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Mesopelagic fish are an important component of marine ecosystems, and their contribution to marine biogeochemical cycles is becoming in-
creasingly recognized. However, major uncertainties remain in the rates at which they remineralize organic matter. We present respiration
rate estimates of mesopelagic fish from two oceanographically contrasting regions: the Scotia Sea and the Benguela Current. Respiration rates
were estimated by measuring the enzyme activities of the electron transport system. Regression analysis of respiration with wet mass high-
lights regional and inter-specific differences. The mean respiration rates of all mesopelagic fish sampled were 593.6 and 354.9ml O2 individu-
al�1 h�1 in the Scotia Sea and Benguela Current, respectively. Global allometric models performed poorly in colder regions compared with
our observations, underestimating respiratory flux in the Scotia Sea by 67–88%. This may reflect that most data used to fit such models
are derived from temperate and subtropical regions. We recommend caution when applying globally derived allometric models to regional
data, particularly in cold (<5�C) temperature environments where empirical data are limited. More mesopelagic fish respiration rate meas-
urements are required, particularly in polar regions, to increase the accuracy with which we can assess their importance in marine biogeo-
chemical cycles.
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Introduction
The uptake of carbon dioxide (CO2) by the ocean through the bi-

ological carbon pump plays an important role in the partitioning

of CO2 between the atmosphere and ocean (Kwon et al., 2009).

Understanding and quantifying the processes controlling the effi-

ciency of this pump are therefore vital for predictions of future

climate. Carbon may be transported by passive sinking (the gravi-

tational pump), physical mixing, or active transport through ver-

tical migration of metazoans (Boyd et al., 2019). Previously, the

gravitational pump was thought to be the dominant mechanism

for transferring organic carbon to the deep sea. However, the im-

portance of additional mechanisms, in particular the role of the
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migrating mesopelagic community, has been recognized more re-

cently (Bianchi et al., 2013; Jónasdóttir et al., 2015; Anderson

et al., 2019; Boyd et al., 2019; Pakhomov et al., 2019). Through

diel (and seasonal) vertical migrations, organic carbon ingested in

the epipelagic layer can be released in the mesopelagic layer

through excretion, respiration, egestion and mortality (Longhurst

et al., 1990; Zhang and Dam, 1997; Steinberg et al., 2000; Turner,

2002; Jónasdóttir et al., 2015; Steinberg and Landry, 2017).

Acoustic estimates of mesopelagic fish biomass suggest that the

global biomass of mesopelagic fish could be up to 15 gigatonnes

(Gt) (Irigoien et al., 2014), dramatically higher than trawl-based

estimates of 1 Gt (Gjøsaeter and Kawaguchi, 1980). Model esti-

mates are wide ranging (1.8–15.9 Gt) with the most likely model

scenarios suggesting 2–9 Gt (Anderson et al., 2019; Proud et al.,

2019). As a result of their substantial global biomass, combined

with large diel vertical migrations (Klevjer et al., 2016), mesope-

lagic fish can make a significant contribution to the biological

carbon pump. Indeed, estimates of fish-mediated export (primar-

ily estimates of respiratory flux, i.e. carbon respired at depth by

the migrating community) can be up to 55% of the gravitational

particulate organic carbon (POC) flux (Hidaka et al., 2001;

Davison et al., 2013; Hudson et al., 2014; Ariza et al., 2015;

Belcher et al., 2019). The fish-driven respiratory flux in the meso-

pelagic layer is, therefore, an important component of ocean car-

bon budgets, yet measurements of mesopelagic respiration are

difficult.

Obtaining live, heathy individuals from the mesopelagic

through traditional net sampling techniques is not easy, resulting

in a limited ability to incubate them under stress-free conditions

and to obtain meaningful respiration rates. Previous studies

(Hidaka et al., 2001; Hudson et al., 2014; Belcher et al., 2019)

attempting to quantify fish-driven respiratory fluxes have made

use of allometric relationships to estimate respiration from more

easily measurable parameters such as depth, temperature and bio-

mass. Ikeda (2016) compiled global incubation measurements of

the respiration of pelagic marine fishes, while Belcher et al. (2019)

focused on myctophid fishes that included both incubation

experiments and respiration rate estimates from measurement of

the enzyme activity of the electron transport system (ETS).

However, only 36% and 47% of the collated data from Ikeda

(2016) and Belcher et al. (2019), respectively, were obtained from

fish whose habitat depth is deeper than 50 m, meaning that the

mesopelagic fish community was poorly represented in the rela-

tionships they derived. Clarke and Johnston (1999) compiled

data on metabolic rates for a wide range of teleost fish and exam-

ined the effects of body mass and temperature, although the

depth at which fish were sampled was not included.

The ETS method is currently the only method that can be used

to estimate the respiration of fish sampled from the mesopelagic

given our inability to catch and maintain them in a state where

reliable respiration rates can be measured directly. For this

method, nets are used to collect organisms from the mesopelagic

layer and individuals are frozen immediately in liquid nitrogen.

This allows measurement of the in situ enzyme activity as it is sta-

ble during the sampling process (Gómez et al., 1996). Oxygen

consumption occurs at the end of the ETS through the reduction

of oxygen to water. The enzyme activity of the ETS can therefore

be used to measure the potential respiration based on the respira-

tory capacity of the ETS. Despite not being sensitive to the short-

term net sampling stress and avoiding the need for incubation,

the ETS method is a measure of the maximum potential

respiration and, thus, the ratio between respiration and ETS ac-

tivity (R:ETS) must be known.

Considering the inherent difficulties of measurement, it is un-

surprising that there is a lack of data on the respiration rates of

mesopelagic fish (Ikeda, 2016). The empirically derived allometric

relationships of Ikeda (2016) and Belcher et al. (2019) are global

compilations of the available data, which are primarily from tem-

perate and subtropical regions with little data from low tempera-

ture (<5�C) regions. As yet, there has not been sufficient data to

validate these allometric methods in a robust way. In this study,

we present estimates of respiration of mesopelagic fish derived

from ETS activities. Our study focused on two oceanographically

contrasting regions of the Atlantic, a low temperature, high pro-

ductivity region of the Southern Ocean, the Scotia Sea, and a sub-

tropical, high productivity region, the Benguela Current. We

compare our ETS-derived respiration estimates with allometri-

cally based estimates to assess their validity in these regions.

Methods
Data for this study were collected aboard the RRS Discovery dur-

ing research cruises DY086 to the Scotia Sea in the Southern

Ocean (12 November 2017–19 December 2017) and DY090 to

the Benguela Current region offshore of Namibia (23 May 2018–

28 June 2018), both in the Atlantic sector. During the Scotia Sea

cruise, data were collected at station P3 (52.40�S, 40.06�W) to the

northwest of South Georgia, and during the Benguela Current

cruise, data were collected at station BN1 (18.00�S, 11.00�E).

Vertical profiles of the water column at each site were made using

a conductivity–temperature–depth unit (SBE 9 plus), which were

used to determine in situ water temperatures and water mass

properties.

Net deployments and sample processing
Mesopelagic fish samples were obtained using an opening and

closing 25 m2 rectangular mid-water trawl net (RMT25, mini-

mum 4 mm mesh; Baker et al., 1973; Piatkowski et al., 1994).

This system consists of two nets, which can be opened and closed

on command to sample specific depth horizons. Nets were

deployed at 0–125, 125–250, 250–500 and 500–750 m in the

Benguela Current, and at 0–250 and 250–500 m in the Scotia Sea.

These deployment depths were based on the observed oceano-

graphic structure at each study site. Nets were towed obliquely at

two knots, for 20–50 min at each depth layer, and were repeated

during the day and night. Once aboard, all fish caught were

sorted, identified to the lowest taxonomic level possible and the

composite wet mass (WM) measured to the nearest 0.01 g using a

motion-compensated balance. Representative subsamples from

each of the numerically dominant fish species were taken for sub-

sequent measurement of ETS activity in the laboratory (see be-

low). These samples were immediately flash frozen in liquid

nitrogen before storage at �80�C.

Respiration measurements—ETS activity
Frozen whole fish samples were reweighed for WM in the labora-

tory, and a subsample was taken from each individual (and

weighed) for ETS analysis. The ETS activity was measured kineti-

cally following the method of Owens and King (1975) with modi-

fications from Gómez et al. (1996). Each subsample was

homogenized in a phosphate buffer using an electric homogenizer

for 45–60 s. Homogenates were then centrifuged for 10 min at
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4000 rpm at 0�C. 100 lL of subsample of the homogenate was

mixed with 300 ll of reaction buffer (0.1 M, pH 8.5) containing

substrates NADH and NADPH (saturating concentrations of 1.7

and 0.25 mM, respectively) in a 1-cm path length cuvette. All pro-

cedures were carried out on ice. 100 lL tetrazolium chloride dye,

INT (2-p-iodophenyl-3-p-nitrophenyl monotetrazolium chloride,

4 mM) was added to each cuvette, and the reaction was measured

continuously for 8 min at 490 nm in a Cary 60 UV–Vis spectro-

photometer (Packard and Christensen, 2004). The temperature of

the reaction was controlled at 11.5–12�C. In addition, for each

sample, a blank assay was performed without the ETS substrates

to account for the contribution of the non-enzymatic reduction

of INT (Maldonado et al., 2012). Reagent blanks were also taken

daily. In the kinetic assay, the INT replaces oxygen as the electron

acceptor for the ETS, accepting two electrons where oxygen

would accept four. The rate of formazan produced in the reduc-

tion of INT is therefore related to the oxygen consumption by a

factor of two. The potential respiration rate (U, mmol O2 h�1)

was calculated from the formazan production rate following

Packard and Christensen (2004) using our measured INT extinc-

tion coefficient (at 490 nm) of 16.4 mM�1 cm�1. Respiration (R)

at the experimental temperature of 12�C was then estimated us-

ing a conservative R:ETS ratio of 0.5 based on measurements

made on fish (Ikeda, 1989) and values in the literature for marine

zooplankton (Hernández-León and Gómez, 1996, see Discussion

section for detail on range in R:ETS ratios). Total respiration rates

per individual (RIND_12) at the experimental temperature of 12�C
were calculated based on the wet weight of the subsample and to-

tal weight of the individual. In addition, we corrected respiration

estimates to in situ temperature (ranging from 2 to 16�C) using

the Arrhenius equation and an activation energy of 15 kcal mol�1

(Packard et al., 1975; Ariza et al., 2015; Hernández-León et al.,

2019), giving RIND_INSITU for respiration rates per individual.

These ETS-derived respiration estimates are a measure of routine

respiration [i.e. between zero (resting) and maximum activity lev-

els]. We define our ETS-derived respiration datasets as “Scotia

Sea” and “Benguela”, for our respective study sites. Throughout

the manuscript, where respiration rates refer to rates at 12�C, we

used the subscript “12”, and where rates are for in situ tempera-

tures, we use the subscript “INSITU”.

Protein measurements
As an additional determinant of biomass, the protein concentra-

tions of the homogenates used for ETS analysis were estimated

according to the method of Lowry et al. (1951), with modifica-

tions as described by Rutter (1967). Calibration curves were

made from standard solutions of bovine serum albumin. Total

protein per individual was estimated using the ratio of total WM

to the WM of the subsample used for ETS analysis.

Allometrically estimated respiration
Respiration rates were also estimated based on the empirical rela-

tionships defined for pelagic marine fishes by Ikeda (2016) and

for myctophid fishes by Belcher et al. (2019). These are based on

data compilations of field studies, with Ikeda (2016) utilizing in-

cubation-derived measurements (in the absence of food) of rou-

tine respiration rates and Belcher et al. (2019) utilizing both

incubation- and ETS-derived measurements. We apply the re-

gression from Ikeda (2016) (their model 1, herein referred to as

Ikeda2016_INSITU) and the regression from Belcher et al. (2019)

(herein referred to as Belcher2019_INSITU) to the WM of each in-

dividual fish measured at our Benguela and Scotia Sea study sites

and compare these predicted respiration rates with our ETS-

based respiration measurements to assess the applicability of

these two regressions to our study regions.

Ikeda2016_INSITU regression:

LnðRINDINSITU
Þ ¼ 19:491 þ 0:885 � LnðWMÞ � 5:770

� 1000=temp� 0:261 � LnðdepthÞ; (1)

where WM is the wet mass (mg) and temp is the temperature

(K); depth is in metres.

Belcher2019_INSITU regression:

LnðRINDINSITU
Þ ¼ �1:315þ 0:734� LnðWMÞ þ 0:085� T ; (2)

where WM is the wet mass (mg) and T is the temperature (�C).

For comparison to our measurements, we adjust these respira-

tion rate predictions to our experimental temperature of 12�C to

give (RIND_12), using the Arrhenius equation and an activation

energy of 15 kcal mol�1 (Packard et al., 1975; Ariza et al., 2015).

Regression analysis
Regression analyses of ETS-derived respiration data collected in

our study were carried out using a regression fitting model for

multiple predictors and a response, where data were continuous

and no additive terms were allowed. Regression analysis was car-

ried out for RIND_12 to assess the effect of WM at our experimen-

tal temperature of 12�C; Equations were of the form:

LnðRIND12
Þ ¼ a0 þ a1 � LnðWMÞ; (3)

where a0 and a1 are regression coefficients and WM is the wet

mass (mg). With only two large depth zones in the Scotia Sea

(0–250 and 250–500 m), we lack sufficient depth resolution to in-

clude this variable appropriately in the model. WM and respira-

tion data were transformed to the natural log prior to fitting the

regression. Fitting was performed using the ordinary least squares

method in Minitab (version 18.1).

To compare the regressions of our study with that of Ikeda

(2016) and Belcher et al. (2019), we recalculated the linear regres-

sions (following the aforementioned method) from the respective

datasets (adjusted to our 12�C experiment temperature) with

WM only (i.e. not including depth or temperature) as a predictor.

We refer to these recalculated regressions as Ikeda2016R_12 and

Belcher2019R_12. We then investigated statistical differences be-

tween the mass scaling coefficients (for RIND_12) derived from our

own datasets (Benguela and Scotia Sea) and the mass scaling coef-

ficients derived from Ikeda2016R_12 and Belcher2019R_12 regres-

sions. To do so, we calculated p-values for the interaction term of

WM with dataset category (i.e. Ikeda2016R_12, Belcher2019R_12,

Scotia Sea, Benguela) to see if the regression coefficients were sig-

nificantly different. In addition, we performed regression analysis

(as above) for all myctophid fish (termed “All Myctophid”) by

collating together the ETS measurements we made on myctophid

fish species in the Scotia Sea and Benguela, with Belcher2019

(both incubation and ETS data). This was done for both RIND_12

and RIND_INSITU data.

Respiration of mesopelagic fish 3

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/advance-article-abstract/doi/10.1093/icesjm
s/fsaa031/5805416 by guest on 23 M

arch 2020



Results
ETS-derived respiration rates
Temperatures in the upper 500 m in the Scotia Sea ranged from

0.7 to 3.5�C, compared with the Benguela region, where tempera-

tures in the upper 750 m ranged from 4.7 to 20.6�C. In the Scotia

Sea, respiration rates of Gymnoscopelus spp., Electrona antarctica

and Krefftichthys anderssoni were measured, with WM ranging

from 0.2 to 16.1 g. Respiration rates ranged from 45.8 to 1837.8 ml

O2 individual�1 h�1 (0.139–7.447ml O2 mg prot.�1 h�1). The

mean respiration rate of mesopelagic fish measured in the Scotia

Sea was 593.6ml O2 individual�1 h�1. In the Benguela region, res-

piration rates of Bathylagus spp., Melamphidae spp.,

Gymnoscopelus spp., Cyclothone spp., Nemichthyidae spp., and

Sternoptychidae spp. were measured, with WM ranging from 0.1

to 20.9 g. The mean respiration rate of all mesopelagic fish mea-

sured in the Benguela was 354.9 ml O2 individual�1 h�1 and

ranged from 4.1 to 5245.8ml O2 individual�1 h�1 (see

Supplementary Material for full dataset). The relationship be-

tween respiration and mass is strongest for mass units of protein

rather than WM (Figure 1). As WM is more easily measured, and

to allow comparison with previous studies, we present our data

in terms of units of WM (see Supplementary Figures S1–S3 for

data presented in units of protein).

Respiration rates at 12�C (predicted for each individual fish

from Benguela and Scotia Sea datasets) by Ikeda2016_12 range

from 20.6 to 873.1ml O2 individual�1 h�1 for the Scotia Sea data,

with Belcher2019_12 predicting rates of between 44.9 and

1015.14ml O2 individual�1 h�1. For the Benguela region, allomet-

rically predicted respiration rates ranged between 5.8 and 680.4 ml

O2 individual�1 h�1 based on Ikeda2016_12 and from 18.3 to

1170.3ml O2 individual�1 h�1 based on Belcher2019_12.

Comparing respiration rates predicted from Ikeda2016_12 and

Belcher2019_12 reveals that the allometric regressions are more

representative of the Benguela data (Figure 2B) than the Scotia

Sea data (Figure 2A). Both the Ikeda2016_12 and Belcher2019_12

equations underestimate respiration compared with ETS esti-

mates of respiration rates made by the present study in the Scotia

Sea. Our measured respiration rates are up to 32 and 13 times

higher than predicted values from Ikeda2016_12 and

Belcher2019_12, respectively (medians are eight and four times

greater, respectively). To assess the applicability of the

Ikeda2016_12 and Belcher2019_12 regressions, we examine the

residuals of the predicted respiration rates against our ETS-based

respiration rate measurements (R_IND_12). Plotting these residuals

against the WM (Figure 3) allows us to assess if the mass expo-

nents of the Ikeda2016_12 and Belcher2019_12 regressions are ap-

propriate for our datasets. The mean residuals between Scotia Sea

respiration rates and predicted rates from Ikeda2016_12 and

Belcher2019_12 were 1210.4 and 1047.7 ml O2 individual�1 h�1,

respectively. The mean residuals calculated for Benguela respira-

tion rates are 305.2 and 151.9ml O2 individual�1 h�1 for

Ikeda2016_12 and Belcher2019_12, respectively. All residuals high-

light the greatest underestimations for fish of larger body mass.

Regression analysis
Multiple linear regression of our ETS-derived fish respiration

rates (RIND_12) reveals that WM is a significant predictor for both

the Scotia Sea and Benguela fish data (p< 0.05 in all cases;

Table 1). The model fit for RIND_12 was better for the Benguela

data, R2 of 46% compared with 36% for the Scotia Sea (Table 1).

The mass exponent (a1) of the Scotia Sea is low, at 0.33, com-

pared with the mass exponent of 0.75 for the Benguela dataset.

The mass scaling coefficients (a1) of the recalculated regres-

sions Ikeda2016R_12 (0.83) and Belcher2019R_12 (0.76) were sig-

nificantly different (p< 0.001) from the Scotia Sea mass scaling

coefficient (0.33, p< 0.001) for RIND_12. In contrast, estimates of

the mass scaling coefficients of Ikeda2016R_12 and

Belcher2019R_12 did not differ significantly from the Benguela

mass scaling coefficient (0.75, p¼ 0.28 and p¼ 0.93, respectively).

When combining all myctophid data [Myctophidae from this

study and from Belcher et al. (2019)], we calculate a mass expo-

nent of 0.89 and an R2 of 82% for RIND_12 , and a mass exponent

of 0.52 and an R2 of 70% for RIND_INSITU (Figure 4).

Discussion
Methodological considerations
Our results highlight that while the regressions of Ikeda2016_12

and Belcher2019_12 are adequate at predicting the respiration

Figure 1. Respiration rates at in situ temperature (RIND_INSITU, ll O2 individual�1 h�1) of fish species measured at our study sites of the
Benguela (circles) and the Scotia Sea (triangles) measured via ETS. Data are coloured by fish species. Respiration is plotted as a function of (A)
the wet mass per individual (mg) or (B) protein mass per individual (mg). Note the natural logarithmic scale on both x and y axes.
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rates of fishes from the Benguela study site (Figure 2B), both re-

gression models substantially underestimate the respiration rates

of fishes in the Scotia Sea when compared with ETS estimates of

respiration (Figure 2A). As several different methods have been

used in the various literature data compilations, we must first ex-

amine possible methodological differences that may contribute to

the underestimation of respiration in the Scotia Sea by the regres-

sions of Ikeda2016_12 and Belcher2019_12. Whereas Ikeda (2016)

compile respiration rates derived from incubation experiments

(by incubating net-caught fish), the Belcher2019_INSITU regression

is based on both ETS- and incubation-derived data [Figure 1 in

erratum to Belcher et al. (2019)]. A key difference between these

two methods is the feeding state of the animals. The incubated

fish were not fed, but the fish sampled for respiration via ETS are

in their natural feeding state and thus gut fullness is variable. As

there is an increase in energy expenditure during digestion,

starved animals will have lower respiration rates than those that

have just fed. Therefore, ETS-derived respiration rates could be

higher than the respiration rates of starved animals, since ETS ac-

tivity is less sensitive to the short-term effect of starvation (Ikeda

and Skjoldal, 1980; Packard et al., 1996), and thus our ETS-de-

rived rates likely reflect the rates of fed animals. To adjust the

Figure 2. Comparison of respiration rates at 12�C (RIND_12, ll O2 individual�1 h�1) calculated based on Ikeda2016_12 (white circles) and
Belcher2019_12 (black circles) regressions and rates measured (via ETS) at our study sites (grey circles) of the (A) Scotia Sea and (B) Benguela
Current. Respiration is plotted as a function of the wet mass per individual (mg). Note the natural logarithmic scale on both x and y axes.
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predictions made with the Ikeda2016_12 equation to represent fed

animals, we can estimate the extra energy required for respiration

due to the action of feeding. Applying a specific dynamic action

(SDA; the energy expended on ingestion, digestion, absorption

and assimilation of food) of 2.36 (Secor, 2009) brings the predic-

tions of the Ikeda2016_12 regression closer to our measurements,

but predictions are still up to 14 times too low.

Sensitivity analyses
A number of assumptions were made in the estimation of respira-

tion from ETS activity. We conduct here a sensitivity analysis to

assess what changes to these assumptions would be required to

make our ETS-derived data match the predictions of

Ikeda2016_12. We then consider whether such changes to our

assumptions are feasible given the present knowledge on the biol-

ogy and physiology of these organisms:

(i) R:ETS ratio: ETS is a measure of the potential respira-

tion and, thus, it is possible that the conservative R:ETS ra-

tio of 0.5 used to convert to respiration was not

appropriate for the Scotia Sea data. The only studies mea-

suring the respiration of mesopelagic fish via ETS (Ikeda,

1996; Ariza et al., 2015; Hernández-León et al., 2019) also

use the conservative R:ETS ratio of 0.5, based on the typical

range of values for zooplankton of 0.5–1 from Hernández-

León and Gómez (1996) and fish (Ikeda, 1989).

Hernández-León and Gómez (1996) investigated the R:ETS

ratio in marine zooplankton, with most of their data falling

between 0.4 and 0.6. However, there was variability around

Figure 3. Calculated residuals of ETS-measured respiration (RIND_12) in the Scotia Sea (blue circles) and Benguela (orange circles). Residuals
are the difference between the measured data and the calculated respiration based on the regressions of (A) Ikeda2016_12 and (B)
Belcher2019_12. Positive residuals indicate an underestimation by the regression. Linear regressions have been plotted through each data set
(dashed lines).

Table 1. Regression coefficients and statistics derived from multiple regression of respiration rates RIND (ml O2 individual�1 h�1) on WM (mg).

a0 a1 a2 a3 n R2 (%) p-Values

Scotia Sea 4.359 (60.556)* 0.334 (60.066)* – – 47 36 Ln(WM) ¼ 0.001
Benguela �0.675 (60.610) 0.752 (6 0.079)* – – 109 46 Ln(WM) ¼ <0.001
Belcher2019_INSITU �1.315 (60.469)* 0.734 (60.052)* 0.085 (60.011)* – 74 77 T ¼ <0.001

Ln(WM) ¼ <0.001
Belcher2019R_12 a �0.469 (60.185)* 0.760 (60.030)* – – 74 90 Ln(WM) ¼ <0.001
All Myctophid_INSITU �1.579 (60.212)* 0.524 (60.029)* – – 140 70 Ln(WM) ¼ <0.001
All Myctophid_12 �0.877 (60.258)* 0.891 (60.036)* – – 140 82 Ln(WM) ¼ <0.001
Ikeda2016_INSITU 19.491 (62.491)* 0.885 (60.021)* �5.770 (60.752)* �0.261 (60.032)* 102 95 All <0.001
Ikeda2016R_12 a �1.133 (60.202)* 0.832 (60.026)* – – 102 91 Ln(WM) ¼ <0.001
Clarke and Johnston 1999b �5.43 0.80 (60.13) – – 138 – –

The regression models of the Benguela and Scotia Sea are of the form: Ln(RIND_12) ¼ a0þ a1� Ln(WM), and based on respiration data at the experimental tem-
perature of 12�C. We include literature data, Ikeda2016_INSITU, Belcher2019_INSITU, and Clarke and Johnston (1999) for comparison (in italics), based on data at in
situ temperatures. The Ikeda2016 regression is of the form: Ln(RIND_INSITU) ¼ a0þ a1� Ln(WM) þ a2� 1000/temp þ a3� Ln(depth), note that temperature
here is represented in Kelvin. The Belcher2019 model is of the form: Ln(RIND_INSITU) ¼ a0þ a1 � Ln(WM) þ a2� T. In addition, we include the recalculated
regressions, Ikeda2016R_12 and Belcher2019R_12, with only wet mass as a predictor. The “All Myctophid” category, combines data from fishes belonging to the
order Myctophiformes from the Scotia Sea, Benguela, and Belcher2019 datasets.
aRegressions recalculated from routine respiration data from Ikeda 2016 (provided by T. Ikeda) and Belcher et al. (2019). Respiration data were adjusted to 12�C
(see Methods section).
bRespiration in mmol O2 individual�1 h�1, mass in g.
*p-Value < 0.05.
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this, agreeing with the range of values measured by previ-

ous studies (0.16–2.34; Hernández-León and Gómez, 1996

and references within). Due to the difficulty in measuring

the R:ETS ratio for mesopelagic fish, Ikeda (1989) incu-

bated gobies and pomacentrids (sampled from a salt pond

in Australia and not fed during the incubation) to estimate

an R:ETS ratio of 0.62 and applied this to ETS activities of

myctophid fishes sampled from surface waters. In addition,

Schalk (1988) noted an R:ETS ratio of 0.16 measured in

Pomatoschistus species in their own unpublished data.

Based on the model of Packard et al. (1996), Osma et al.

(2016) predicted the in vivo respiration rate of mysids from

the ETS activity based on bisubstrate kinetics and measure-

ments of kinetic constants and concentrations of the sub-

strates NADH and NADPH. This model better takes into

account the nutritional state of the organism compared

with the use of a fixed value of the R:ETS ratio and is a

promising alternative to incubating live animals to deter-

mine the R:ETS ratio. However, as yet, Osma et al. (2016)

still recommend calibration of the predicted in vivo respira-

tion rate with measured respiration rates.

We can calculate the R:ETS ratio required to bring the

Scotia Sea estimates in line with the predictions of

Ikeda2016_12 by assuming that the respiration predicted by

Figure 4. Compilation of respiration rates of only fishes belonging to the order Myctophiformes measured in this study (Benguela: orange
circles, and Scotia Sea: blue circles) with the myctophid compilation of Belcher et al. (2019) (grey). (A) Respiration rates at in situ
temperatures (RIND_INSITU) and (B) respiration rates at 12�C (RIND_12). The method of respiration rate measurement is defined by filled (ETS
activity) or unfilled (incubation experiment) symbols. In addition, we highlight the literature data of Belcher et al. (2019) that represent
incubation studies in Antarctic waters with grey open triangles. The regression fit of these data is shown by a black line with confidence
intervals (0.95) in grey shading.
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the Ikeda regression is correct and examining the ratio be-

tween this and our measured ETS activity. This results in a

mean R:ETS ratio of 0.14 (median 0.09), which is at the

very low end of observations in the literature (Hernández-

León and Gómez, 1996). For the Benguela dataset, the

mean calculated R:ETS ratio is 0.54 (median 0.30)

highlighting the better agreement of Ikeda2016_12 with our

ETS-derived respiration based on an R:ETS ratio of 0.5. If

we must apply very different R:ETS ratios to the Benguela

and Scotia Sea samples sets, it implies that environmental

conditions must have a strong influence on this ratio,

which no study has yet demonstrated.

(ii) Temperature correction: A major difference between the

Benguela and Scotia Sea regions is the temperature range

experienced by fish living in the mesopelagic (0.7–3.5�C in

upper 500 m of Scotia Sea compared with 4.7–20.6�C in the

upper 750 m of the Benguela). All ETS assays were carried

out at a laboratory temperature of 11.5–12�C, and thus, the

temperature correction is larger for the Scotia Sea data.

Based on the available literature, we applied the Arrhenius

equation and an activation energy (Ea) of 15 kcal mol�1 to

convert our measurements to in situ temperatures and to

adjust the data of Ikeda (2016) and Belcher et al. (2019) to

our experiment temperature of 12�C (RIND_12). This has

been used for micronekton (Ariza et al., 2015; Hernández-

León et al., 2019) but is originally based on the mean of val-

ues measured on zooplankton (Packard et al., 1975), which

may not be ideal for mesopelagic fish. The Ea may also

change with environmental condition depending on the

ability of enzymes to function at different temperature

ranges (Simcic and Brancelj, 2004). However, to reduce our

Scotia Sea respiration estimates to match the values pre-

dicted by the Ikeda2016_12 regression, we would require

an Ea of �40 kcal mol�1 (Q10 � 12.5 for a temperature

range of 2–18�C) which is not realistic (Supplementary

Figure S3).

If we apply a more realistic Ea of 20 kcal mol�1 [based on

the range observed by Packard et al. (1975) of 11.7–

21.9 kcal mol�1, Q10 � 3.5 for a temperature range of 2–

18�C] and also apply an SDA factor of 2.36 to the Ikeda

predictions, we find better agreement between the predic-

tions of the Ikeda2016_12 regression and our ETS measure-

ments in the Scotia Sea (calculated median R:ETS ratio of

0.46 assuming the predicted respiration from Ikeda2016_12

is correct). However, these adjustments would result in a

median R:ETS ratio of 0.85 (mean 1.5) for the Benguela

dataset, which is unlikely. In addition, although these

methodological adjustments improve the general overall

agreement, there is still disagreement on an individual fish

basis (the range in calculated R:ETS for Scotia Sea is 0.05–

2.35), highlighting the high degree of individual variability

in metabolic rate for a given body mass and temperature.

Our sensitivity analysis suggests that, to bring the

Ikeda2016_12 predictions in line with our observations, the

necessary changes to the aforementioned parameters would

be unrealistic given our present understanding. Although

methodological factors may account for some of the differ-

ences between the regression-based predictions and our

ETS-derived measurements, our data still suggest that there

are regional differences in the scaling of mass with the res-

piration of mesopelagic fish.

Mesopelagic fish respiration: applicability of global
equations to regional datasets
Cold temperature regions are not well represented in the existing

mesopelagic fish regression models. Both Ikeda (2016) and Belcher

et al. (2019) used global data to develop their regressions, with a

dominance of data from lower latitudes [71% and 86% of respira-

tion data at temperatures >5�C for Ikeda (2016) and Belcher et al.

(2019), respectively]. Although our ETS-derived data sit in the

cloud of myctophid respiration rate data compiled by Belcher et al.

(2019) (Figure 4), comparison of the Belcher2019_12 regression

and our All Myctophid regressions reveals that the addition of our

myctophid data results in a lower mass scaling coefficient for data

at in situ temperatures (Table 1, Figure 4B).

The poor fit of the Ikeda2016 and Belcher2019 allometric

regressions to the Scotia Sea dataset could relate to the consump-

tion of lipid-rich zooplankton that predominate in cold water

regions (Lee et al., 2006). Organisms respiring lipids have a low

respiratory quotient [RQ; moles CO2 produced/moles O2 con-

sumed relative to those respiring proteins or carbohydrates

(RQs¼ 0.7, 0.8 and 1.0, respectively)]. Therefore, producing a

mole of CO2 when metabolizing fat will consume 1.4 moles of

O2, whereas producing 1 mole of CO2 from carbohydrate will

only require 1 mole of oxygen; fat metabolism is an oxygen-

hungry process. The consumption of lipid-rich prey may also re-

sult in cold water mesopelagic fishes ingesting more carbon, e.g.

relative to nitrogen, than their physiology requires. One mecha-

nism through which organisms void excess dietary carbon is by

“futile cycling”, whereby excess carbon is disposed of via respira-

tion that is decoupled from biochemical or mechanical “work”

(Hessen and Anderson, 2008), resulting in elevated oxygen con-

sumption rates. Further studies are required to examine these hy-

potheses. Nevertheless, environmentally driven and/or inter-

species variation in diet may therefore contribute to the elevated

respiration rates we measured in the Scotia Sea. The lack of data

from cold water regions in the Ikeda (2016) and Belcher et al.

(2019) datasets means that the potential for diet-driven increased

rates of oxygen consumption in animals feeding on lipid-rich

prey would not be well captured by their respective regression

equations.

Mesopelagic fish respiration: inter- and intra-specific
variabilities
The mass scaling coefficient has been shown to vary with phylog-

eny, although differences between taxa are not always statistically

significant (Clarke and Johnston, 1999). Our data highlight a sig-

nificantly lower mass scaling coefficient for the Scotia Sea data

than for the global Ikeda (2016) dataset (Table 1), whereas no sig-

nificant differences were found between mass scaling coefficients

derived for the Benguela data and the Ikeda (2016) dataset. We

can further examine the cause of the low-mass exponent of the

Scotia Sea data by breaking the data down to the different species

(Figure 5). Species-specific regression analysis revealed that the

mass scaling coefficients for E. antarctica and K. anderssoni

(RIND12, 0.74 and 0.73 respectively) agree much better with the

scaling coefficient of Ikeda (2016), and the low overall mass
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scaling coefficient for the Scotia Sea data is driven by the lack of

relationship between respiration and WM for Gymnoscopelus

spp., and this likely explains the low R2 of our relationship with

mass for the Scotia Sea dataset (Table 1). This lack of scaling of

respiration rate with WM for Gymnoscopelus spp. could simply

suggest that the size range sampled was not large enough to see

this. Although there was no significant difference between the

mass scaling coefficient of Ikeda2016_12 and the overall Benguela

dataset, Figure 5B highlights that there are still inter-species dif-

ferences in both mass scaling and mean respiration rate at the

Benguela site. Our observations show that, within a given order,

the metabolic rates can vary substantially for a given body mass

and temperature. This is not surprising as the energetic require-

ments of different species vary with differences in lifestyle, e.g. ac-

tivity, habitat, feeding mode, diet, swimming mode, as well as

body composition (Clarke and Johnston, 1999). These differences

also exist between individuals of the same species and will vary

both spatially and temporally (Killen et al., 2010).

There is evidence that, in the Scotia Sea, most myctophids ver-

tically migrate to some degree (e.g. Collins et al., 2012; Saunders

et al., 2014, 2015a, b), and this active lifestyle may contribute to

their higher metabolic rates compared with other species

(Figures 1 and 5). Visual predation on copepods and other rela-

tively large prey (e.g. euphausiids and amphipods) in the surface

likely requires greater levels of activity than an ambush feeding

strategy employed by many non-migratory resident mesopelagic

fish (Pavlov and Kasumyan, 2002). The vertical migrations of

many myctophids may therefore reflect a metabolic strategy to al-

low feeding in warmer epipelagic layers where food is more avail-

able to visual predators, and assimilation of this food at depth

where they can remain totally inactive (Barham, 1971; Pearcy

et al., 1979; Neighbours and Nafpaktitis, 1982). Conversely,

Cyclothone spp. and Bathylagus spp. are predominantly found

deeper in the water column and are not known to be diel vertical

migrators (Sutton et al., 2008; Bernal et al., 2015). The ambush

feeding strategy of non-migratory mesopelagic fish, combined

with their low feeding intensity and energy requirements, likely

comes at reduced metabolic demand. The lower level of activity

associated with this more sedentary, deeper-dwelling lifestyle may

therefore contribute to the low metabolic rate of these species.

The presence/absence of a gas-filled swim bladder and energetic

costs associated with this may also drive species differences in

metabolic rate.

Bathylagidae have low-mass-specific respiration rates relative

to other animals, but this difference is less pronounced when res-

piration is expressed as a protein-specific rate (Supplementary

Figure S2). Thus, the low respiration rates of Bathylagidae could

be explained by their high water content and low protein content

(Tierney et al., 2002; Schaafsma et al., 2018). Species with low

protein content will have lower mass-specific respiration rates

than those with high protein content. Protein is more tightly re-

lated to aerobic respiration than WM, explained by the respira-

tory machinery being located in the mitochondria, and thus can

be an informative measure when examining inter- and intra-

species differences in respiration. Adoption of protein as a mass

unit for allometric regressions may help to reduce uncertainty

but comes at the cost of greater time and facilities needed to

make these measurements.

Intra-specific variability, and the challenge of obtaining respi-

ration measurements for mesopelagic fish, means that it is diffi-

cult to determine the species-specific drivers of metabolic rate.

The differences we have observed, both between species and re-

gionally, highlight the caution that needs to be taken when apply-

ing global derived relationships to regional datasets. This appears

to be particularly true for cold temperature regions where data

are sparser.

Respiration is a time-consuming parameter to measure, and

many studies estimate respiration allometrically using the equa-

tions available in the literature (e.g. Takahashi et al., 2009;

Giering et al., 2014; Belcher et al., 2019; Pakhomov et al., 2019).

The accuracy of these allometrically derived respiration rates has

knock-on effects for calculations of respiratory and active flux

and can thus affect our conclusions as to the importance of a par-

ticular taxa in the biological carbon pump. Given the lack of suit-

ability of either the Belcher2019_12 or Ikeda2016_12 regressions to

the respiration rates of mesopelagic fish in the Scotia Sea, we

recalculate the myctophidae (vertically migrating fraction) respi-

ratory carbon fluxes of Belcher et al. (2019) using our Scotia Sea

regression:

LnðRIND12
Þ ¼ 4:359 ð60:556Þ þ 0:334 ð60:066Þ � LnðWMÞ:

(4)

We calculate the myctophid fish community respiration as

outlined fully in Belcher et al. (2019). Briefly, respiration rates of

myctophid fish (sampled during the Discovery 2010 expeditions

to the Scotia Sea, Collins et al., 2012; Tarling et al., 2012) were es-

timated allometrically based on body mass. As our model (4) is

for respiration at 12�C, we adjust respiration rates to the in situ

respiration rate using the Arrhenius equation and an activation

energy of 15 kcal mol�1 (Packard et al., 1975; Ariza et al., 2015).

The in situ respiration rates of individual fish were summed for

each net sample, and the daily respiratory flux by migrating myc-

tophids estimated from the difference between day-time and

night-time community respiration. Like Belcher et al. (2019), we

do not take into account day-time net avoidance (Collins et al.,

2012; Fielding et al., 2012) and, thus, estimates are of the maxi-

mum respiratory flux as we do not apply any corrections for

lower catch efficiency during the day (i.e. total day-time commu-

nity respiration is likely higher than estimated due to increased

day-time biomass, which would result in a lower migratory respi-

ratory flux).

We also recalculate the myctophidae (vertically migrating frac-

tion) respiratory carbon fluxes of Belcher et al. (2019) based on

model 1 (1 given above) of Ikeda (2016). At the present time, we

are unable to perform these calculations for the Benguela region

as we lack sufficient coverage of net samples over multiple

seasons.

We find that estimates of respiratory carbon flux based on our

Scotia Sea regression are 3.1–5.0 times greater than calculated by

Belcher et al. (2019) and 4.0–8.3 times greater than predictions by

the Ikeda2016_INSITU regression (Table 2). Based on the seasonal

range of gravitational POC fluxes by Manno et al. (2014) in the

Scotia Sea, Belcher et al. (2019) estimated that the myctophid re-

spiratory carbon flux is equivalent to 9–47% and 1–2% of the

gravitational POC flux at the North Scotia Sea (NSS) and Georgia

Basin (GB) sites, respectively. The large range for the NSS esti-

mate relates to the order of magnitude seasonal variability in

POC flux at this site (Manno et al., 2014). Using the

Ikeda2016_INSITU regression gives 7–37% and 0.8–1.4% at NSS

and GB, respectively. These estimates are much lower than esti-

mates using our Scotia Sea regression (27–143% and 3.1–5.6% at
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NSS and GB, respectively). Thus, even when POC fluxes are

greatest, the respiration of myctophid fish alone (i.e. excluding

other myctophid-driven carbon fluxes via excretion, mortality,

and defaecation) could be equivalent to a minimum of 27% of

the POC flux at NSS based on our new estimates. These calcula-

tions highlight (i) the importance of vertically migrating mesope-

lagic fish to carbon flux, at least in the Southern Ocean, and (ii)

how the use of globally derived allometric regressions can result

in substantial underestimates of respiratory and active fluxes in

polar regions. As noted by Ikeda (2016), more data are needed

from deep sea fishes to test and improve allometric models. We

add to this that more data are required in regions of temperature

<5�C to validate the much higher respiration rates observed at

our Scotia Sea study site than predicted through allometric re-

gression models.

Concluding remarks
It is time consuming and difficult to make respiration measure-

ments in the field, particularly on fish collected from the mesope-

lagic. ETS provides a promising method for obtaining estimates

of respiration from mesopelagic species, but there are still meth-

odological considerations, especially regarding an appropriate

R:ETS ratio to use.

Figure 5. Species-specific respiration rates (RIND_INSITU, ll O2 individual�1 h�1) for (A) Scotia Sea and (B) Benguela regions (respiration
estimated from ETS measurements). Respiration is plotted as a function of the wet mass per individual (mg). Note the natural logarithmic
scale on both x and y axes.
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The data presented in this study demonstrate that globally de-

rived allometric equations underestimate respiration rates of cold

water mesopelagic fish. This potentially reflects the lipid-rich

diets of these organisms. We have constructed a regression for

myctophids (All Myctophid, Table 1) utilizing data across a range

of regions and giving better representation of polar regions than

previous equations. Nevertheless, even this myctophid-specific re-

gression overestimates the respiration of the large Gymnoscopelus

spp. Our data demonstrate that respiration rates can vary greatly

between species, which may be related to differences in lifestyle,

e.g. activity, habitat, feeding mode, diet, swimming mode, as well

as body composition. We find high variability even between indi-

viduals of a given species with the same mass at the same environ-

mental temperature. This variability means that allometric

equations based solely on mass, or a combination of mass and

temperature, will never be that precise in estimating respiration

at an individual level. We stress that particular care should be

taken when applying allometrical relationships to regional studies

where the environmental conditions of that region are poorly

represented in the data used to define the regression equation.

Underestimations of respiration rates of mesopelagic fish in

cold water regions have implications on estimates of fish-driven

respiratory flux and thus the biological carbon pump. Allometric

estimates of fish-driven respiratory flux in the Scotia Sea were

67–88% lower than ETS-based estimates. Measurements of

micronekton respiration are thus still needed, particularly for me-

sopelagic dwelling species and for under-sampled regions, be-

cause their contribution to carbon flux can be large. Only with

these data we can build up our global databases sufficiently to be

able to estimate total respiration confidently and parameterize re-

spiratory flux or active flux. This is especially important to global

biogeochemical models because the potential contribution of me-

sopelagic fish to carbon flux can be substantial.

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.
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