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Highlights

We quantify rapid urbanisation over four decades in Egypt’s Nile delta

Urban sprawl threatens highly fertile cultivated land, and soil carbon stocks
Agriculture expands to less fertile areas, dependent on unsustainable water use

Better management of existing agricultural land has potential to improve soils
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Abstract

Agriculture land in Egypt represents only 3.8% of the total area. The Nile delta provides two thirds of
Egypt's agriculture land, but is threatened by urban sprawl. The paper aims to quantify urban
expansion over a 45 year period using 6 time points from 1972 to 2017, and its impacts on agricultural
potential, soil organic carbon stocks, and implications for water use. The study used multi-temporal
satellite data and remote sensing techniques (Maximum Likelihood supervised classification, and
NDVI), soil sampling and analysis, data on water irrigation, and agroecological system and ecosystem

services model (MicroLEIS, InVEST) to assess the effects of land use change.

Urban area increased by a factor of 5, from 452 km? in 1972 to 2,644 km? in 2017. The greatest losses
occurred to the fertile Vertic Torrifluvent soils on the older delta, which lost 1,734 km?. Soil organic
carbon (0-75 cm depth) lost as a result of soil sealing from urbanisation rose from 25,000 to 141,000
Mg C over the 45 years. As a result of increased pressure on delta land, agriculture expanded into the
higher desert areas outside the delta, on marginal land sustained by intensive fertiliser use and
irrigation, which in turn puts pressure on water use. Therefore, rapid urban expansion has resulted in
a loss of soil carbon and a shift in agriculture from fertile soils to marginal soils, requiring more capital
inputs, which is ultimately less sustainable. Modelling suggested that soil management improvement
could make better use of fertile soils within the Delta currently affected by high salinity and poor

drainage.

Future planning should encourage urban expansion on the less fertile soils outside of the delta, while

improving suitability of existing agricultural land and minimising land degradation within the delta.

Key words: Urban sprawl, soil organic carbon, NDVI, water use, INVEST ecosystem services model
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1  Introduction

The world’s population is urbanising rapidly. At a global scale, over half of the population now live in
cities (UN-Habitat, 2016; Bai et al., 2018; Leeson, 2018; McNabb, 2019). Urban dwellers make up >75%
of the population in many industrialised countries, and the size of the urban population in rapidly
industrialising countries is also increasing (UNPD 2018). In particular, the rate of change in urban areas
can lead to substantial environmental pressures (Fernandes, 2002; Weber and Puissant, 2003;

Sudmeier-Rieux et al., 2015; Li et al. 2019).

Globally, the effects of urban sprawl on agricultural areas are increasingly recognised, with impacts
on food security (Deng et al., 2006; Long et al., 2018; Gomes et al., 2019; Zhou, et al., 2019), regional
climate (Carlson and Arthur, 2000; Shastri and Ghosh 2019), hydrology (Weber et al., 2001; Haase and
Nuissl, 2007) and biodiversity (Crist et al., 2000; Concepcidn et al., 2015). The direct pressures caused
by urbanisation are usually localised around cities themselves (Bugnot et al., 219; Liu et al., 2019). Key
among these is the direct loss of land through construction of buildings and infrastructure, and an
associated loss of the ecosystem services provided by soil natural capital, such as carbon storage and
food production (Cui et al., 2019; Garcia-Nieto, et al., 2019; Wang et al., 2019; Wen et al., 2019). A
further consequence of urbanisation is that agricultural production is displaced, often to less suitable
areas, requiring more resource inputs such as increased use of fertiliser and irrigation water (Rizvi, et
al., 2018; Umesha et al., 2018). There has been a recent focus on the effects of urbanisation on soil-
related services, particularly soil carbon. Urban soils are typically low in carbon, and comprise highly
disturbed soils containing much man-made material from construction, and often very compacted (De
Kimpe & Morel, 2000). In the US, Lavy et al. (2016) studied impacts of urban sprawl, showing mixed
impacts on soil carbon. In China, Li et al. (2018) and He et al. (2016) both showed large scale carbon
loss due to urban expansion of Xuzhou City and Beijing respectively. However, in Moscow a modelling
study estimated potential increases in urban soil carbon resulting from high carbon storage in areas
of urban greenspace (Vasenev et al. 2018). In Egypt, urbanisation has led to a decrease in soil organic
carbon in the top soil by 285.4 Mg C ha! in the Tanta Catchment in the northern part of Nile delta
(Abu-hashim et al., 2016).

The Nile delta in Egypt is a useful case study in which to investigate this nexus. The delta is
geographically constrained and is experiencing high population pressure on its natural resources.
Egypt has a land area of 1.01 million km?, and a total population of ~100 million inhabitants. However,
since much of the country is desert both urban and agriculture areas are concentrated in the Nile
valley and the delta. Together these comprise only 4% of the total area of Egypt (CAMPAS, 2017).
During the last forty years, Egypt’s population has almost tripled, from 36.6 million in 1972 to 97.5

million in 2017. The expansion of towns and villages dotted around the delta has resulted in rapid
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urbanisation (Shalaby and Moghanm, 2015), leading to unprecedented pressure on the fertile
agricultural land of the Nile delta. As a result, the available area per capita in the delta has dropped
from 0.12 ha in 1950 to 0.04 ha in 2017 (CAPMAS, 2017), and there is concern that urban
encroachment on fertile and highly productive soils may threaten Egypt’s agriculture sustainability
and food security (Nizeyimana, 2001). The delta is the main agricultural area of Egypt, comprising
around 64% of the total agriculture land area. It produces about two thirds of Egyptian crop production
(FAOSTAT, 2018, www.fao.org/faostat/en/), and the fertile soils allow two or three crops to be grown
per year (Osama et al., 2017; Kassim et al., 2018). While, the Egyptian crop lands are 100% irrigated
as a lack of precipitation and high evapotranspiration, the intensive irrigation under arid climate
represents the main reason of the salinization problem practicality in the old cultivated land (Kotb et
al., 2000). Salinity and poor drainage negatively affect the crop production and agriculture

sustainability (Maas and Grattan 1999; Manik et al., 2019; Z6rb et al., 2019).

Previous studies on urbanisation and land use change in Egypt, have looked at effects of urbanisation
on relatively small areas (Shalaby and Tateishi, 2007; El-Kawy et al., 2011; Hegazy and Kaloop, 2015;
Ezzeldin et al., 2016), or discussed remote sensing methods for land use change detection (Dewidar,
2004; Shalaby and Tateishi, 2007). Two studies have assessed impacts of urbanisation across the
whole delta region. Sultan et al. (1999) looked at urban change over three decades (1972-1990) and
the implications for loss of agricultural land, while Shalaby (2012) looked at three time periods (1984,
1992 and 2006) and discussed urban sprawl across soil types and land capability classes. Both these
studies highlighted rapid loss of agricultural land but did not report on loss of soil carbon or assess
potential policy responses to mitigate this loss. Assessing the wider consequences of land use change
on surrounding areas is essential to understand sustainability in a land use context. This assessment
process can make use of a range of techniques, including remote sensing and models. Remote sensing
data can play a vital role in monitoring land cover change over time (Gradinaru et al., 2019; Zhang et
al., 2019), while remote sensing products such as NDVI are useful for monitoring vegetation and crop

coverage (Nageswara et al., 2005; Yang et al., 2010; Park et al., 2016; Han et al., 2019).

Agroecological models such as the Micro Land Evaluation Information System (De la Rosa et al., 1992;
2004; 2009) evaluate the agricultural land potential, based on soil physical and chemical parameters,
slope and climatic factors. Soil management techniques have the potential to alleviate some of these
factors and therefore to increase the agricultural suitability of certain soils (Abd-Elmabod et al., 2019).
Meanwhile, ecosystem service models such as INVEST (Nelson et al., 2009) allow rapid assessment of
carbon stocks. These models tend to rely on parameters provided in default look-up tables, or on

values derived from the literature. Yet the accuracy of these models can be considerably improved by
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the use of local or national data to tailor them to a specific context (Sharps et al., 2017; Redhead et

al., 2017; Liu et al., 2019), for example, by using local measurements of soil carbon stock.

In summary, previous studies have tended to focus on land use change in small parts of the Nile delta,
not across the whole extent. They have not assessed carbon stocks, and have not addressed land use
change in a holistic manner, including soil quality, agriculture and water use. Therefore, this paper
aims to: i) quantify the spatiotemporal dynamics of urban sprawl across the whole Nile delta of Egypt
at six time points over four and a half decades (1972, 1984, 1992, 2003, 2011 and 2017), providing a
detailed picture of change over time in this highly pressured region, ii) evaluate the impacts of rapid
urbanisation on soil carbon stocks, agricultural potential, and water use using a combination of
models, remote sensing techniques, field data and national statistics, iii) evaluate the potential to
improve agricultural productivity on the older delta soils using scenarios of agricultural soil

management, and to draw out the resulting implications for agricultural production.

2 Material and methods

2.1 Study area description

The study area (Fig. 1) focuses on the Nile delta and immediate surrounding area, in the north of Egypt
at coordinates 30°01’ - 31° 36’ N and 29° 39’ - 32°29’ E. It includes 13 provinces: Cairo, Alexandria,
Suez, Port Said, Dumiat, Dakahlia, Sharqgia, Qalyubia, Kafr El Sheikh, Gharbia, Monufia, Beheira,
Ismailia (lower Egypt region) and a small part of Giza province (from middle Egypt). The River Nile
divides north of Cairo into two main branches Rashid and Damietta. The delta lies between and

alongside these two branches of the Nile.
<Fig. 1>

The elevation of the Nile delta ranges from -11 to 20 m above sea level and has a flat topography. The
surrounding areas are mainly higher elevation, reaching up to 713 m, but also include a low-lying
depression (-30 m) in a small area in the western part of the studied area (Fig. S1A). The dominant soil
groups are Aridisol and Entisol. The dominant soil subgroup is the Vertic Torrifluvent that covers 29%
of the studied area, illustrated in Fig. S1B (Soil Survey Staff, 2014). The soil units of the Nile delta were
adapted from the soil map of Egypt (ASRT, 2009), using the soil classification of USDA (2014). Poor
drainage and salinization are the major limiting factors for agriculture sustainability in Nile Delta
(Abdel-Dayem, 1990; Kotb et al., 2000; Mohamedin et al., 2010), about 60 % of the total cultivated
land of the Nile Delta are salt-affected soils (Aboukhaled et al., 1975; Kotb et al., 2000). The soil types
Typic Haplosalids, Aquic Torrifluvent, Typic Torrifluvent and Vertic Torrifluvent are the most impacted
soils with salinization and poor drainage problems The land originally cultivated in the Nile delta lies

on the flatter ground of the main Delta. It is a fluvial soil that formed through Nile silt formation, where
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the deposition of Nile silt was 0.9 mm/year and the depth of the deposited silt ranges from 8.5 m to
11.3 m (Ball, 1939). That means a layer with 10 m depth has been formed over a duration of 10
thousand years. For the purposes of this paper, we considered the agriculture land in 1972 as ‘old
cultivated land’, while any increase in the agriculture area in the other studied dates is considered as
‘new cultivated land’, which lies primarily in the hillier areas to the west and outside of the delta. The
area is extremely arid, with annual precipitation < 200 mm. In the last five years, the mean total annual
precipitation at the Cairo metrological station was 15.4 mm, and was 166 mm at the Alexandria station

(CLAC, 2016).

A wide range of crops are grown, mainly in small fields, with the average size of a field unit being only
1.05 ha. In Egypt, there are three cropping seasons for annual crops: winter (cultivated from
September-November), summer (cultivated from February - May) and Nili (cultivated from July-
August). Fruits/orchard crops are also cultivated. The major winter crops are wheat, barley, beans,
sugar beet, onion, garlic, flax, lupine, clover and vegetables. Summer crops are cotton, maize,
sorghum, rice, sunflower, sugarcane, onion, sesame, soybean and vegetables. Nili crops are maize,
sorghum, rice, sunflower, onion and vegetables (CAMPAS, 2017). Fig. S1C shows land cover within the

studied area (CCl Land Cover — S2 Prototype Land Cover 20m Map of Africa 2016).

Agriculture constitutes 81.6 % of Egypt’s water use and due to the low rainfall, irrigation water from
a range of sources is an essential component of Egypt’s agricultural production. Annual water use in
Egypt is 76.4 billion m3 (CAMPAS, 2017). The River Nile provides 73% of this requirement (55 billion
m?3 per year), 6.9 billion m* (9 %) comes from groundwater in the Nile valley and delta, and 11.7 billion
m? from the re-use of sewage water (15%) (CAMPAS, 2017). Fig. S1D illustrates the distribution of the
irrigation and drainage canals through the studied area (ASRT, 2009). Reclaiming new agricultural land
requires substantial irrigation water, and this may not be sustainable. Use of groundwater in particular
is not sustainable since rates of groundwater use are far higher than rates of natural recharge. The
management scenarios used in this study aim to explore improvement of the capability and

productivity of the original old cultivated areas, which do not require additional irrigation water.

2.2 Quantifying urban sprawl and agriculture areas over time
The assessment approach considers changes in land use and its implications on soil natural capital and

associated resource use. Fig. S2. illustrates a general schematic diagram of the overall methodology.
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2.2.1 Changesin land cover over time

Remote sensing satellite data were used to classify changes in urban extent and agricultural area over
time. In this study, multi-temporal satellite images of Landsat were used. These data include
Multispectral Scanner (MSS) acquired in 1972, Landsat Thematic Mapper (TM) acquired in 1984 and
1992, Landsat Enhanced Thematic Mapper Plus (ETM+) acquired in 2003 and 2011 and Operational
Land Imager (OLI) acquired in 2017 (see Tables S1, S2 and S3 for full details).

Geometric correction was carried out using ENVI 5.0 software (Exelis VIS, Boulder, CO), dependent
on ground control points from topographic maps to geocode the images acquired during 1972. The
Landsat ETM+ scan line corrector (SLC) failed on May, 2003, causing scan gaps. The ETM+ continued
to acquire data with the SLC powered off, leading to images that are missing approximately 22 % of
the normal scene area. To improve the utility of the SLC-off images (acquired in 2003 and 2011), the
original SLC-off images have been replaced with estimated values based on histogram-matched
scenes. The image was calibrated to radiance using the inputs of image type, acquisition date and
time, then it was stretched using linear 2%, smoothly filtered, and the histograms were matched
(Lillesand and Kiefer, 2007). Atmospheric correction for ETM+ images was done using FLAASH
module (ITT, 2009). The images were radiometrically rectified and the reflectance of all images was

derived using ENVI 5.0 software.

Land cover types are normally mapped from remotely sensed data using a supervised digital image
classification (Campbell, 2011; Thomas et al., 1987). In this study supervised classification (maximum
likelihood) was done using ground check-points and topographic maps of the study area. The overall
accuracy and kappa coefficient of the classified images were calculated by comparing classified data
with 1200 reference points for each studied date. The accuracy (Table S4) exceeds recommendations
by Anderson et al. (1976) and Thomlinson et al. (1999) that land use/land cover mapping accuracy

using Landsat data should be greater than 85% and no single classified class less than 70%.

2.2.2  Annual Urban Expansion Rate
The annual urban expansion rate (UER) was calculated according to Ma and Xu, (2002) and Xiao et al.
(2006), to investigate the rate of urban sprawl over the studied periods, which can be calculated as

illustrated in Eq. 1

BUuA nsi—BUuAn
i

UERnton+i = (Eq- 1)
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where UER, to .+ represent the annual UER from the year n to the year n + i; BuA, and BuA,.iare the
total built-up area at the time of year n and year n + i, respectively. Values show the increase in

urban area per year.

2.2.3 Normalized Difference Vegetation Index (NDVI)

We used NDVI (GeoSpatial Analysis 5th Edition, 2018; Park et al., 2016) to evaluate seasonal patterns
of land cover and the fertility and land use of delta land. NDVI values range from —1 to 1 (Burgan and
Hartford, 1993). The NDVI calculation output represent an intermediate processing step, whereas four
seasonal images during 2017 and 2018 were used to calculate maximum NDVI, i) as input data to the
supervised classification for mapping soil carbon, and ii) to identify the most productive agricultural

areas in the Land Capability Assessment.

2.3 Soil Organic Carbon

Soil data was obtained for one hundred sixty-eight sampling locations. Seventy one were obtained
from field work conducted for this study and ninety seven were selected from another study (Ali,
2003 and ASRT, 2009). These soil samples were selected to be representative of the soil types and
land cover classes across the Nile delta, and to achieve good spatial coverage across the study area.
Soils in dry regions change relatively slowly, therefore any seasonal and temporal differences
between the two soils datasets are assumed to be much smaller than differences between soil types.
The location of soil samples are illustrated in Fig S1B. At each location, soils were sampled at depths
(0-25, 25-50 and 50-75 cm), air-dried (48 h at room conditions) and sieved (2 mm) before analysis.
For each soil depth, soil organic carbon (SOC) was determined by the acid-dichromate potassium and
titration method (Walkley and Black, 1934); soil bulk density was determined by the core method
(Blake and Hartge, 1986), and soil texture was determined using the pipette method (Kilmer and
Alexander, 1949). Subsequently, for each of the sampled soil depths (0-25, 25-50 and 50-75 cm) of

the 168 soil profiles, soil organic carbon content (SOCC) was calculated as follows (Eq. 2):
SOCC = SOCxBDxD x (1-G) (Eq. 2)

Where SOCC is soil organic carbon content (Mg ha), SOC is soil organic carbon percentage (g 100
g1), BD is bulk density (g cm?3), D is the thickness of the studied layer (cm) and G is the proportion in

volume of coarse mineral fragments (>2mm).

Several methods were trialled for mapping soil carbon, following a similar approach to that used in
the InVEST ecosystem service modelling tool, where land cover classes or other spatial classifications
are assigned carbon values (Nelson et al., 2009). In this study, the collected soils data were used to

provide soils data for land cover units. The allocation process included a supervised classification in
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ArcGIS 10.4 using land cover, NDVI and soil types as inputs, however, the supervised classification was
found to be dominated by soil type. Therefore, the final approach used only soil type to map soil
carbon, with an overlay of urban extent in 2017 to screen out sealed areas. Soil carbon values were
averaged by soil class. The look-up table providing soil carbon values and carbon density in megagrams

per hectare (Mg/ha), by depth for each soil type is provided in Supplementary Material (Table S5).
We used the annual cumulative SOC loss rate due to urbanisation (CLR), to investigate the rate of
SOC loss over the studied urbanisation periods, as shown in Eq. 3

CL ni—CLn
i

CLRnto n+i = (Eq- 3)

where, CLR, to n.i represent the annual CLR from the year n to the year n +i; CL, and CLn.i are the

total carbon cumulative loss at the time of year n and year n + i, respectively.

2.4 lLand capability evaluation
Maximum annual NDVI together with the assessment results of the land capability model, were used

to produce the land capability maps (Fig. 2).

2.4.1 Cervatana model for land capability

Land capability assessment was carried out using the Cervatana module of MicroLEIS DSS, with
additional data from NDVI images, soil maps and land evaluation. This information was brought
together to map and assess agricultural land capability in the studied area. The MicroLEIS DSS is a
decision support system developed to assist decision-makers facing specific agro-ecological problems
(De la Rosa et al., 2004). The Cervatana module evaluates the general land use capability or suitability
for agricultural use. Cervatana computes different groups of variables (topography, soil properties,
erosion risk, and bioclimatic deficiency; and provides a classification of agricultural suitability (Fig. S3).
The four broad classes resulting from the Cervatana land capability module are: 1- Optimum class,
where the classified land has the highest agricultural quality, excellent productivity and a very good
natural fertility, and with very few limitations restricting its use for a wide range of cultivation crops,
under appropriate management; 2- Good class, with good productivity under appropriate
management, but it may have topographic, edaphic and/or climatic limitations which reduce the set
of possible crops and the productive capability; 3- Moderate class, has considerable limitations related
to topographic, edaphic, and /or climatic factors and therefore has a smaller range of possible

cultivation crops, it also needs appropriate conservation practices to maintain continued productivity;
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4-Marginal class, is totally non-productive, lacks the essential ecological conditions for agricultural
crops, and requires intensive management and conservation practices to be of agricultural benefit.
The calculations within Cervatana are empirically-based, formulated and calibrated using expert
knowledge. (De la Rosa et al.,, 1981, 1992; Anaya-Romero et al., 2015). In this application, the
Cervatana model allocates individual soil samples to a land capability class, based on their soil
chemistry and physical properties. Therefore, mapping land capability was based on the spatial data
(i.e. Cervatana outputs of one hundred sixty-eight sampling locations, maximum annual NDVI, soil

map and digital elevation model).

2.4.2  Soil management scenarios
Two scenarios were considered: a baseline of soils in their current condition (in 2017), and an

alternative scenario where agricultural potential is improved through a range of soil management
techniques, described below. The Cervatana model was run under the current situation to assess
current land capability evaluation. The major soil limiting factors for the land capability are texture,
soil depth, drainage and salinity (Abd-Elmabod et al., 2017). Soil depth and texture are inherent soil
characteristics and are not easily modified or amended (Abd-Elmabod et al., 2017). Therefore, in the
improvement scenario two manageable soil factors were considered as options to improve land
capability: soil salinity and drainage (Abd-Elmabod et al., 2019). For both these factors, management
options exist which allow improvement in their characteristics. In this scenario, the soils with the
potential to improve were soils that have salinity values less than 16 dSm™, achieved by the use of soil
flushing. The recommended improvement is to reduce the salinity to 3 dSm™ (Abd-Elmabod et al.,
2019). Drainage can be improved by the installation of field drains. This can lead to an improvement
from the classes: ‘very poor’, ‘poor’, or ‘imperfect’ to the class of ‘good’ status (De la Rosa et al., 1982;

Abrol et al., 1988; Abd-Elmabod et al., 2019).

2.5 Water use

Annual water consumption for irrigation, by crop type and by Province for 2015, was collated from
The Central Agency for Public Mobilization and Statistics (CAPMAS, 2017) from its annual bulletin on
Irrigation and Water Resource statistics. Comparable data on water use for previous time periods was

not readily available.

3  Results

3.1 Urban Expansion, 1972 - 2017
Since 1972, the urban area in the delta has increased more than five-fold, from 452 km? in 1972 to

over 2,600 km? in 2017(Fig. 2 and Fig. $4). The rate of change increased dramatically after 2003, with
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the population increasing from 19 million to 55 million (Fig. S4). The spatial pattern of expansion (Fig.
2) shows that this is driven by an increase in both small and large settlements, spread fairly uniformly
across the delta area and is not just a result of expansion of Cairo in the south of the delta. Urban
expansion has occurred primarily on the older agricultural areas and avoids the higher elevation hilly

and drier areas (Fig. S1A). Fig. S5 illustrates the main land cover types in Nile delta.
<Fig. 2>

Table S6 shows the urban expansion rate (UER) per year, while Table 1 breaks down the urban
expansion by soil type over the six time points. Vertic Torrifluvents are one of the most fertile soil
types in Egypt, and by far the greatest loss in area was due to urban expansion on this soil type, with
a third of that loss (354 km?) occurring in the years since 2011. The UER for this period was 59 km? yr-
. This represents a major loss in agricultural production potential. Low fertility soils like the Typic
Haplosalids and Typic Petrogypsids, and the Typic Quartzipsamments, Typic Torripsamments, Typic
Torriorthents and Typic Haplocalcids which surround the Nile delta have a low urbanisation rate,

despite covering about 30 % of the studied area (12146 km?).

<Table 1>

3.2 NDVI

Fig. 3 illustrates how NDVI values change over time in four different months during 2017 and 2018.
The signal from water bodies occupies the lowest NDVI values (-0.5 - 0.0), bare land and urban occupy
low values (0 - 0.1), while the higher NDVI values reflect natural vegetation and cropland where the

values ranges from 0.1 - 0.7 (Demirel et al., 2010; Zhang et al., 2009; Wang et al., 2019).

In October, farmers are preparing the farmland, sowing and planting the winter crops; for this reason,
the majority of the agriculture land has low NDVI values compared with values in February where the
winter crops are fully grown. Following the same trend, the summer crops are cultivated from

February — May, thus the NDVI values are low in May compared with July.
<Fig. 3>

3.3  Soil Carbon Stocks in the Nile delta

The highest SOC stocks in delta soils (0-75 cm depth) are located in the northern parts of the Nile delta,
where SOC values reached 106 Mg ha™ in the soil type Aquic Torrifluvents, 101 Mg ha? in Typic
Torrifluvents and 94 Mg ha! in the Typic Aquisalids. The dominant soil type Vertic Torrifluvents also
has a high SOC content of 72 Mg ha. Much lower values of SOC are in Typic Petrogypsids (17 Mg ha’
1) and Typic Torripsamments (25 Mg ha) (Fig. 4A, and Table S7). Carbon density is fairly high in the
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fertile Vertic Torrifluvents soils (0.0123 gC cm?3), but much lower in the sandy desert
Quartzipsamments soils (0.0067 gC cm?3). The top 25 cm generally holds the most carbon, but all soil

types show that carbon is stored at all three depths, including in the more fertile Vertic Torrifluvents.

Since urban expansion has primarily occurred on the most fertile soil types, which also hold the most
carbon, there has been considerable loss of soil carbon due to urbanisation. The cumulative loss of
SOC for three soil depths (0-25, 25-50 and 50-75 cm) is shown in (Fig. 4B). The cumulative loss in SOC
due to urban area was already 25,000 Mg in 1972, and increased to 86,000 Mg in 2011, reaching
141,000 Mg in 2017. The rate of annual SOC loss has increased dramatically since 2011. In the
urbanisation period 1972-1984, the annual loss was 871 Mg C yr! while during the period 2011-2017,

the annual loss increased to 9236 Mg C yr.

<Fig. 4>

3.4 Change in agricultural area, 1972 - 2017

The agriculture areas in the Nile delta consist of two types of cultivated land, the old and new. The old
cultivated land within the delta (see Fig 3) has an area 17,818 km? and this area declined to 16,083
km?Zin 2017 due to urban expansion. Since 1984 however, there has been an increase in new cultivated
areas, primarily on the less fertile sandy soils of the desert area to the west of the delta (Fig. 2). The
area of new agricultural land increased dramatically from 1984 to 1992, but the rate of increase
slowed after 2003. The increase in new agricultural land, totalling 8,000 km? in 2017, has more than
offset the loss of fertile old agricultural land to urban expansion. However, it has achieved this by
expanding into previously desert areas on poor soils. Note that the increase in water bodies is largely
due to an expansion of fish-farming in the more saline soil areas at the northern end of the delta

closest to the Mediterranean.

3.5 Impacts on water use and fertiliser use

Water allocation for governorates in the Nile delta is largely dictated by agricultural water
requirements. The directorates that receive the greatest amount of water are Beheira, Dakahlia,
Shargia and Kafr El Sheikh with 4.43, 4.38, 4.04 and 3.63 billion m? per year respectively (Fig. 5). In
the study area, the water use for winter, summer, nili crops and fruits are 11.9, 23.2, 1.3, and 2.2
billion m? respectively (CAMPAS, 2017). Therefore, summer crops account for the greatest water use,
and they are the main crops grown in the new agricultural areas on the poorer desert soils. The new

cultivated land requires much more fertilisers input compared with the old cultivated land (FAO,
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2005). The rate of mineral fertiliser use has increased substantially over the period 1972 — 2002 (Fig.
S6) (www.fao.org/faostat, 2019).

<Fig. 5>

3.6 Potential for improving suitability of agricultural soils

The scenarios assessed the potential for improving the suitability of agricultural soils (with a focus on
the old cultivated soils within the delta) which currently experience constraints including salinization.
This was done to evaluate whether productivity of the older more fertile soils could be increased,
thereby reducing the need to use poorer soils outside of the delta. The land capability classes under
the current situation and improved scenario are illustrated in Fig. 6. Under the reference scenario of
current soil conditions, the dominant land classification for both the new and old cultivated land is
‘good’, while the ‘marginal’ class was principally allocated to the Typic Aquisalids and Aquic
Torrifluvents soil types located in the northern parts of the study area, and also for the sand dunes
and hill-land areas in the south. In the scenario where soil salinity was decreased and drainage
improved through the proposed management measures, the major land capability class in old
cultivated land (Vertic Torrifluvents) changed to ‘optimum’. The area under this class increased from
3.9% to 41.8% (Table S8). This indicates that although the old cultivated lands are highly fertile, there
still remain some constraints of salinity which are restricting their potential for agricultural production.
However, for the new cultivated areas, the main classification did not change substantially from ‘good’
under the improvement scenario. The total area under this class reflects a conversion of some
‘moderate’ land up to ‘good’ as well as the shift from ‘good’ to ‘optimum’ for the old cultivated areas
as noted above. Management measures do not improve the soil type Typic Aquisalids which retained
a ‘marginal’ classification as a result of high salinity ( >16 dS/m). However, a small area has improved
in Aquic Torrifluvents. In the remaining ‘marginal’ areas, the agricultural constraints are primarily

restricted soil depth and water availability.

<Fig. 6>

4  Discussion

The conversion of capable agricultural land to urban use affects negatively sustainable agriculture, soil
carbon storage, environment and city life (Jiang et al., 2007; Zhang et al., 2007; Seto et al., 2012;
Dupras et al., 2016). Many lower and middle income countries are undergoing extremely rapid
urbanisation, and our findings are consistent with studies in other countries, particularly in China
where urban expansion has caused considerable loss of fertile agricultural soils, and associated

environmental problems in some regions (Li et al., 2014). One reason for the rapid expansion in urban



401
402
403
404

405
406
407

408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425

426
427
428
429
430

431
432

area within the Nile delta in the latter part of this period, despite population growth remaining steady,
is linked to deregulation of planning after the Arab Spring (Grinin and Korotayev, 2019). This illustrates
the large influence that political and governance structures can have on land use change (Sowers and

Rutherford, 2018).

Since the soils of the Nile delta are so fertile, and have been used for agricultural production for
thousands of years (Mohsen et al., 2016), the two principal concerns are loss of agricultural production

and, from an ecosystem services perspective, the loss of soil carbon.

Although fertile, the delta soils contain moderate carbon contents, with carbon densities averaging
around 0.0133 g C cm3. However, in contrast to other soils, the carbon density is maintained down to
our measured depth of 75 cm, giving them a relatively high carbon stock compared with other silty
soils and much higher than other sandy soils (e.g. John et al., 2005; Beaumont et al., 2014; Mufioz-
Rojas et al., 2015, 2017). This study only assessed soil C stocks, and did not assess above-ground
carbon stocks. However, other studies have evaluated the impact of urban sprawl and the consequent
loss of dry organic matter accumulated above-ground in vegetation (Buyantuyev and Wu, 2009; Wu
et al., 2014; Tian and Qiao, 2014; Yan et al., 2018). This study makes the assumption that soil sealing
due to urban expansion results in a complete loss of carbon. It is probably the case that much carbon
is mineralised and therefore lost through the decomposition of organic matter as a result of
disturbance during construction of urban infrastructure. However, recent studies have shown that soil
below built areas in European cities can still retain some carbon, although typically at concentrations
similar to those in arable soils (Edmondson et al., 2012). In addition, the disturbance in the immediate
vicinity of urban areas leads to further degradation of land that is not sealed, but nonetheless becomes
less useful for agriculture, and less able to carry out the natural functions provided by soils (Zhao et
al., 2007). Although not assessed in this study, soil sealing by urbanisation affects a much broader
range of ecosystem services provided by soils, and not just soil carbon (Breuste et al., 2013; Dominati

et al., 2010; Pouyat et al., 2010).

Urbanization has been characterized as the most important anthropic influence on both climate and
land use (Kalnay and Cai, 2003; Vargo et al., 2013). Soil sealing under cities has led to increased air
temperatures and modified local climate (heat island effects) (Scalenghe et al., 2009; Gaur et al.,
2018). Meanwhile, increased or inappropriate use of pesticides and fertilizers in the remaining

cultivated land in the Nile delta can cause deterioration of groundwater quality (Taha et al., 2004).

Rapid and unplanned urban growth also causes social problems. It is often associated with poverty

and low environmental sustainability, and places human health at risk (Moore, 2003). Rapid
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urbanization in South-Asian countries has led to “fringe populations”, where a significant proportion

of the population lives below the poverty line (Trivedi et al., 2008).

In Egypt, the loss of agricultural land has important consequences for agricultural production
(Mohamed et al., 2019). The main impact is a need to increase the area of agricultural production to
compensate for loss due to urbanisation. However, urbanisation may not be the only driver for the
expansion of agriculture outside of the delta. It may also be influenced by a number of factors,
including land tenure issues, small field sizes and even the infrastructure which has made agriculture
possible in this desert region for many thousands of years: the network of irrigation canals. Together,
these factors may be inhibiting the use of large-scale mechanised agriculture on the older delta soils.
The net result however is an expansion of intensive agriculture into the desert region to the west of
the delta, maintained by high inputs of fertiliser and irrigation which relies heavily on abstracted
groundwater. Although the delta agriculture is heavily reliant on irrigation from the Nile (CAPMAS,
2015), the move to use of groundwater is far less sustainable (Ahmad, 2000). The implications for
water availability for domestic urban populations and for future agricultural use, both from the

increase in agricultural area and the unsustainable use of groundwater are long-reaching.

The assessment of agricultural potential suggests that soil fertility could be improved through
management of the existing soil resource, without the need to expand the area under agriculture.
However, some of the measures proposed (flushing with water to desalinise soils) may also have
environmental costs, or put further pressure on limited water resources. An alternative may be to
move to crops with a lower water demand, and crops which are tolerant to salinity. These findings are
consistent with Tilman et al. (2002) and Manik et al. (2019) where the appropriate agriculture
management practices help to improve soil quality and land capability, through enhanced
agroecological and economical flexibility by minimizing the need for additional cultivated land. Also,
Setter et al. (1990) and Manik et al. (2019) indicate that improving soil drainage assist to reduce the
impact of waterlogging and increasing agriculture productivity. Therefore, improved soil drainage
enhances the availability of nutrients and water to plants, and additionally can reduce surface runoff
and increase infiltration (Amare et al., 2013; Vanuytrecht et al., 2014; Schmidt and Zemadim, 2015).
In the same context, reducing soil salinity of the salt-affected soils assist to increase crop production
and agriculture suitability (Horneck et al., 2007; and Zorb et al., 2019). Moreover, Wani et al. (2003)
reported that improvement of agriculture management in Vertisols under semiarid climates leads to
increased agriculture productivity and soil carbon sequestration. While this study has characterised in
detail the land use changes in the Nile delta, and consequences for agricultural sustainability, there
are a number of potential limitations. These include knowledge gaps for soil carbon in this area.

Although the dataset we collated is reasonably extensive, some soil types were under-represented.
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Additional sampling to further improve soil carbon stock assessment in the delta should be
undertaken. Two areas where there is limited understanding include sampling to assess carbon stock
at depths below 75 cm, since some delta sediments are likely to be very deep, and sampling the buried
soil beneath sealed surfaces to see how much carbon remains after urbanisation. This study has
focused on soil carbon and agricultural suitability, however, further work could broaden this
assessment to look at the impact of urbanisation on a wider range of ecosystem services provided by

the Nile delta region.

5 Conclusions

Over the last four decades (1972-2017), there has been considerable loss of fertile agricultural land
that has high carbon stocks, with consequences for loss agricultural production. Over the same period,
there has been a spread of agriculture into desert land to the west. However, the agricultural
production methods are less sustainable, based on high levels of water use from the river Nile and

groundwater abstraction and high agro-chemical use.

The continued loss of the highly fertile cultivated land due to rapid urban sprawl represents a

substantial threat to agriculture land sustainability and Egyptian food security.

This paper has shown an integrated assessment of the effects of urban sprawl, making use of a wide
set of techniques, including remote sensing, GIS, ecosystem service models (InVEST) and agriculture
models (MicroLEIS) underpinned by primary data collection on soil properties. This approach has
helped to guide recommendations for more sustainable future options for conserving the limited
agricultural land by improving agriculture management practices to increase agriculture production,

and reducing expected harmful environmental impacts due to urbanisation.
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813  Table 1. Changes of soil map unit areas (km?) between 1972 and 2017. (A) difference between 1984 and 1972, (B) difference between 1992 and 1984, (C)
814  difference between 2003 and 1992, (D) difference between 2011 and 2003, (E) difference between 2017 and 2011, (F) total difference between 2017 and

815 1972.

Soil map unit Year Changes
1972 1984 1992 2003 2011 2017 A B C D E F

Vertic Torrifluvents 127049 12571.4 12517.2 12360.4 12089.6 11735.5 -133.5 -54.2 -156.8 -270.9 -354.0 -969.4
Tvpic Torrifluvents 2850.8 28329 2817.1 2795.0 2749.5 2670.7 -17.9 -15.9 -22.0 -45.6 -78.7 -180.1
Typic Quartizipsamments 5742.8 5729.2 5706.5 5675.1 5592.1 5479.7 -13.6 -22.8 -314 -83.1 -112.4  -263.2
Typic Torriorthents 2095.7 2090.5 2087.8 2078.5 2054.2 2013.1 -5.2 -2.6 -9.3 -24.3 -41.1 -82.6
Tvpic Petrogypsids 100.9 99.3 96.6 93.0 87.4 83.8 -1.6 -2.7 -3.6 -5.6 -3.7 -17.1
Typic Haplogypsids 946.1 945.4 944.8 942.6 939.7 926.2 -0.7 -0.6 -2.2 -2.9 -13.5 -19.8
Typic Aquisalids 22414  2233.6 2208.5 2194.7 2161.3 21224 -7.8 -25.2 -13.8 -33.4 -38.9 -119.0
Tvpic Torripsamments 2096.8 2092.7 2082.2 2072.8 2050.5 1990.5 -4.1 -10.6 94 -22.3 -60.1 -106.3
Tvpic Haplosalids 147.2 145.8 144.8 141.8 134.4 121.5 -1.4 -0.9 -3.0 -7.4 -12.9 -25.7
Typic Haplocalcids 2211.0 2207.5 22039 21969 2165.7 2102.8 -3.5 -3.6 -7.0 -31.2 -62.9 -108.2
Agquic Torrifluvents 938.1 9334 927.0 923.0 913.7 896.1 -4.7 -6.4 -4.0 -9.3 -17.6 -42.0
Hilland 1070.0 1068.7 1067.4 1065.2 1054.6 10424 -1.3 -1.3 -2.2 -10.6 -12.2 -27.6
Rock land 48119 4805.4 4803.7 4786.1 4747.2 4672.3 -6.5 -1.7 -17.6 -39.0 -74.9 -139.7
Water bodies 2396.0 2386.9 23824 2369.3 2331.8 2304.0 -9.2 -4.5 -13.1 -37.5 -27.7 -92.0
Urban 451.6 662.5 815.6 1111.0 17339 2644.4 210.9 153.1 2954 6229 910.5 2192.8
Total 40805.3 40805.3 40805.3 40805.3 40805.3 40805.3 0.0 0.0 0.0 0.0 0.0 0.0

816 Negative (-) sign denote a decrease in area

817

818

819
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Fig. 1. Location of the study area. A, location of Egypt; B, Nile Delta and its governorates.
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Fig. 2. Urban expansion and change in the major land cover classes from 1972-2017. The pie chart

illustrates the proportion occupied by each land cover class (x1000km?, and %).
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Fig. 4. Soil organic carbon (SOC) in Nile Delta. A) total SOC stock in Nile delta for a depth 0-75 cm (Mg

ha) in 2017; B) cumulative loss of SOC due to urbanisation over 45 years, split by soil depth.
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Fig. S5. Major land covers in Nile Delta. a, built up areas on the fertile soil; b, high capable agriculture
lands; ¢, new cultivated land; d, new urban areas in marginal lands; e, water bodies and aquatic
vegetation in the northern lakes of Nile Delta.
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Fig. S6. The huge increment of nitrogen (N), phosphorous (P), and potassium (K) fertilizers in Egypt
during the 1972 to 2002. Adapted from www.fao.org/faostat, 2019.



Table S1. Multi-temporal satellite data specification of the collected images for the studied dates.
Different dates used within a month to obtain cloud-free imagery; the present data were used for

Fig.3.
Path Spacecraft

Acquisition date Landsat Scene ID /Row / Sensor

Octubre 5 LM11890381972279AAA05 189/38 Landsat 1/

Octubre 5 LM11890391972279AAA05 189/39 MSS
E August 31 LM11900381972244AAA04 190/38
= | August 31 LM11900391972244AAA04 190/39

Sept. 19 LM11910381972263AAA04 191/39

Sept.19 LM11910391972263AAA04 191/39

May 31 LT51760381984152FUI00 176/38 Landsat 5
> May 31 LT51760391984152FUI00 176/39 /™M
2| June7 LT51770381984159XXX09 177/38

June 7 LT51770391984159XXX03 177/39

August 9 LT51760381992222RSA00 176/38 Landsat 5/
S August 9 LT51760391992222RSA00 176/39 ™
a August 16 LT51770381992229RSA01 177/38

August 16 LT51770391992229RSA01 177/39

July 7 LT51760382003188MTI01 176/38 Landsat 5/
8 July 7 LT51760392003188MTI01 176/39 ™
S June 28 LT51770382003179MTI02 177/38

June 28 LT51770392003179MTI02 177/39

July 21 LE71760382011202ASN0O0 176/38 Landsat 7 /
p July 21 LE71760392011202ASN0O0 176/39 ETM+
S July 28 LE71770382011209ASNOO 177/38

July 28 LE71770392011209ASNOO 177/39

June 27 LC81760382017178LGNOO 176/38 Landsat 8 /
g June 11 LC81760392017162LGNOO 176/39 oLl
N | June 2 LC81770382017153LGNOO 177/38

June 2 LC81770392017153LGNOO 177/39




Table S2. Information about the collected Landsat 8 OLI images that used to obtain NDVI for different
studied months during 2017, and 2018. The present data were used for Fig.4.

Acquisition date Landsat Scene ID Path / Row
October 17, 2017 LC81760382017290LGNO0 176 /38
October 1, 2017 LC81760392017274LGNO0 176 /39
October 24, 2017 LC81770382017297LGNO0 177 /38
October 8, 2017 LC81770392017281LGNO0 177 /39
February 22, 2018 LC81760382018053LGNO0 176 /38
February 2,2018 LC81760392018037LGNO0 176 /39
March 1, 2018 LC81770382018060LGNOO0 177 /38
February 13, 2018 LC81770392018044LGN0O0 177 /39
June 27,2017 LC81760382017178LGNO0 176 /38
June 27,2017 LC81760392017178LGNOO0 176/ 39
July 4,2017 LC81770382017185LGNO0 177 /38
July 4,2017 LC81770392017185LGNOO0 177 /39
May 5, 2017 LC81760382017146LGNOO0 176/ 38
May 26, 2017 LC81760392017146LGNO0 176 /39
June 2, 2017 LC81770382017153LGNOO0 177 /38

June 2, 2017 LC81770392017153LGNO0 177 /39




Table S3. Features of the used Landsat MSS, TM, ETM+ and OLI satellite images. NIR, Near Infrared; SWIR, Shortwave Infrared; TIR, Thermal

infrared.
Landsat 1 MSS Landsat 5 TM Landsat 7 ETM+ Landsat 8 OLI
Band Spatial Wavelength Band Spatial Wavelength Band Spatial Wavelength Band Spatial Wavelength
resol. (m) (um) resol. (m) (um) resol. (m) (um) resol. (m)  (um)

B 4-Green 60 0.5-0.6 B 1-Blue 30 0.45-0.52 B 1-Blue 30 0.45-0.52 B 1- Ultra Blue 30 0.43-0.45

B 5-Red 60' 0.6-0.7 B 2-Green 30 0.52-0.60 B 2-Green 30 0.53-0.61 B 2-Blue 30 0.45-0.51

B 6-NIR 60' 0.7-0.8 B 3-Red 30 0.63-0.69 B 3-Red 30 0.63-0.69 B 3-Green 30 0.53-0.59

B 7-NIR 60' 0.8-1.1 B 4-NIR 30 0.76-0.90 B 4-NIR 30 0.78-0.90 B 4-Red 30 0.64 - 0.67

- - - B5-SWIR 1 30 1.55-1.75 B 5-SWIR 1 30 1.55-1.75 B 5-NIR 30 0.85-0.88

- - - B 6-Thermal 120 (30)" 10.40-12.50 B 6-Thermal 60 (30)" 10.40-12.50 B 6-SWIR1 30 1.57-1.65

- - - B 7-SWIR 2 30 2.08-2.35 B 7-SWIR2 30 2.09-2.35 B 7- SWIR 2 30 2.11-2.29

- - - - - - B8-Panchr. 30 0.52-0.90 B 8-Panchc. 15 0.50-0.68

R ~ _ _ _ - - - - B 9-Cirrus 30 1.36-1.38

_ _ R - - - - - - B10-TIR1 100 (30)"V  10.60-11.19
- - - - - - - - - B11-TIR 2 100 (30)"V  11.50- 12.51

'Original MSS pixel size was 79 x 57 meters; but are resampled to 60 meters.

'"TM Band 6 was acquired at 120-meter resolution, but have been resampled to 30-meter pixels.

WETM+ Band 6 is acquired at 60-meter resolution, but have been resampled to 30-meter pixels.

VTIRS bands are acquired at 100m resolution, but have been resampled to 30 m in the delivered data product.
Source: http://landsat.usgs.gov.



Table S4. Confusion matrices, overall accuracies and Kappa coefficients for each studied date of the
classified images.

Studied Reference Data
date Cultivated Aquatic Water User’s
land Urban Bare land vegetation bodies Total Accuracy
Cultivated land 293 37 0 7 3 340 86.2
Urban 1 245 1 0 0 247 99.2
Bare land 5 19 299 2 2 327 91.4
Kl Aaquatic vegetation 0 0 0 90 1 91 98.9
Fe) Water bodies 0 0 0 1 94 95 98.9
| Total 300 300 300 100 100 1100
Producer’s Accuracy 97.7 81.7 99.7 90.0 94.0
Overall Accuracv, % 92.8
Kappa Coefficient 0.90
Agriculture 298 29 6 10 2 345 86.4
Urban 0 270 7 0 0 277 97.5
Bare 2 1 283 0 2 288 98.3
g Aaquatic 0 0 4 90 0 94 95.7
P> Water bodies 0 0 0 0 96 96 100.0
- Total 300 300 300 100 100 1100
Producer’s Accuracy 99.3 90.0 94.3 90.0 96.0
Overall Accuracy, % 94.3
Kappa Coefficient 0.92
Cultivated land 300 12 15 3 0 330 90.9
Urban 0 279 11 0 0 290 96.2
Bare land 0 9 274 0 0 283 96.8
g Aaquatic vegetation 0 0 0 95 0 95 100.0
o | Water bodies 0 0 0 2 100 102 98.0
| Total 300 300 300 100 100 1100
S Producer’s Accuracy 100.0 93.0 91.3 95.0 100.0
8 Overall Accuracv, % 95.3
3 Kappa Coefficient 0.94
:‘ﬁ Cultivated land 300 4 14 1 1 320 93.8
Q Urban 0 286 1 0 0 287 99.7
@) Bare land 0 10 285 0 0 295 96.6
8 Aauatic vegetation 0 0 0 99 1 100 99.0
o Water bodies 0 0 0 0 98 98 100.0
N Total 300 300 300 100 100 1100
Producer’s Accuracy 100.0 95.3 95.0 99.0 98.0
Overall Accuracy, % 97.1
Kappa Coefficient 0.96
Cultivated land 297 3 16 0 0 316 94.0
Urban 0 291 7 0 0 298 97.7
Bare land 3 6 275 3 3 290 94.8
: Aaquatic vegetation 0 0 1 95 0 96 99.0
o | Water bodies 0 0 1 2 97 100 97.0
N | Total 300 300 300 100 100 1100
Producer’s Accuracy 99.0 97.0 91.7 95.0 97.0
Overall Accuracy, % 95.9
Kappa Coefficient 0.95
Cultivated land 296 2 15 0 0 313 94.6
Urban 2 298 11 0 0 311 95.8
Bare land 2 0 269 0 0 271 99.3
2 Aaquatic vegetation 0 0 5 99 1 105 94.3
o Water bodies 0 0 0 1 99 100 99.0
N Total 300 300 300 100 100 1100
Producer’s Accuracy 98.7 99.3 89.7 99.0 99.0
Overall Accuracy, % 96.5
Kappa Coefficient 0.95




Table S5. Mean values of Soil organic carbon stock (Mg/ha) per soil types for different soil depths.

SOC (Mg/ha)

Taxonomic unit 0-25cm  25-50cm  50-75cm 0-75cm

Aquic Torrifluvents 42.76 353 27.68 105.74
Typic Aquisalids 35.66 33.02 25.17 93.85
Typic Haplocalcids 16.45 11.82 11.65 39.92
Typic Haplogypsids 25.72 12.39 10.3 48.41
Typic Haplosalids 34.1 29.2 21.1 84.40
Typic Petrogypsids 11.005 4.459 1.1213 16.59
Typic Quartzipsamments 16.58 11.13 9.74 37.45
Typic Torrifluvents 42.13 33.99 24.64 100.76
Typic Torriorthents 15.5 10.38 14 39.88
Typic Torripsamments 10.845 7.94 6.06 24.85
Vegetation aquatic 34.1 29.2 21.1 84.40
Vertic Torrifluvents 30.29 23.5 18.463 72.25

Table S6. Urban expansion rate (UER, km? yr?) over the soil units during the studied dates. I, 1972-
1984; 11,1984 -1992; 11,1992-2003; 1V,2003-2011; V, 2011-2017.

Urbanisation period

Soil map unit | Il ] \} \"

Vertic Torrifluvents 9.53 6.78 14.25 33.86 59.01
Typic Torrifluvents 1.28 1.99 2.00 5.70 13.12
Typic Quartizipsamments 0.97 2.84 2.85 10.38 18.73
Typic Torriorthents 0.37 0.33 0.85 3.03 6.86
Typic Petrogypsids 0.11 0.34 0.33 0.70 0.61
Typic Haplogypsids 0.05 0.08 0.20 0.36 2.25
Typic Aquisalids 0.56 3.14 1.26 4.17 6.48
Typic Torripsamments 0.29 1.32 0.85 2.78 10.01
Typic Haplosalids 0.10 0.12 0.28 0.93 2.15
Typic Haplocalcids 0.25 045 064 390 10.48
Aquic Torrifluvents 0.34 0.81 0.36 1.16 2.93
Hilland 0.09 0.17 0.20 1.33 2.03

Rock land 0.46 0.21 1.60 4.87 12.48




Table S7. Cumulative loss of SOC (Mg of carbon) for the various soil types at different soil depths.

0-25 cm 25-50 cm 50-75 cm

Taxonomic unit 1972 1984 1992 2003 2011 2017 1972 1984 1992 2003 2011 2017 1972 1984 1992 2003 2011 2017

Typic Torrifluvents 1344 1987 2659 3488 5108 8255 1084 1603 2145 2814 4121 6660 786 1162 1555 2040 2040 4828
Typic Quartizipsamments 209 347 728 1170 2309 4036 140 233 489 786 1550 2710 122 204 428 688 688 2371
Typic Torriorthents 4 55 98 216 511 1102 3 37 66 145 342 738 4 50 88 195 195 995
Typic Petrogypsids 1 18 47 86 144 183 0 7 19 35 58 74 0 2 5 9 9 19
Typic Haplogypsids 12 8 25 61 75 386 6 4 12 29 36 186 5 3 10 24 24 155
Typic Aquisalids 48 254 1151 1578 2570 3843 45 235 1066 1461 2379 3559 34 179 812 1114 1114 2713
Typic Torripsamments 44 67 183 266 451 1069 32 49 134 195 330 783 24 38 102 149 149 597
Vertic Torrifluvents 8419 12206 13932 18337 25545 35674 6531 9470 10809 14227 19818 27677 5132 7440 8492 11177 11177 21745
Typic Haplosalids 28 70 103 202 443 875 24 60 88 173 379 749 17 43 64 125 125 542
Typic Haplocalcids 6 30 92 178 599 1581 4 22 66 128 431 1136 4 21 65 126 126 1120
Aquic Torrifluvents 346 509 786 924 1221 1914 285 420 649 763 1008 1580 224 330 509 598 598 1239

Total 10460 15552 19803 26507 38976 58919 8155 12141 15542 20755 30454 45851 6352 9472 12130 16245 16245 36322




1
2

Table S8. Total area in km? and % of land capability class. A; current situation; B, improvement

scenario.
Class A - Area B - Area
km? % km? %
Optimum 1601.6 3.9 170559 41.8
Good 12970.5 31.8 7989.4 196
Moderate  9871.0 24.2 267.2 0.7
Marginal  16362.2 40.1 15492.7  38.0
Total 40805.3 100.0 40805.3 100.0
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