Refining the role of phenology in regulating gross ecosystem productivity across European peatlands
Koebsch, Franziska; Sonnentag, Oliver; Järveoja, Järvi; Peltoniemi, Mikko; Alekseychik, Pavel; Aurela, Mika; Arslan, Ali Nadir; Dinsmore, Kerry; Gianelle, Damiano; Helfter, Carole ORCID: https://orcid.org/0000-0001-5773-4652; Jackowicz‐Korczynski, Marcin; Korrensalo, Aino; Leith, Fraser; Linkosalmi, Maiju; Lohila, Annalea; Lund, Magnus; Maddison, Martin; Mammarella, Ivan; Mander, Ülo; Minkkinen, Kari; Pickard, Amy ORCID: https://orcid.org/0000-0003-1069-3720; Pullens, Johannes W.M.; Tuittila, Eeva‐Stiina; Nilsson, Mats B.; Peichl, Matthias. 2020 Refining the role of phenology in regulating gross ecosystem productivity across European peatlands. Global Change Biology, 26 (2). 876-887. https://doi.org/10.1111/gcb.14905
Before downloading, please read NORA policies.
|
Text
N525764PP.pdf - Accepted Version Download (4MB) | Preview |
Abstract/Summary
The role of plant phenology as regulator for gross ecosystem productivity (GEP) in peatlands is empirically not well constrained. This is because proxies to track vegetation development with daily coverage at the ecosystem scale have only recently become available and the lack of such data has hampered the disentangling of biotic and abiotic effects. This study aimed at unraveling the mechanisms that regulate the seasonal variation in GEP across a network of eight European peatlands. Therefore, we described phenology with canopy greenness derived from digital repeat photography and disentangled the effects of radiation, temperature and phenology on GEP with commonality analysis and structural equation modeling. The resulting relational network could not only delineate direct effects but also accounted for possible effect combinations such as interdependencies (mediation) and interactions (moderation). We found that peatland GEP was controlled by the same mechanisms across all sites: phenology constituted a key predictor for the seasonal variation in GEP and further acted as distinct mediator for temperature and radiation effects on GEP. In particular, the effect of air temperature on GEP was fully mediated through phenology, implying that direct temperature effects representing the thermoregulation of photosynthesis were negligible. The tight coupling between temperature, phenology and GEP applied especially to high latitude and high altitude peatlands and during phenological transition phases. Our study highlights the importance of phenological effects when evaluating the future response of peatland GEP to climate change. Climate change will affect peatland GEP especially through changing temperature patterns during plant‐phenologically sensitive phases in high latitude and high altitude regions.
Item Type: | Publication - Article |
---|---|
Digital Object Identifier (DOI): | https://doi.org/10.1111/gcb.14905 |
UKCEH and CEH Sections/Science Areas: | Atmospheric Chemistry and Effects (Science Area 2017-) Water Resources (Science Area 2017-) Unaffiliated |
ISSN: | 1354-1013 |
Additional Keywords: | canopy greenness, commonality analysis, mediation, moderation, peatland C cycle, photosynthesis, structural equation modeling |
NORA Subject Terms: | Ecology and Environment |
Date made live: | 07 Nov 2019 16:34 +0 (UTC) |
URI: | https://nora.nerc.ac.uk/id/eprint/525764 |
Actions (login required)
View Item |
Document Downloads
Downloads for past 30 days
Downloads per month over past year