2012) and Strand et al. (2017) have indicated the 589 

scope for responses to temporal change in particulate organic flux and bottom water 590 

temperatures in deep-water sponge populations. Other shelf sea hexactinellid aggregations, 591 

such as those of the Salish Sea (Conway et al., 2005; Dunham et al., 2018), have been subject 592 

to small-scale experimental disturbance (deliberate crushing by ROV) that revealed no 593 

recovery after three years (Kahn, et al., 2016). Other experimental studies have examined the 594 

potential impact of increased suspended sediment loads, such as may occur as a result of 595 

bottom trawling, and indicate the scope for physiological effects (Tjensvoll et al., 2013; Kutti 596 

et al., 2015). In general, the natural history of deep-water sponges, not least the 597 

hexactinellids, remains very poorly known despite their classification as features of 598 

conservation interest and vulnerable marine ecosystems. As key deep-sea 'ecosystem 599 

engineers' (e.g. Coleman and Williams, 2002; Hogg et al., 2010; Grant et al., 2019), a better 600 

understanding of their fundamental biological characteristics would improve the basis for 601 

resource management decisions. 602 
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 603 

4.5. Conservation and policy 604 

We have provided evidence for the degradation of deep-sea sponge aggregations in the 605 

Porcupine Seabight potentially resulting from bottom trawl fishing, as indicated by fishing 606 

pressure data (Fig. 8), the presence of seabed trawl marks at two of our four study sites (Fig. 607 

2), and an apparent order of magnitude reduction in the local sponge population (Section 4.2). 608 

Examples of human impacts on deep-sea habitats continue to accumulate (e.g. Ramirez-609 

Llodra et al., 2011; Clark et al., 2016; Huvenne et al., 2016), suggesting an on-going need for 610 

the development of, or extension of, conservation and environmental protection measures in 611 

deep-water environments (European Union, 2008). The European Parliament has now 612 

approved the adoption of a regulation aimed at the sustainability of deep-sea fisheries, 613 

indicating the prohibition of deep-sea fishing with bottom trawls below 800 m water depth, 614 

and an obligation for vessels to report encounters with vulnerable marine ecosystems at water 615 

depths greater than 400 m (European Union, 2016). That regulation would certainly apply in 616 

the case of the Porcupine Seabight P. carpenteri population studied here, with Annex III 617 

VME indicator species including, 3. (c) Deep-sea sponge aggregations, Glass sponge 618 

communities, Rossellidae and Pheronematidae. The regulation represents a European Union 619 

commitment to implement the resolutions of the General Assembly of the United Nations 620 

(61/105 and 64/72) that call for the protection of vulnerable deep-sea marine ecosystems 621 

from the impact of bottom fishing gears (UNGA, 2006, 2009). 622 

 623 

The use of water depth-related management measures has a clear logic and evidence base in 624 

the case of deep-sea demersal fishing in EU waters (Clarke et al., 2015) and could perhaps be 625 

implemented elsewhere. How such a measure might be applied and enforced in areas beyond 626 

national jurisdiction (High Seas) will require further consideration. It potentially falls to the 627 

regulatory authority of the United Nations Convention on the Law of the Sea (Harrison et al., 628 

2017) and the role that Regional Fisheries Management Organisations, under the auspices of 629 

the Food and Agricultural Organisation, and the International Seabed Authority, have in 630 

managing activities in Areas Beyond National Jurisdiction. Such organisations, and the 631 

scientific community, typically advocate an ecosystems-based approach and the use of the 632 

precautionary principle in deep-sea environmental management (Thompson et al., 2016; 633 

Huvenne et al., 2016; Kenny et al., 2018). Our observations of the status of the deep-sea 634 
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sponge aggregations in the Porcupine Seabight suggest that such efforts would greatly benefit 635 

from an increase in the sustained observation of selected deep-sea habitats / species / 636 

ecosystems of conservation interest (see also Kazanidis et al., 2019) and a much better 637 

understanding of the natural history of the key species in those environments. A 'Deep 638 

Essential Ocean Variable' of seafloor sponge cover, is currently under consideration by the 639 

Deep Ocean Observing Strategy team (Levin et al., 2019), that could readily be achieved via 640 

the use of autonomous underwater vehicles (e.g. Benoist et al., 2019; Simon-Lledó et al., 641 

2019) as have recently been employed in the investigation of deep-water sponge grounds 642 

(Meyer et al., 2019). 643 
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