nerc.ac.uk

Sympatric Atlantic puffins and razorbills show contrasting responses to adverse marine conditions during winter foraging within the North Sea

St. John Glew, Katie; Wanless, Sarah; Harris, Michael P.; Daunt, Francis ORCID: https://orcid.org/0000-0003-4638-3388; Erikstad, Kjell Einar; Strøm, Hallvard; Speakman, John R.; Kürten, Benjamin; Trueman, Clive N.. 2019 Sympatric Atlantic puffins and razorbills show contrasting responses to adverse marine conditions during winter foraging within the North Sea. Movement Ecology, 7, 33. 14, pp. https://doi.org/10.1186/s40462-019-0174-4

Before downloading, please read NORA policies.
[img]
Preview
Text
N525745JA.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (11MB) | Preview

Abstract/Summary

Background: Natural environments are dynamic systems with conditions varying across years. Higher trophic level consumers may respond to changes in the distribution and quality of available prey by moving to locate new resources or by switching diets. In order to persist, sympatric species with similar ecological niches may show contrasting foraging responses to changes in environmental conditions. However, in marine environments this assertion remains largely untested for highly mobile predators outside the breeding season because of the challenges of quantifying foraging location and trophic position under contrasting conditions. Method: Differences in overwinter survival rates of two populations of North Sea seabirds (Atlantic puffins (Fratercula arctica) and razorbills (Alca torda)) indicated that environmental conditions differed between 2007/08 (low survival and thus poor conditions) and 2014/15 (higher survival, favourable conditions). We used a combination of bird-borne data loggers and stable isotope analyses to test 1) whether these sympatric species showed consistent responses with respect to foraging location and trophic position to these contrasting winter conditions during periods when body and cheek feathers were being grown (moult) and 2) whether any observed changes in moult locations and diet could be related to the abundance and distribution of potential prey species of differing energetic quality. Results: Puffins and razorbills showed divergent foraging responses to contrasting winter conditions. Puffins foraging in the North Sea used broadly similar foraging locations during moult in both winters. However, puffin diet significantly differed, with a lower average trophic position in the winter characterised by lower survival rates. By contrast, razorbills’ trophic position increased in the poor survival winter and the population foraged in more distant southerly waters of the North Sea. Conclusions: Populations of North Sea puffins and razorbills showed contrasting foraging responses when environmental conditions, as indicated by overwinter survival differed. Conservation of mobile predators, many of which are in sharp decline, may benefit from dynamic spatial based management approaches focusing on behavioural changes in response to changing environmental conditions, particularly during life history stages associated with increased mortality.

Item Type: Publication - Article
Digital Object Identifier (DOI): https://doi.org/10.1186/s40462-019-0174-4
UKCEH and CEH Sections/Science Areas: Biodiversity (Science Area 2017-)
UKCEH Fellows
ISSN: 2051-3933
Additional Information. Not used in RCUK Gateway to Research.: Open Access paper - full text available via Official URL link.
Additional Keywords: Fratercula arctica, isoscape, Alca torda, marine spatial management, North Sea, seabird foraging behaviour, spatial ecology, trophic ecology, Moult
NORA Subject Terms: Ecology and Environment
Date made live: 01 Nov 2019 12:08 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/525745

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...