Differential interferometric synthetic aperture radar for tide modelling in Antarctic ice-shelf grounding zones
Wild, Christian T.; Marsh, Oliver J. ORCID: https://orcid.org/0000-0001-7874-514X; Rack, Wolfgang. 2019 Differential interferometric synthetic aperture radar for tide modelling in Antarctic ice-shelf grounding zones. The Cryosphere, 13 (12). 3171-3191. https://doi.org/10.5194/tc-13-3171-2019
Before downloading, please read NORA policies.
|
Text
© Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. tc-13-3171-2019.pdf - Published Version Available under License Creative Commons Attribution 4.0. Download (9MB) | Preview |
Abstract/Summary
Differential interferometric synthetic aperture radar (DInSAR) is an essential tool for detecting ice-sheet motion near Antarctica's oceanic margin. These space-borne measurements have been used extensively in the past to map the location and retreat of ice-shelf grounding lines as an indicator for the onset of marine ice-sheet instability and to calculate the mass balance of ice sheets and individual catchments. The main difficulty in interpreting DInSAR is that images originate from a combination of several SAR images and do not indicate instantaneous ice deflection at the times of satellite data acquisitions. Here, we combine the sub-centimetre accuracy and spatial benefits of DInSAR with the temporal benefits of tide models to infer the spatio-temporal dynamics of ice–ocean interaction during the times of satellite overpasses. We demonstrate the potential of this synergy with TerraSAR-X data from the almost-stagnant southern McMurdo Ice Shelf (SMIS). We then validate our algorithm with GPS data from the fast-flowing Darwin Glacier, draining the Antarctic Plateau through the Transantarctic Mountains into the Ross Sea. We are able to reconstruct DInSAR-derived vertical displacements to 7 mm mean absolute residual error and generally improve traditional tide-model output by up to 39 % from 10.8 to 6.7 cm RMSE against GPS data from areas where ice is in local hydrostatic equilibrium with the ocean and by up to 74 % from 21.4 to 5.6 cm RMSE against GPS data in feature-rich coastal areas where tide models have not been applicable before. Numerical modelling then reveals Young's modulus of E=1.0±0.56 GPa and an ice viscosity of ν=10±3.65 TPa s when finite-element simulations of tidal flexure are matched to 16 d of tiltmeter data, supporting the hypothesis that strain-dependent anisotropy may significantly decrease effective viscosity compared to isotropic polycrystalline ice on large spatial scales. Applications of our method include the following: refining coarsely gridded tide models to resolve small-scale features at the spatial resolution and vertical accuracy of SAR imagery, separating elastic and viscoelastic contributions in the satellite-derived flexure measurement, and gaining information about large-scale ice heterogeneity in Antarctic ice-shelf grounding zones, the missing key to improving current ice-sheet flow models. The reconstruction of the individual components forming DInSAR images has the potential to become a standard remote-sensing method in polar tide modelling. Unlocking the algorithm's full potential to answer multi-disciplinary research questions is desired and demands collaboration within the scientific community.
Item Type: | Publication - Article |
---|---|
Digital Object Identifier (DOI): | https://doi.org/10.5194/tc-13-3171-2019 |
ISSN: | 1994-0424 |
Date made live: | 05 Dec 2019 10:26 +0 (UTC) |
URI: | https://nora.nerc.ac.uk/id/eprint/526102 |
Actions (login required)
View Item |
Document Downloads
Downloads for past 30 days
Downloads per month over past year