
The OpenMI 2.0 Standard for Integrating 
Numerical Models
Harpham, Q.K (HR Wallingford); Hughes, A. (BGS) and Moore R.V.

Abstract
The purpose of this paper is to introduce, explain and promote the Open Modelling Interface 
(OpenMI) version 2.0 standard for coupling environmental numerical models (simulations of 
environmental processes). It is intended to be accessible to readers of all levels of experience. 
During recent decades it has been recognised that the environment is made up of a complex set of 
interconnected processes. Therefore, understanding it requires not only understanding of the 
processes in isolation, but also the interactions between these processes. Traditional methods of 
simulating such environmental interactions have included passing the outputs of one numerical 
model into another or creating a single ‘super-model’ covering a variety of processes. OpenMI 
provides a standard method which could be applied to independent numerical model components 
and allow them to exchange data so that they could interact and influence one another. This is 
achieved without fundamental changes to the core of the components themselves.

Keywords
Open Modelling Interface

OpenMI

Integrated modelling

Model linking

Model coupling

Decision support systems

Open standards

Open source

Open Geospatial Consortium

Software Availability
The paper definition of OpenMI can be obtained from its associated OGC (Open Geospatial 
Consortium) standard definition at https://www.opengeospatial.org/standards/openmi. 

Object interface libraries for OpenMI 2.0 standard can be obtained from its associated Source Forge 
project, https://sourceforge.net/projects/openmi/. They have been prepared in Java and C#, 
together with other supporting material. 

The OpenMI Association website is available at http://openmi.org.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

https://www.opengeospatial.org/standards/openmi
https://sourceforge.net/projects/openmi/
http://openmi.org


HR Wallingford’s FluidEarth implementation of OpenMI can be obtained from its associated Source 
Forge project, https://sourceforge.net/projects/fluidearth/. A comprehensive training website with 
example numerical model compositions is available at http://eLearning.fluidearth.net.

Introduction
Purpose
The purpose of this paper is to introduce, explain and promote the appropriate use of the Open 
Modelling Interface (OpenMI) version 2.0 standard for coupling numerical models. It is intended to 
be accessible to readers of all levels of experience, from those writing and implementing numerical 
models through to those exploring the new discipline of integrated modelling for the first time. The 
paper supplements the full specification of the standard which was developed and is maintained by 
the OpenMI Association (OA) and is published by the Open Geospatial Consortium (OGC) (OGC 
OpenMI, 2013) as an OGC standard. It is an open standard and is available through the OGC website. 

The OpenMI standard was developed in order to facilitate the understanding of interacting 
environmental processes. While it was conceived within the domains of hydraulics and hydrology, it 
was appreciated from the outset that the need was for a mechanism that could link across domain 
or disciplinary boundaries. Indeed, the OpenMI user community already extends well beyond the 
original domains and, indeed, beyond those concerned with simulating the natural environment. 
However, it was the growing need to understand the interconnectedness of environmental events 
and processes which prompted its inception.

OpenMI 2.0 in Context
Traditionally, environmental simulation models have been created by scientists working in 
independent specialist groups. Today, they nearly all take the form of computer programs and are 
referred to collectively as numerical models. These models usually consist of an algorithm that 
simulates one or a few specific processes articulated in computer code. The program receives the 
description of the situation it is to simulate from input data files and/or a user interface. Results 
from the simulation are usually returned via one or more output data files. 

During recent decades it has been recognised that the environment is made up of a complex set of 
interconnected processes (ref Moore, Harpham etc.). Changes to one environmental phenomenon 
at one location can have a fundamental effect on other phenomena at another location (Meiburg 
2007). As a result, environmental science is being challenged to address increasingly complex 
questions, such as “will the predicted rise in temperature due to climate change lead to Malaria 
being a health problem in more countries?” (Moore and Hughes, 2017). The traditional method of 
simulating such environmental interactions has been to run the process models separately , one 
after the other, the results of the first becoming the input of the second. (see Anastas, 2010 and also 
Voinov, 2010). For example, in order to simulate a flooding scenario, one numerical model 
simulating rainfall passes its output into another numerical model which understands river 
catchment drainage using rainfall as its input. A chain of models is constructed with the output of 
the ‘upstream’ model simply  requiring interpolation or re-formatting in order for it to be made 
compatible with its ‘downstream’ counterpart. 

By combining different models together the end result can answer complex questions more 
effectively than by using a single existing model.  Further, the solution of complex questions require 
holistic solutions drawn from different disciplines (Laniak et al., 2013).  Therefore, it may be 

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

https://sourceforge.net/projects/fluidearth/
http://eLearning.fluidearth.net


preferred to combine numerical models together into one, larger, more comprehensive 
implementation. So instead of passing the rainfall between the model producing rainfall and the 
model receiving the rainfall data, the computer codes are combined into a single numerical model 
which performs both modelling functions. Internally, the same function will be being performed, but 
the passing of the rainfall will occur ‘in memory’ as the combined models execute. This second 
option opens up the possibility of allowing the processes to influence one another as they proceed 
through time. It may be that the phenomena being described are closely interlinked and having a 
two-way impact on each other. For example, if a torrent of water rushes against the side of the 
building then the presence of the building will have an effect on the passage of the water. The water 
may cause a wall of the building to collapse and so the presence of the water will affect the building. 
To correctly simulate this, the numerical model describing the state of the building structure will 
need to be combined with that describing the flow of the water. However, it is likely that the 
numerical model describing the flow of the water will come from one community of experts and the 
model describing the building structure will come from another. There may be no appetite to 
combine these into a single ‘super-model’. Further, such a combined model will be exponentially 
more difficult to maintain and the freedom of the modelers to innovate will be severely inhibited. 
Thus, if these two model codes could be kept separate yet enabled to exchange data as they ran in 
parallel, behaving as a single composition, then each community could develop and innovate their 
own model without reference to the other.

It was recognised that considerable investment had been made into developing many numerical 
models by the organisations responsible for them. This investment couldn’t simply be discarded in 
favour of developing a new generation of environmental numerical models from scratch. Therefore 
a solution which enabled model integration was sought which could be applied to any numerical 
model, irrespective of technology, history or ownership – a solution which respected intellectual 
property and diversity.

The Case for Standardisation
Users have required something more capable than manual data transfer between models and 
something more manageable and sustainable than ‘super-models’. To this end, some numerical 
model developers have joined two or more established models together, keeping the core of each 
broadly separate but operating them together. For example, Sophocleous et al. (1999) demonstrate 
a combined MODFLOW-SWAT model combination where MODFLOW simulates groundwater and 
SWAT surface water. Other practitioners use web processing services to pass data between linked 
model components via the internet as illustrated by Nativi et al. (2013). The original intention behind 
OpenMI was to provide a standard method which could be applied to independent numerical model 
components and allow them to exchange data whilst they are running. This was to be achieved 
without fundamental changes to the core of the components themselves thus still allowing them to 
be run independently, when required.

This situation allows experts to remain within their domains of expertise, each continually innovating 
to produce successive generations of numerical model programs which increasingly accurately 
describe the phenomena they represent. Very often, such changes do not alter the data types taken 
in or output by the model. The changes therefore make no demands on the authors of other linkable 
models. Achieving this successfully depends on the interface between the models being tightly 
defined and that definition being readily accessible by all. Such common understanding drives the 
need for standardisation, thereby allowing such compositions to be built and executed correctly. 
Thus, each set of experts is required to engineer their software according to a specified standard. 
This standard would have to contain all the elements necessary for the inter-model communication, 

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177



yet allow each set of domain experts the freedom to apply their own numerical implementation of 
the associated mathematical theories, as well as the necessary functional elements to achieve an 
accurate simulation.

It could be suggested that asking different domain experts to adopt a common standard for software 
engineering would hamper creativity. If they are restricted in how they can implement their 
numerical models then surely that restriction would hamper further experimentation and discovery? 
The authors submit that the opposite would be the case. Consider the example of music and musical 
notation. The decision to limit musicians from a continuous distribution of an infinite number of 
tones to just twelve notes – the seven natural notes plus five sharps and flats, notwithstanding the 
implementation of this across multiple octaves – serves to enable creativity. Having described the 
twelve notes, musicians then discovered that they could be combined to articulate chords as well as 
describing patterns and scales. They then created the common language of musical notation to 
communicate this. These processes enabled creativity rather than hampering it. It would seem 
absurd now to abandon this and revert entirely to music with no fixed notes or notation. Such is also 
the case for numerical modelling.

The History of OpenMI
The first published OpenMI standard was version 1.4 (Gregersen et al. 2007). It was the result of the 
European Commission’s Framework 5 HarmonIT research project. As well as proving the concept of 
model integration through a common standard, HarmonIT also prototyped many tools to facilitate 
making existing models into ‘linkable components’ and then building and running linked models or 
‘compositions’. The success of OpenMI 1.4 prompted a second European project, this time part of 
the LIFE programme, OpenMI-LIFE. OpenMI-LIFE was given a ‘best of LIFE programme’ award in 
2012. The main thrust of OpenMI-LIFE was to demonstrate the OpenMI standard being used in a 
real-world environment on real-world problems. However, a lot of thought was given to how the 
development of OpenMI would continue once OpenMI left the research environment and had to 
stand on its own feet. How could its development be continued? How would its users be supported? 
How could the outside world be convinced that these mechanisms were in place, working and would 
be sustained? At that time adoption of the OpenMI represented a significant commitment of 
resources. To address these points the OpenMI Association (OA) was founded as a legal entity under 
Dutch law and took ownership of the IPR of OpenMI. To demonstrate that it was a functioning 
organisation, its first task within the LIFE project was to produce version 2.0 of OpenMI.

As that moved towards completion, the Open Geospatial Consortium approached the OA, explained 
its growing awareness of the importance of the time dimension and of modelling to its work and 
suggested that the OA and OGC collaborate. The OA was delighted as this would enable it to publish 
the OpenMI under the banner of an internationally recognised standards organisation and hence 
reach a world-wide audience spanning almost every discipline and both the public and private 
sectors. This has now been achieved.

In parallel, a number of influential hydraulic and hydrological institutions and laboratories including 
Deltares (https://www.deltares.nl/en/), DHI (https://www.dhigroup.com/) and HR Wallingford 
(http://www.hrwallingford.com/) created implementations of the standard and applied it to their 
own numerical model inventories. Since its release, OpenMI 2.0 has been downloaded over 13,000 
times, with active interest from over 30 countries. Interest has been observed from a wide range of 
specialisations ranging from internal combustion engines to human biology and the number of 
implementations increases. 

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236



Overview of OpenMI 2.0
Standards can only enable creativity and interoperability if they are properly defined and kept as 
simple as possible. If this is not the case then the overhead of using them can stifle any advantage 
(see Iwanaga (2018)). Each aspect of the standardisation must be necessary and proportionate. 
OpenMI therefore incorporates aspects necessary and proportionate for independent numerical 
models to be integrated.

At its heart, integrated modelling is about converting a question into a workflow and providing a 
quantified solution.  This involves combining data and models such that the solution can be 
obtained.  The model can be thought of as a unit operation (Figure 1) and be seen as having two 
facets: model codes which represent system processes / behaviour programmatically and model 
instances which are the application of the model code to a particular area or problem.  By 
considering a model as a unit operation and defining the input and output data such that the output 
from one model code can be passed to another, then a linked series of models and an associated 
workflow can be created. OpenMI uses this paradigm by observing that a composition of models can 
be thought of as a unit operation made up of independent components.

 

Figure 1: Model as a “unit operation”

OpenMI 2.0 allows those writing numerical models to adapt them so that they can be combined into 
compositions containing other models that have been similarly modified. In technical terms OpenMI 
is a set of object interfaces that will form a wrapper around each numerical model code. It can be 
implemented in any object oriented programming language. When made OpenMI 2.0 compliant, a 
numerical model becomes a ‘Linkable Component’ which can then be run in compositions including 
other Linkable Components. Some of the key ideas and principles implemented by OpenMI 2.0 in 
forming Linkable Components are given in the sub-sections following.

Control and Structure
The OpenMI 2.0 interfaces act as a code wrapper around the core numerical model code. Control of 
the Linkable Component’s ability to perform typical functions such as Initialise, Run, Finalise (IRF) are 
offered to an external, unspecified entity. Usually, numerical models are supplied with an interface, 
often graphical (a GUI) to enable the user to set parameter values (such as the location of input 
datasets), set the model running and monitor its progress. However, if the model is to run in an 
OpenMI 2.0 composition, even if an instance of it has to be created using a GUI, it must be possible 
for an external entity to control the process of executing the model code.

Achieving this requires that the model code has a certain characterisation:

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295



 Parameters for the model to run, which are not being offered to other components – such 
as the location of input or output files – must be independently accessible once the model is 
set up to run.

 The ‘initialise’ and ‘finalise’ functions need to be distinct and control of them available to 
the external entity which will be running the code.

 The core model function (often consisting of calculating values at a sequence of intervals in 
time) must also be distinct and control of it available to the external entity.

Indeed, if an OpenMI-compliant component is to run in one of the existing GUIs then it shall be 
associated with an XML file (called an ‘OMI’ file) which can be successfully validated against the 
LinkableComponent.xsd schema (Annex B, OGC OpenMI, 2014).

Exchange Items
Numerical models will produce a set of results as a set of values for a defined phenomenon or 
parameter, for example air temperature, water depth, current direction or shoreline position. In 
some cases, this can be a very long list. As part of making a numerical model OpenMI compliant, the 
model developer chooses which of their output variables – belonging to the Linkable Component – 
to make available to other numerical models. Each one of these becomes an ‘Output Exchange 
Item’, see IBaseExchangeItem and IBaseOutput (OGC OpenMI, 2014, section 6.9).

Figure 2: UML Class Diagram for IBaseExchangeItem

296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354



Similarly, numerical models are able to – and usually require – phenomena or parameter values from 
external sources, for example a simulation of near shore waves will require a bathymetry dataset 
describing the sea bed. This phenomenon may be variable in time and it may be possible for a 
numerical model to receive this data from a second numerical model. When a model is made 
OpenMI compliant, such inputs are designated ‘Input Exchange Items’, see IBaseExchangeItem and 
IBaseInput (OGC OpenMI, 2014, section 6.9).

Only Exchange Items will be able to be passed from one numerical model to another via the OpenMI 
interface.

Parameters and Units
If two model components are exchanging and using values associated with a phenomenon across an 
Exchange Item, then the phenomenon itself and its associated units must be clearly and mutually 
defined. We cannot have a situation where one numerical model is passing ‘Wave Height’ to another 
model where the former understands it to be ‘Significant Wave Height’, measured in metres and the 
latter understands it to be ‘Maximum Wave Height’, measured in feet. Thus, OpenMI breaks down 
the phenomena passed between the exchange items into its DimensionBase as part of the 
IValueDefinition interface (Length in metres, Mass in kilograms, Time in seconds, ElectricCurrent in 
amperes, Temperature in kelvin, AmountOfSubstance in moles, LuminousIntensity in candela, 
Currency with no base quantity) (Table 3, OGC OpenMI, 2014). The IQuality interface inherits from 
the IValueDefinition interface to allow non qualitative values (e.g. high, low) to be passed, for 
example, as strings. In the case where the units are dimensionless, represent logarithmic scales or 
are otherwise problematic when expressed in SI, then extra attention should be paid to the 
descriptive part of the unit to clarify understanding of the meaning of its value.

355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413



Figure 3: UML Class Diagram for IValueDefinition

This, nor indeed any, definition can be perfect and completely prevent errors in definition or unit, 
but this structure is intended to offer enough rigour to maximise the opportunity to trap and correct 
such inconsistencies.

Spatio-Temporal Structure
Numerical models typically produce their results according to a specified (or assumed) spatio-
temporal structure. Harpham (2018) defines a vocabulary for describing these structures as given in 
Table 1. Such vocabularies constitute important information which can be referenced in metadata 
associated with models (Harpham and Danovaro, 2015).

Spatial 
Structure

Point PointSet Polyline PolylineSet Polygon PolygonSet 
(Grid, Mesh)

Temporal 
Variation

Point 
Series

PointSet Series Polyline 
Series

PolylineSet 
Series

Polygon 
Series

PolygonSetSeries

(GridSeries, 
MeshSeries) 

Temporal 
and 
Spatial 
Variation

Point 
Track

PointSetTrack / 
Developing 
PointSet

Polyline 
Track

PolylineSet 
Track / 
Developing 
PolylineSet

Polygon 
Track

PolygonSetTrack 
/ Developing 
PolygonSet 
(Adaptive Grid, 
Adaptive Mesh) 

Table 1: Controlled Vocabulary for Spatio-Temporal Data Structures

The most common of these are well understood and established such as:

 PointSeries, describing a time series of values associated with a single, unmoving point in 
space, such as readings from a rain gauge;

 GridSeries (given as a special case of a PolygonSetSeries), describing timeseries output 
associated with points arranged in a rectangular grid with one value for each point for each 
timestep;

 PointTrack representing a point moving with time, such as the position of a moving vessel.

However, more complex spatio-temporal structures are produced by some numerical models. For 
example, a probabilistic shoreline erosion model would produce output at a series of timesteps. 
Output at each timestep is a set of polylines describing the possible position of the shoreline at 
different rates of erosion. Thus the output across all timesteps could be described as a 
‘PolylineSetTrack’ or ‘DevelopingPolylineSet’, as illustrated in Figure 4.

414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472



Figure 4: PolylineSetTrack – Probabilistic Progressive Shoreline Position

OpenMI is designed to maximise flexibility and so, to incorporate all common (and less common) 
numerical model outputs in one, two and three dimensions, the spatial and temporal components 
have been separated. Indeed, the core OpenMI standard does not assume that the numerical model 
will have a timestepping aspect at all; this is offered as one of the optional extensions to the 
standard – albeit a commonly used extension.

OpenMI 2.0 breaks down the spatial aspect of numerical model outputs into its basic spatial 
constructs. This is governed by the ‘ISpatialDefinition’ interface (OGC OpenMI, 2014, section 6.4) 
including an ‘ElementCount’, ‘SpatialReferenceSystem’ and ‘Version’. The ‘Element Set’ of the spatial 
structure ‘IElementSet’ includes management of indexes, counts and coordinates, with each element 
enumerated into five types: IdBased, Point, Polyline, Polygon and Polyhedron.

Where required, time series values for the Element Set are described by the ITimeSpaceValueSet 
interface (OGC OpenMI, 2014, section 6.6). Also included and of particular importance for running 
time series compositions of numerical models is the TimeHorizon property of the ITimeSet interface 
(OGC OpenMI, 2014, section 6.5), which describes the full time interval governed by the numerical 
model.

473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531



Figure 5: UML Class Diagram for ISpatialDefinition

Adaptors
Two independently developed OpenMI 2.0 compatible numerical models can have their inputs and 
outputs connected according to the desire of the modeller: input exchange items to output 
exchange items. However, this is unlikely to be feasible without adjustment. For example, the first 
model may produce its results as a rectangular GridSeries and the second model may wish to receive 
them as a PolylineSeries; the first model may produce its results in metres and the second model 
may wish to receive them in feet; the two models may use a different vertical datum. Therefore, to 
be connected correctly an ‘adaptor’ will be required across the connection between input and 
output exchange items in order to perform the necessary adjustments, see Figure 6 where the 
notation used is that adopted by Harpham and Hummel. Such adaptors are created using the 
interface IAdaptedOutputFactory and managed by the interface IBaseAdaptedOutput (OGC OpenMI, 
2014, section 6.10).

532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590



Figure 6: Use of an adaptor to handle differences between input and output exchange items, 
Harpham / Hummel notation.

It is possible to nest multiple adaptors and apply them in turn and in combination. For example, one 
adaptor may perform a unit conversion required between two models and another may perform a 
datum conversion additionally required by a third model. This situation is illustrated in Figure 7 using 
the notation adopted by Harper. It seems that only individuals with family names beginning with the 
letter ‘H’ are able to create notation for adaptors.

Figure 7: Nested adaptors shown using the Harper notation.

Changes from OpenMI 1.4:
There are a number of key differences from OpenMI 1.4. In addition to some lower level technical 
changes, the main aspects are as follows:

591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649



 Base Interfaces and Extensions – A set of minimum ‘base interfaces’ for compliance, plus the 
addition of extensions (including an extension covering time and space dependent 
components). In particular, the essential OpenMI component is no longer forced to be time 
and space dependent, making the standard considerably more flexible and extensible. This 
allows different types of components to be incorporated e.g. those which vary in time and 
not in space; those which vary in space, but not in time or those which vary in both time and 
space.

 Adaptors – Taking over from the role of ‘Data Operations’ in OpenMI 1.4, ‘Adapted Outputs’ 
allow multiple, distinct adaptations, separate from the components themselves and the link, 
to take place. Again, this makes the standard more flexible and allows outputs and adapted 
outputs to be re-used by more than one OpenMI component.

 Events – OpenMI 1.4 had its own in-built event system. For version 2.0 the standard .NET 
and Java event mechanisms are utilised.

 Data Definitions – Values passed in OpenMI 1.4 could only be quantitative. OpenMI 2.0 
supports qualitative information (e.g. text values such as ‘high’ and ‘low’). It also 
incorporates an extended element set to follow the OpenGIS standard with no distinction 
between 2d and 3d  spatial structures, improved handling of timestamps and timespans, and 
a more flexible value set to include objects as well as scalars and vectors.

Making new and existing models OpenMI 2.0 compliant
The original vision and purpose behind OpenMI was to create a method for easy integration of both 
new and existing numerical models – to build on the existing investment in the development of 
numerical models. The method provided is to make each numerical model ‘OpenMI 2.0 Compliant’, 
that is, make each numerical model code into an OpenMI 2.0 Linkable Component, adhering to the 
standard. Compositions of multiple components can then be put together and run as a collective 
with data exchange between linked components in the composition.

Figure 8: UML Class Diagram for IBaseLinkableComponent

650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708



A numerical model (or equivalent) is OpenMI 2.0 compliant if it implements a set of interfaces that 
can connect to and interact with the OpenMI 2.0 component interface IBaseLinkableComponent or 
its specialisations (such as the ITimeSpaceComponent). These interfaces are described in Clause 6, 
‘OpenMI Requirements Classes’ of OGC OpenMI (2014). In particular, requirements for compliance 
can be summarised as follows:

1. An OpenMI 2.0 compliant component shall implement the mandatory core requirements 
given in clause 6 of OGC OpenMI (2014).

2. Two further optional core interfaces (IManageState and IByteStateConverter) may be 
implemented. If implemented then this must be done according to the OGC OpenMI (2014) 
specification.

3. Optional OpenMI 2.0 extensions are also given. If implemented, this must be done according 
to the OGC OpenMI (2014) specification.

4. An OpenMI 2.0 Compliant component (including its extensions) shall, when compiled, 
reference the OpenMI.Standard2*.Dlls (.Net framework 2.0 or higher) or OpenMI-
standard2*.jars (java 1.5 or higher) as released by the OpenMI Association (OpenMI Source 
Forge).

Thus, making a numerical model OpenMI 2.0 compliant can be achieved in two steps:

 Step 1: Prepare the numerical model code to be consistent with the principles outlined in 
the above and for mapping to the OpenMI 2.0 interfaces i.e. with respect to Control and 
Structure, tidy and accessible arrangement of input and outputs to be accessed through 
Exchange Items, clear definitions of Parameters and Units, clear definition of Spatio-
Temporal Structures, and understanding of any potential requirements for use of Adaptors.

 Step 2: Connect the relevant attributes of the numerical model into the OpenMI 2.0 
interfaces i.e. ‘wrap’ the model. Software Development Kits (SDKs) are provided with 
implementations of OpenMI to aid developers in this task (Harper et al., 2016; Harpham et 
al., 2014).

If the numerical model is being written from scratch then the principles required by Step 1 can be 
employed directly and the model written according to the OpenMI 2.0 standard; if the numerical 
model already exists then these principles will need to be retrofitted.

Creating and Running OpenMI 2.0 Compositions
OpenMI 2.0 components can be run individually, as single numerical models, taking input from the 
set of supporting data files as standard for the model or they can be run as compositions of multiple 
components which are able to pass data between them as they run, across Exchange Items. It is the 
responsibility of the modeller to ensure that any connections are scientifically valid. Although 
OpenMI includes low-level definitions of each aspect of this connection (e.g. spatial structure, 
parameter), it can provide no specific validation. Indeed, other more subtle aspects, such as how the 
data is represented within each spatial element, must also be considered when connections are 
constructed. For example, if the spatial element is a polygon – say a grid cell – then is the value 
taken by the cell attributed to its centroid or its corners? If the corners all have different values, then 
which of these is passed to another model which has a single point linked to the grid cell? 

When an OpenMI component (numerical model) takes input from another component then this 
overrides the associated input it would otherwise get from its supporting data (configuration or 
input data file), as illustrated in Figure 9. The Hydrological Drainage Model would usually be set up 
taking driving data from a rainfall time series, perhaps from an in-situ instrument. This input can be 

709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767



validly replaced by input from another OpenMI 2.0 component which is a numerical model 
producing rainfall time series output. Thus, the rainfall Input Exchange Item from the Hydrological 
Drainage Model is connected to the rainfall Output Exchange Item from the Rainfall Model. The 
Hydrological Drainage Model will then produce its output in its usual way.

Figure 9: Replacing file-based inputs with a connection across Exchange Items.

Implementations of OpenMI 2.0
A number of implementations of OpenMI 2.0 are available. These usually consist of i) a Software 
Development Kit (SDK) to facilitate the wrapping of numerical models into OpenMI 2.0 components 
and ii) a Graphical User Interface (GUI) to assemble compositions of components into compositions 
and to run these compositions. The GUI acts as the unspecified external entity which controls the 
composition and the components within it.

HR Wallingford’s FluidEarth (Harpham et al., 2014; Harper et al., 2016) is a typical implementation of 
OpenMI 2.0. It is provided with the FluidEarth SDK and a GUI called Pipistrelle, with the open source 
code available at https://sourceforge.net/projects/fluidearth/. Since the OpenMI 2.0 standard is 
flexible, each implementer has the freedom to apply it according to their particular needs. The 
FluidEarth implementation uses two sets of configuration files so that each OpenMI 2.0 component 
is accompanied by two files, a .omi file and a .xml file which offer configurable parameters and a 
means of engagement with the user interface, Pipistrelle. One of the components, usually one with a 
time horizon starting earlier and finishing later than all the others, is connected to a ‘Trigger’. This 
component is used to start the composition running and will make requests from other components 
in the composition in an attempt to pull data from them to satisfy its own requirements. In turn, 
components will make requests from each other as the composition progresses until it is able to 
complete. This process is demonstrated by a simple composition involving two ponds (pondWest 
and pondEast) where pondWest is slowly draining into pondEast. The composition progresses 
through time steps with pondEast pulling data from pondWest. The sequence diagram for the main 
functions is shown in Figure 10.

Hydrological
Drainage

Model
Rainfall

Rainfall 
Timeseries 
Data from 
Rain Gauge

Hydrological
Drainage

Model
Rainfall 
Model

RainfallRainfall

768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826

https://sourceforge.net/projects/fluidearth/


Figure 10: Sequence diagram for run and timestepping elements of simple pond composition

Figure 11 shows this composition in the Pipistrelle GUI where pondEast is attached to the trigger, 
denoted by the small OpenMI logo. If there are any adaptors present across the link between the 
two pond components, then this is shown by the bold connecting arrow. Clicking on this arrow will 
show the attributes of the adaptor(s).

Modeller

LinkableComponent
<<pondEast>>

LinkableComponent
<<pondWest>>

<<run composition>>

run:timesteps()

get:Data()

run:timesteps()

pondFlow

loop

modelOutput

827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885



Figure 11: The simple pond composition shown in the Pipistrelle GUI

Pipistrelle will also produce a run log, shown in Figure 12. The run log does not give the model 
outputs, which are produced in additional files, it merely reports the status of the components and 
the composition itself.

Figure 12: Pipistrelle GUI run log for the simple pond composition

Examples of OpenMI 2.0 Compositions
River channel – floodplain interactions for flash flooding in Genoa
Harpham et al. (2016) includes an OpenMI composition modelling a flash flood which occurred in 
Genoa in October 2014. An almost identical event had occurred three years earlier in November 
2011 when a third of the average annual rainfall fell in six hours. Both events included one-or-more 
fatalities and a vast amount of damage was caused. An OpenMI 2.0 composition was used by HR 
Wallingford to model the downstream hydraulics which studied the interaction between the river 
channel and the flood plain. Along the river side, flood water passed from the river into the town 
and also from the streets of the town back into the river. Thus, a two-way connection was required 

886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944



between the numerical model simulating the flow in the channel overtopping to the streets and also 
the numerical model simulating the movement of water through the streets and then back into the 
channel.

The composition was put together as part of the Distributed Computing Infrastructure for Hydro-
Meteorology (DRIHM) project (D’Agostino et al. 2014, Danovaro et al., 2014, D’Agostino et al., 2015). 
The FluidEarth implementation of OpenMI 2.0 was used to build the OpenMI components and then 
assemble and run the composition, which can be seen in Figure 13.

Figure 13: The Pipistrelle GUI showing the OpenMI composition studying the Genoa flash floods of 
November 2011 and October 2014

The Linkable Components used in the composition are as follows (more detail is given in Harpham et 
al. 2016):

 HRW WaterML Client: A data ingestion translating the upstream flow-time boundary 
condition from the WaterML2 standard into that required by the following OpenMI 
component, in a one-way connection. 

 MASCARET (Goutal et al. 2012): simulating the flow in the river channel.
 HRW Spill Calculator: Converting water level to and from flow. This component could also 

be an adaptor between the MASCARET and RFSM components.
 HRW RFSM Hydrodynamic: A flood spreading model calculating flow across the flood plain, 

in this case, the streets of Genoa (Jamieson et al. 2012).
 HRW Impact Calculator: a tool used to estimate the impact of flooding on buildings and 

agricultural land and predicted Loss of Life using the Risk To People method published in the 
DEFRA report FD2317 (Ramsbottom et al., 2003).

Use of the OpenMI 2.0 composition enabled the flood event to be accurately simulated with water 
flowing to and from the flood plain. Existing, well established numerical models were able to be 
linked together into a composition thereby providing a new capability in simulating such events. As 

945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003



the water flows through the streets the damage to buildings and hazard to people is calculated by 
the Impact Calculator Linkable Component. A single frame of the results animation is given in Figure 
14, showing the flow of water through the city as the event progressed. There was a large exchange 
of water between the channel and the flood plain in the area highlighted as the channel proceeds 
under the railway line. A high hazard was identified at this point, which is, sadly, where one of the 
fatalities occurred. The total damage for the 2014 flood was calculated to be €205 million (at 2014 
prices). This was within 2.5% of the unofficial locally calculated estimates.

Figure 14: Frame of animation of water flow through Genoa during the flash flood of October 2014

Thames integrated model
BGS’s Thames integrated model (TIM) links the detailed geology of the Thames catchment with 
groundwater and surface water hydrology including rainfall, runoff, recharge, and to a limited extent 
the source and resource management applied in the Thames catchment.  There has been particular 
emphasis on the geology of the greater London area (Royse et al., 2012). The project brings together 
a unique combination of geological, hydrogeological, environmental and socio-economic challenges 
that are intrinsically linked and impacted by climate change. To address these challenges requires 
fully attributed 3D models that incorporate information and processes from all of these disciplines 
so that accurate representations, simulations, forecasts and predictions can be made. These 
forecasts and predictions are required to enable informed decision making and planning for 
sustainability. In particular, integrated modelling is being applied to understand the interaction 
between rainfall evaporation and runoff, together with river flows for the Thames and its tributaries, 
with groundwater flow.

The importance of interaction between the surface water system and abstraction has been 
demonstrated by using the TIM linked model composition developed by Mansour et al. (2013). A 
model composition which allows an appropriate representation of the hydrological system has been 
developed and is shown diagrammatically in Figure 15. Two groundwater models have been 
developed: one of the chalk using ZOOMQ3D (Jackson and Spink, 2004) and another of the Jurassic 
limestones using BGSGW (Mansour et al., 2013). The former is a distributed groundwater flow model 
and the latter is a semi-distributed lumped parameter model that can be used to simulate 

1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062



groundwater behaviour. The boundaries of both models are shown on Figure 16 and it should be 
noted that for the chalk model these extend outside of the Thames Basin.  This is to ensure that 
sensible groundwater flow boundaries are defined so as not to erroneously calculate baseflow to 
rivers whose surface catchments are different to groundwater catchments and unduly affect the 
impacts of groundwater abstractions.

The two groundwater models are linked via a river model (MCRouter) developed using the 
Muskingham-Cunge approach (Chadwick and Morfett, 1986).  A simple hydraulic river model was 
chosen to ensure the composition can be tested before including a more complex river model.  
These three models are driven by run-off and recharge generated by the recharge model ZOODRM 
(Mansour and Hughes, 2004; Hughes et al., 2008). The run-off is routed to the river model whilst the 
recharge is passed to the two groundwater flow models (Figure 15).  As described above, the Jurassic 
limestones and chalk aquifer are not linked via the sub-surface, only via interaction with the River 
Thames and its tributaries. The two groundwater models and the river model are, therefore, 
dynamically linked by the model linkage standard OpenMI (Gregersen et al., 2007). This linkage has 
been facilitated by using the Fluid Earth software development kit (SDK) and the associated editor, 
Pipistrelle, to construct compositions (Harpham et al., 2014).  

The model composition has been applied to a hypothetical situation to test the applicability of the 
models and the benefit is accrued from linking them. A hypothetical groundwater abstraction of 150 
Mlday-1 has been used to investigate the impacts of groundwater abstraction on the flows in the 
River Thames. The groundwater abstraction was simulated from a point on the banks of the River 
Thames (labelled BH on Figure 16).  This abstraction was linked to river flow as measured at a 
downstream gauging station (labelled GS-B on Figure 16).  To investigate the effect of different 
management regimes two scenarios were simulated: One with a fixed groundwater abstraction of 
150 Ml/d and the other with an abstraction that varies from 50 to 150 Ml/d depending on river flow 
at GS-B (Figure 16). The relationship between river flow and magnitude of groundwater withdrawal 
was achieved by the inclusion of an abstraction management component in the composition which 
modified groundwater abstraction during runtime. This component related groundwater abstraction 
by a simple rule and was included in the composition. The abstracted water is returned to the river 
some 35 km upstream (labelled GS-A on Figure 16) of the groundwater abstraction as this represents 
typical water use, from abstraction, by the city of Oxford and after use discharge to the sewerage 
system and hence finally sewage effluent returned to the river.

The model composition was simulated for a 30 year period and groundwater heads and the river 
hydrograph downstream of the groundwater abstractions plotted (see Figure 3 and 4 in Mansour et 
al., 2013).  During conditions of low flow, i.e. during the 1975/6 drought the model simulation 
resulted in a river flow that was lower for the scenario with fixed abstraction than for the scenario 
where groundwater abstraction decreased.  However, as groundwater abstraction was reduced, 
groundwater levels surrounding the abstraction were higher. Whilst the variable abstraction 
reduced the impact on groundwater heads the overall impact on river flows increased due to the 
reduction in return flows to the River Thames. Whilst this is a hypothetical example, the results are 
contrary to expectation and the utility of the modelling composition in the development of 
management policies for droughts and its potential for other scenarios was demonstrated.

1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121



 

Figure 15: Representation of the hydrological system in the Thames integrated model

Figure 16: Individual model extents in the Thames integrated model

Conclusions

Sharing the same purpose and motivation as its predecessor, OpenMI 2.0 has a number of 
similarities and a number of differences to the earlier version of the standard, OpenMI 1.4. Both 
have been designed to be as open and flexible as possible and allow numerical models to be coupled 
easily in a manner which allows two-way passage of data between them whilst they are in the 
process of running. In this way, the numerical models can influence each other. The basic constructs 

1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180



are the same: compliant numerical models become Linkable Components offering and receiving 
Exchange Items to and from each other. No assumptions are made about the spatial structures 
involved with both versions of the standard offering low level spatial constructs, rather than 
assuming that Grids or Meshes will be used. Similarly, parameters are broken down into their 
Dimension Base offering a low level definition, designed to reduce the probability of errors in the 
passage of data along two connected Exchange Items.

Unlike version 1.4, OpenMI 2.0 does not assume that the models used will be stepping through time 
as they run – although this is most often the case – and offers timestepping as an extension to the 
base standard. In order to offer the modeller maximum flexibility, version 2.0 defines any adaptation 
of outputs or inputs as a separate entity (an adaptor) to the Linkable Components rather than 
embedding such an adaptation in one of the Linkable Components. Also, the passage of data 
between Linkable Components is more efficient in version 2.0 of the standard.

There is a trade-off between flexibility and performance. Coupling numerical models in this highly 
flexible way can therefore cause performance degradation. The run time of a composition of two 
connected numerical models will often be more than the sum of the independent run times. This 
degradation varies depending on the implementation. In the worst cases, this is the sum of the two 
run times plus the communication time passing data plus the extra run time caused by breaking up 
the run of each model; at best the composition runs for slightly longer than the longer of the two 
run times. Although individual numerical models can still benefit from parallel high performance 
computing (HPC) architectures while running as linkable components, OpenMI 2.0 doesn’t include a 
specific support for running model compositions on HPC. However, such a specification has been 
explored by Buahin and Horsburgh (2018), offering HydroCouple interface definitions for 
consideration in future versions of the OpenMI standard.

The integrated modelling solution offered by OpenMI 2.0 has been demonstrated to work 
successfully and offer numerical modellers a valid method for the two-way coupling of numerical 
models. In many ways, any alternative solution would have to function similarly: numerical models 
would need to offer clear outputs and clear inputs; control would need to be passed to an external 
entity so that a controllable composition is possible; some sort of adaptation would be required 
across connections to deal with any inherent differences between candidate inputs and outputs. 
Thus OpenMI 2.0 offers a natural and intuitive method for integrating numerical models. 

OpenMI has originated from the domain of hydraulic modelling. It has been devised to integrate 
such things as models of drainage systems with models of river systems; models of groundwater 
with models of surface water. However, it can be observed that similar concepts exist in other 
spheres. A water supply network is a pumped system of pipes under pressure, entirely analogous to 
a biological bloodstream. An internal combustion engine cylinder also contains a set of separate yet 
integrated processes as the gases are introduced, ignited and exhausted from a cylinder. As such, 
OpenMI 2.0 can be used in all circumstances where it is necessary to exchange data between 
numerical models, in particular when the models must be allowed to influence each other as they 
proceed.

Acknowledgements
OpenMI 2.0 and the worked examples given here are the result of over a decade of research by a 
wide variety of individuals. The projects include:

 HarmonIT (EC contract: EVK1-CT-2001-00090) and OpenMI-Life (Grant agreement number 
LIFE06 ENV/UK/000409));

1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239



 DRIHM (EC Grant Agreement 283568) and DRIHM2US (EC Grant Agreement 313122);
 FluidEarth, HR Wallingford.

The authors would also like to acknowledge the technical contribution from the OpenMI Association 
Technical Committee (OATC) and support throughout the standardisation process from the Open 
Geospatial Consortium (OGC).

More recent incorporated research into spatio temporal structures has been conducted as part of 
the UKSA IPP ‘D-MOSS’ project building and implementing a dengue fever forecasting system for 
Vietnam (https://www.gov.uk/government/news/new-projects-see-uk-space-firms-tackle-
southeast-asian-challenges). 

References
Anastas, P. 2010 Agency Priority. EPA Office of Research and Development, Washington, D.C.

Buahin, C. and Horsburgh, J. 2018. Advancing the Open Modelling Interface (OpenMI) for Integrated 
Water Resources Modeling, Environmental Modelling & Software, 108, pp 133-153. doi 
10.1016/j.envsoft.2018.07.015.

Chadwick, A. and Morfett, J., 1986. Hydraulics in Civil Engineering.  Allen and Unwin (Publishers) Ltd, 
London, UK.

D’Agostino, D., Clematis, A., Galizia, A., Quarati, A., Danovaro, E., Roverelli, L.,Zereik, G., 
Kranzlmuller, D., Schiffers, M., gentschen Felde, N., Straube, C.,Caumont, O., Richard, E., Garrote, L., 
Harpham, Q., Jagers, B., Dimitrijevic, V., Dekic, L., Parodi, A., Fiori, E. and Delogu, F., 2014 The DRIHM 
project: a flexible approach to integrate HPC, grid and cloud resources for hydro-meteorological 
research, SC ’14: Proceedings of the International Conference for High Performance Computing, 
Networking, Storage and Analysis. pp 536-546, IEEE Press Piscataway, NJ, USA © 2014. doi 
10.1109/SC.2014.49.

D'Agostino, D., Danovaro, E., Clematis, A., Roverelli, L., Zereik, G., Parodi, A. and Galizia, A. 2015. 
Lessons learned implementing a science gateway for hydrometeorological research. Concurrency 
and Computation: Practice and Experience.

Danovaro, E., Roverelli, L., Zereik, G., Galizia, A., D'Agostino, D., Quarati, A., Clematis, A., Delogu, F., 
Fiori, E., Parodi, A., Straube, C., Felde, N., Harpham, Q., Jagers, B., Garrote, L., Dekic, L., Ivkovic, M., 
Richard, E. and Caumont, O. Setup an hydro-meteo experiment in minutes: the DRIHM e-
infrastructure for hydrometeorology research. Proceedings e-Science 2014: 10th IEEE International 
Conference on e-Science, Guarujá, SP, Brazil, October 20-24, 2014.

Gregersen, J. B, Gijsbers, P. J. A. and Westen, S. J. A. 2007. OpenMI: Open Modelling Interface, 
Journal of Hydroinformatics Issue 9(3) 2007 pp 175-191.

Goutal, N., Lacombe, J-M., Zaoui, F. and El-Kadi-Abderrezzak, K. 2012. MASCARET: a 1-D Open-
Source Software for Flow Hydrodynamic and Water Quality in Open Channel Networks, River Flow 
2012 – Murillo (Ed.), pp. 1169-1174. 

Harper, A., Barnes, J. Cleverley, P., Harpham, Q. and Hummel, S. 2016. FluidEarth, 
https://sourceforge.net/projects/fluidearth/, accessed 3rd April 2019.

1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298

https://www.gov.uk/government/news/new-projects-see-uk-space-firms-tackle-southeast-asian-challenges
https://www.gov.uk/government/news/new-projects-see-uk-space-firms-tackle-southeast-asian-challenges
https://sourceforge.net/projects/fluidearth/


Harpham, Q. K., Cleverley, P. & Kelly, D. 2104 The Fluid Earth 2 implementation of OpenMI 2.0. J. 
Hydroinform. 16(4), 890–906.

Harpham, Q., Lhomme, J., Parodi, A., Fiori, E., Jagers, B. and Galizia, A. 2016. Using OpenMI and a 
Model MAP to Integrate WaterML2 and NetCDF Data Sources into Flood Modeling of Genoa, Italy. 
JAWRA Journal of the American Water Resources Association (2016).

Harpham, Q.K. 2018. Using spatio-temporal feature type structures for coupling environmental 
numerical models to each other and to data sources, under review for publication, Open University, 
Milton Keynes, UK. 

Harpham, Q. and Danovaro, E., 2015. Towards standard metadata to support models and interfaces 
in a hydro-meteorological model chain. Journal of Hydroinformatics, 17(2), pp.260-274.

Hughes, A. G., Mansour, M. M., & Robins, N. S. 2008. Evaluation of distributed recharge in an upland 
semi-arid karst system: the West Bank Mountain Aquifer, Middle East. Hydrogeology Journal, 16(5), 
845-854.

Iwanaga, T., Rahman, J., Partington, D., Croke, B. and Jakeman, A. 2018. ‘Software Development 
Practices in Integrated Environmental Model Development’, Proc. 9th International Congress on 
Environmental Modelling and Software, Fort Collins, Colorado, USA. Mazdak Arabi, Olaf David, Jack 
Carlson, Daniel P. Ames (Eds.).

Jackson C.R.; Spink A.E.F., 2004. User's manual for the groundwater flow model ZOOMQ3D. 
Nottingham, UK, British Geological Survey, 107pp. (IR/04/140) - http://nora.nerc.ac.uk/11829/

Jamieson, S., Lhomme, J., Wright, G. and Gouldby, B. 2012. Highly efficient 2D inundation modelling 
with enhanced diffusion-wave and sub-element topography. Proc. Inst. Civ. Eng. Wat. Man. 165 (10): 
581–595.

Laniak, G.F., Olchin, G., Goodall, J., Voinov, A., Hill, M., Glynn, P., Whelan, G., Geller, G., Quinn, N., 
Blind, M. and Peckham, S., 2013. Integrated environmental modeling: a vision and roadmap for the 
future. Environmental Modelling & Software, 39, pp.3-23.

Mansour, M.M.; Hughes, A.G. 2004 User's manual for the distributed recharge model ZOODRM. 
British Geological Survey, 61pp. (IR/04/150) - nora.nerc.ac.uk/12633/

Mansour, M., Mackay, J., Abesser, C., Williams, A., Wang, L., Bricker, S., & Jackson, C. 2013. 
Integrated Environmental Modeling applied at the basin scale: linking different types of models 
using the OpenMI standard to improve simulation of groundwater processes in the Thames Basin, 
UK. In: MODFLOW and More 2013: Translating Science into Practice, Colorado, USA, 2-5 June 2013. 
(nora.nerc.ac.uk/501789/)

Meiburg, S. in EPA 2008 Integrated Modeling for Integrated Environmental Decision Making. EPA-
100-R-08-010. US Environmental Protection Agency, Office of the Science Advisor, Washington, DC. 

Moore, R. V., & Hughes, A. G., 2017. Integrated environmental modelling: achieving the vision. 
Geological Society, London, Special Publications, 408(1), 17-34.

Nativi, S., Mazzetti, P., & Geller, G. N., 2013. Environmental model access and interoperability: The 
GEO Model Web initiative. Environmental Modelling & Software, 39, 214-228.

1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357



OGC OpenMI. 2014. OGC Open Modelling Interface - Interface Standard OGC 11-­‐014r3 version 2.0. 
Open Geospatial Consortium, http://www.opengis.net/doc/IS/openmi/2.0GC, accessed 26th 
February 2019.

Ramsbottom D., Floyd P. and Penning-Rowsell E. 2003. Flood Risks to People Phase 1 R&D Technical 
Report FD2317, ISBN 1844321355.

Royse, K. R., de Freitas, M., Burgess, W. G., Cosgrove, J., Ghail, R. C., Gibbard, P., ... & Skipper, J. 
(2012). Geology of London, UK. Proceedings of the Geologists' Association, 123(1), 22-45.

Sophocleous, M. A., Koelliker, J. K., Govindaraju, R. S., Birdie, T., Ramireddygari, S. R., & Perkins, S. P., 
1999. Integrated numerical modeling for basin-wide water management: The case of the 
Rattlesnake Creek basin in south-central Kansas. Journal of Hydrology, 214(1), 179-196.

Voinov, A. 2010 Model integration and the role of data. Environmental Modelling & Software 25, 
965–969.

1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416

http://www.opengis.net/doc/IS/openmi/2.0GC

