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A high-resolution multimodel ensemble of state-of-the-art climate and hydrological models 

has been developed to deliver hydrometeorological change metrics codesigned with key 

water sector stakeholders in Europe.

HYDROLOGICAL FORECASTS 
AND PROJECTIONS FOR 

IMPROVED DECISION-MAKING IN 
THE WATER SECTOR IN EUROPE

luiS Samaniego, STePhan Thober, niko WanderS, ming Pan, oldrich rakovec, JuSTin Sheffield, 
eric f. Wood, chriSTel Prudhomme, gWyn reeS, helen houghTon-carr, maTTheW fry, kaTie SmiTh, 
glenn WaTTS, hege hiSdal, Teodoro eSTrela, carlo buonTemPo, andreaS marx, and rohini kumar

Existing water-oriented decision-support systems 
are either designed as early warning systems 
to provide forecasts of hydrological floods and 

droughts, or as monitoring platforms aiming to 
provide information on the current state of variables 
of interest such as streamflow or soil moisture. Such 
systems normally target national, continental, and 

global scales with examples of systems developed for 
Australia (Emerton et al. 2016), Africa (Sheffield et al. 
2014), Europe [European Flood Awareness System 
(EFAS); Thielen et al. 2009], and North America 
(Demargne et al. 2014).

While the multiplication of water-focused 
climate services undeniably helps downstream 
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decision-making, a number of areas of improvements 
can be identified. First, only few systems operate at 
different prediction horizons, most focusing on a single 
function targeting monitoring, short- to medium-
range forecasting, and seasonal or climate time scales. 
This means that users need to refer to different systems 
and services depending on their planning scale, each 
generally associated with different and inconsistent 
types of information and delivered services, hence 
requiring users to develop different application tools 
for each independent one, and to take much care when 
interpreting their different outcomes, as they might 
not provide exactly the same information. Two notable 
exceptions are the European Flood Awareness System 
(Thielen et al. 2009; Arnal et al. 2018) and the Global 
Flood Awareness System (Alfieri et al. 2013), both 
components of the Copernicus Emergency Manage-
ment Service, which are currently the only operational 
forecasting systems providing ensemble streamflow 
forecasting and flood early warning at both medium 
range and seasonal time frames for Europe and the 
world, respectively; however, none currently offer 
predictions beyond a few months, limiting their use 
to short- and medium-term planning.

Second, existing continental or global-scale sys-
tems [e.g., for Africa (Sheffield et al. 2014), North 
America (Lawrimore et al. 2002), or Europe (Horion 
et al. 2012)] typically operate at resolutions of 0.25° 
or coarser (note the European Drought Observatory 
has a multiscale approach) and do not quantify the 
uncertainty associated with the monitoring and fore-
casting hydrometeorological chain. At national scale, 
monitoring systems are typically available at a high 
spatial resolution [e.g., the German Drought Monitor 
at 4-km scale (www.ufz.de/droughtmonitor; Zink 
et al. 2016) or the U.K. Drought portal at 5-km scale 
(https://eip.ceh.ac.uk/apps/droughts/)] and provide 
timely information for decision-making and the gen-
eral public, while high-resolution national forecasting 
services are normally based on a single hydrological 
model, not capturing some of the important uncer-
tainty. This limits robust local decision-making as 
single deterministic estimates are often given instead 
of probabilistic ones.

Third, most climate service portals, especially 
when designed for climate projections, only focus 
on a few specific climate-related variables. For ex-
ample, the Royal Netherlands Meteorological Insti-
tute Climate Explorer (climexp.knmi.nl/) is a web 
application to visualize and analyze global climate 
data, but does not include hydrological-derived in-
dices relevant for the water sector (see, e.g., National 
Research Council 2001). This can limit downstream 

applications because the information relevant for 
local decision-making is absent and would require 
further processing (and associated resources) by us-
ers, thus, hampering potential uptake.

The project “End-to-end Demonstrator for im-
proved decision-making in the water sector in Eu-
rope” (EDgE; https://youtu.be/PqoRi6eSM2w) was 
designed to address three specific gaps in existing 
climate services for a more user-focused delivery for 
the water sector: 1) development of a high-resolution 
(5 km), multimodel system [using two land surface 
models (LSMs) and two hydrological models (HM) 
established with a common set of land surface proper-
ties across continental Europe] where both uncertain-
ty in the atmospheric forcing and hydrological impact 
are accounted for and summarized to users; 2) de-
livery of a consistent and comparable multiscale sets 
of seasonal forecasts and climate impact projections 
based on the same hydroclimate modeling chain; 
and 3) provision of 36 climate and water indicators 
[so-called sectoral climate impact indicators (SCIIs)] 
and a unique web information service codesigned 
with over 30 different public- and private-sector 
stakeholders from different hydroclimatic regions 
and water-related industries across Europe, to facili-
tate the uptake of the service. The rationale of EDgE 
is simple: better-informed operational and strategic 
planning decisions can be made only with a timely, 
coherent, and codesigned water-oriented informa-
tion system (Lourenço et al. 2015). EDgE was one of 
two proof of concepts (PoCs) for the water sector for 
the European Copernicus Climate Change Service 
Sectoral Information Systems program.

In this paper, we present brief ly the technical 
features of the EDgE modeling chain, discuss the 
continental-scale application of the underlying model 
components, including the forcing data, and discuss 
the codesign and interpretation of impact indicators. 
Although the stakeholder feedback process and the 
development of visualization tools were fundamen-
tal parts of the PoC, they are not covered here. For 
completeness, note that EDgE was a proof-of-concept 
project and does not provide a real-time service; 
however, all indicators estimated under both seasonal 
forecast and climate impact prediction mode are ac-
cessible online (http://edge.climate.copernicus.eu).

CLIMATE DATA PROCESSING. Daily tem-
perature and precipitation from the E-OBS 25-km 
gridded product (v12) and the underlying station 
data (Haylock et al. 2008) were used as historical 
meteorological forcing data for the period from 1950 
to 2015. In addition, gridded daily wind speed was 
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obtained from the European Flood Alert System 
forcing (Thielen et al. 2009), made available by the 
European Centre for Medium-Range Weather Fore-
casts (ECMWF) for the period 1990–2014. Gridded 
historical observations were used to develop the 
hydrological model historical simulations, to bias 
correct the future climate prediction forcings and to 
generate the hydrological initial conditions for the 
seasonal hindcasts (i.e., forecasts of past periods).

For the climate change simulations, daily tempera-
ture and precipitation from five bias-corrected global 
climate models (GCMs) from the Coupled Model 
Intercomparison Project, phase 5 (CMIP5; HadGEM2-
ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, GFDL-
ESM2M, and NorESM1-M), were used to drive the 
HM/LSMs during the period from 1950 to 2099 under 
two representative concentration pathways [RCPs; 
RCP2.6 and RCP8.5; see climate projections (CP) 
mode in Fig. 1]. This dataset was made available by the 
Inter-Sectoral Impact Model Intercomparison Project 
(ISI-MIP; Warszawski et al. 2014) at a spatial resolution 
of 0.5° and was selected as it benefited already from a 
trend-preserving bias correction (Hempel et al. 2013; 
see further detail in appendix A).

For the seasonal forecast simulations, daily tem-
perature and precipitation hindcasts from four GCMs 
run in seasonal forecast mode (SF-GCM) were used to 
drive the HM/LSMs [see seasonal forecast (SF) mode 
in Fig. 1]. These comprise two models from the North 
American Multi-Model Ensemble [NMME; Canadian 

Climate Model, version 4 (CanCM4)and the Geophys-
ical Fluid Dynamics Laboratory Forecast-Oriented 
Low Ocean Resolution model (GFDL-FLOR)] and 
two European models from the Copernicus Climate 
Change Service [C3S; ECMWF System 4 (ECMWF-
S4) and the Météo-France modeling system, version 
5 (code name LFPW)]. The number of NMME SF-
GCMs were selected to counterweight those pro-
vided by the ECMWF. The number of realizations 
among SF-GCMs were chosen so that each member 
has a similar weight in the multimodel ensemble. 
In total, the EDgE SF-GCM multimodel ensemble 
contained 52 realizations composed of 10 members 
from CanCM4, 12 members from GFDL-FLOR, and 
15 members each from ECMWF-S4 and LFPW. Daily 
hindcasts starting on the first day of each month 
within the hindcast period 1993–2011 were used. 
The SF-GCMs forcings were downscaled from their 
native spatial resolution (of 1° for NMME models 
and 0.75° for C3S models) to the hydrological model 
resolution (see section below) without previous drift 
or bias correction, the relatively short hindcast period 
(1993–2011) being considered not sufficiently long to 
train a robust bias correction algorithm.

The spatial resolution of all forcing data were con-
sidered too coarse for deriving water sector indicators 
relevant for water managers and practitioners at local 
and regional levels in Europe. Instead, a spatial reso-
lution of 5 × 5 km2 was selected to derive all EDgE 
products as a trade-off between a spatial resolution 

Fig. 1. EDgE modeling chain for seasonal forecast (SF) and climate prediction (CP) modes, shown here for 
the high-flow indicator Q10. Both chains use four hydrological models to compute values for the terrestrial 
Essential Climate Variables (tECVs), which are the basis to estimate the sectorial climate impact indicators 
(SCIIs) requested by focus groups. For the SF mode the number of climate realizations can vary across models 
(i = 10–15). For the CP mode, the representative climate pathway (RCP) are set to RCP2.6 and RCP8.5 (r = 1,2). 
ESP is included as a benchmark for the dynamic SF models.
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that is informative for practitioners across Europe 
and a scale at which it is still feasible to estimate 
water-related variables using current computational 
facilities and geophysical forcing information. The 
forcing data were hence downscaled from their native 
resolution to the common 5 × 5 km2 resolution prior 
to their use as input to the hydrological modeling 
chain. Details of the statistical downscaling technique 
is provided in appendix A.

HYDROLOGICAL MODELING. Hydrological 
and land surface models (HM/LSMs) are the 
backbone of the EDgE modeling chain (Fig. 1); 
they comprise the mesoscale Hydrological Model 
(mHM); the PCRaster Global Water Balance model 
2 (PCR-GLOBWB); the Variable Infiltration Capacity 
model (VIC); and the Noah land surface model with 
multiparameterization options (Noah-MP). All four 
models are process based, simulating canopy inter-
ception, snow accumulation and melting, infiltration, 
evapotranspiration, and runoff generation. They were 
selected based on the diversity of their underlying 
process representations and their widespread use 
in hydrological applications to capture as much as 
possible the structural uncertainty within the hy-
drological modeling component. A summary of the 
land surface data used to parameterize these models 
up can be found in the appendix B.

The mHM (Samaniego et al. 2010; Kumar et al. 
2013b) is a grid-based distributed hydrological model 
equipped with a multiscale parameter regionalization 
scheme, developed with a special focus on running 
seamlessly at multiple spatial resolutions ranging from 
1 to 50 km (Kumar et al. 2013a; Rakovec et al. 2016; 
Samaniego et al. 2017b), and ready to be implemented 
in an operational setting (Kauffeldt et al. 2016). PCR-
GLOBWB (van Beek et al. 2011; Wanders and Wada 
2015; Sutanudjaja et al. 2018) is a grid-based hydrologi-
cal and water resources model, developed to represent 
the terrestrial water cycle at global and continental 
scales, with a special emphasis on including human wa-
ter uses. VIC (Liang et al. 1994; Cherkauer et al. 2003) 
is a macroscale hydrological model that solves full 
water and energy balances to represent the land surface 
hydrology and near-surface atmospheric fluxes. The 
VIC model has been implemented in catchment to 
global-scale applications for understanding catchment 
behavior, extreme hydrological events, hydrological 
predictability, and climate change impacts (a.o., Shef-
field and Wood 2008; Sheffield et al. 2014; Yuan et al. 
2015). The Noah-MP model provides several upgrades 
of the Noah LSM (Niu et al. 2011), which was originally 
developed as the land surface scheme for numerical 

weather prediction (Ek et al. 2003). In this study, we 
use the same process parameterizations as in Cuntz 
et al. (2016).

Within EDgE, all four HMs/LSMs were estab-
lished using the same high-resolution (500 m) mor-
phologic, land-cover, and soil databases (appendix B). 
Differences between models originate only from 
different process representations. All HMs/LSMs are 
set up at a spatial resolution of 5 km, simulate daily 
water f luxes and states, and were calibrated with 
standard procedures described in appendix C. These 
models were subsequently evaluated in hundreds of 
river basins across Europe that cover a wide range of 
hydroclimatological regimes. For more details, refer 
to Fig. A1.

Another hallmark of the hydrological modeling 
chain is the use of a common river routing scheme to 
minimize predictive uncertainty from inconsistencies 
in the channel network. The gridded runoff fields gen-
erated by the four HMs/LSMs are routed through the 
same 5-km river network using the multiscale Routing 
Model (mRM; Thober et al. 2019) that was originally 
developed for mHM (Samaniego et al. 2010). The mRM 
has the ability to simultaneously route cell-generated 
runoff to multiple outlets, allowing streamflow to 
be generated over the entire domain simultaneously 
(Fig. 2). The key characteristic of mRM is its capacity 
to estimate streamflow at various spatial resolutions 
without recalibration of river-routing parameters 
within the employed Muskingum scheme. This sim-
plification of the Saint-Venant equations is justified in 
all hydrological models used in this project because it 
accounts for wave advection and attenuation, which are 
the governing fluvial processes in the study area [see 
details in Thober et al. (2019) and references therein].

SCII: STAKEHOLDER CODESIGN AND ES-
TIMATION. The general graphical representation 
of the hydrometeorological modeling chains used to 
generate terrestrial essential climate variables (tECVs; 
Sessa and Dolman 2008) for climate predictions and 
seasonal forecasts is shown in Fig. 1. Four tECVs 
(Table 1) were stored from each simulation for the 
historical, climate prediction and seasonal forecast 
modes. These are streamflow Q, soil moisture in 
the top 2 m (SM), snow water equivalent (SWE), and 
groundwater recharge R.

In the CP chain, all four HMs/LSMs were forced 
with the downscaled GCM data for the period from 
1950 to 2099 under RCP2.6 and RCP8.5. The pe-
riod 1971–2000 is selected to represent present-day 
conditions because it is often used within the IPCC 
SR1.5 (Hoeg-Guldberg et al. 2019). The present-day 
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conditions are based on the historical HMs/LSMs 
simulations driven by the GCM datasets. The work-
flow of the operationalization of the CP chain includes 
the following steps (Fig. 3a): (i) obtain GCM projec-
tions, (ii) perform bias correction (in this case, this 
step was not necessary because the ISI-MIP forcing 
data are already bias corrected) and downscaling, (iii) 
run the multihydrometeorological modeling chain to 
generate an ensemble of target variables (tECVs), (iv) 

generate an ensemble of indicators (SCIIs) based on 
the tECVs, (v) estimate uncertainty in the ensemble, 
and (vi) export ensemble outputs/indicators for vi-
sualization. This workflow also includes occasional 
reconfigurations, such as recalibration of the HMs/
LSMs, modification of the SCIIs according to user 
needs, and updates of the web service.

In the SF chain, all four HMs/LSMs were forced 
monthly with the downscaled SF-GCM 7-month 

Fig. 2. Simulated mean daily streamflow from 1950 to 2011 for the EDgE domain at 5-km spatial resolution. 
Simulated daily runoff was obtained with the mHM model forced with downscaled E-OBS forcing data. River 
routing was carried out with the mRM algorithm.
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hindcast data representative of the period 1993–2011. 
The SF chain differs from the CP chain because it re-
quires initialization of state variables for each monthly 
simulation. The workflow of the SF chain is depicted 
in Fig. 3b, with monthly operations (blue) carried out 
on a routine basis, and occasional operations (red). The 
main steps of the operational SF chain are (i) update 
initial state variables through restart files obtained 
from the respective E-OBS reference historical run, 
(ii) obtain and downscale SF-GCM data, (iii) run the 
multihydrometeorological modeling chain to generate 
an ensemble of tECVs, (iv) estimate an ensemble of 
SCIIs based on the tECVs, (v) estimate the ensemble 
forecast uncertainty and skill, and (vi) export ensemble 
outputs/indicators for visualization. Occasional tasks 
include the creation of historical initial states for the 
HMs/LSMs and the recalibration of the HMs/LSMs.

The EDgE SCIIs for the water sector were identi-
fied from an open survey conducted at the onset of the 
project (see appendix E). The users—which included 
members from consultancy, academia, NGOs, water 
user associations, local, regional, and national authori-
ties—were asked for the information that they would 
require from a climate service delivering SF and long-
term CP. The end users requested SF-based indices for 
lead times from 1 to 6 months, and CP-based indices 
for each decade up to 2100. To restrict the number 
of projections, two RCPs were chosen, which define 
the lowest (RCP2.6) and highest (RCP8.5) emission 
scenarios. End users were also interested in obtaining 
information regarding relative changes compared to 
the baseline 1971–2000.

The selected SCIIs for the CP and SF modeling 
chains are listed in Table 1. SCIIs based on forcing 

Table 1. Sectoral climate impact indicators (SCIIs) derived from terrestrial essential climate variables 
(tECVs): streamflow Q (m3 s−1), top-2-m soil moisture as fraction of saturation (SM; m m−1), groundwa-
ter recharge R (mm day–1), snow water equivalent (SWE) (m), and meteorological forcing data: potential 
evapotranspiration (PET) (mm day–1), precipitation P (mm day–1), daily average temperature T (°C). The 
letter X denotes any of the tECVs, and Xp denotes the value of X that is equaled or exceeded p% of the time 
over a time horizon. Lead time is denoted by ℓ.

Index type Statistic Time tECV Notes

Climate predictions

Relative change Daily X10 30 years Q, R
Relative change in high values X10 with respect to (w.r.t) the 
reference period

Relative change Median annual Xmax 30 years Q Peak values w.r.t the reference period

Relative change Daily X90 30 years Q, R Low values w.r.t the reference period

Relative change Daily X95 30 years Q, R w.r.t the reference period

Relative change Monthly mean X 1 month
Q, R, PET, 
P, SWE, T

w.r.t the reference period; for each calendar month

Relative change Seasonal-mean X 3 months
Q, R, PET, 
P, SWE, T

w.r.t the reference period; seasons considered: DJF, MAM, 
JJA, SON

Relative change Annual-mean X 1 year
Q, R, PET, 
P, SWE, T

w.r.t the reference period

Percentile 
index

Monthly F(X) Monthly SM, R
F(X) indicates the percentage of the time that X at a given loca-
tion and point in time will take a value less than or equal to X

Duration F(X) < 0.2 Monthly SM
Number of consecutive months over a 30-yr window in 
which the F(X) < 0.2, which indicates the onset of a moder-
ate drought

Relative change Area F(X) < 0.2 Monthly SM
Relative change of area of a basin F(X) < 0.2 w.r.t. a reference 
period

Seasonal forecast

Probabilistic Monthly quintiles Xp 1,…,6 Q, SM, R
Percentage of realizations of monthly forecasted X for every 
quintile category and lead time; cutoffs: 20th, 40th, 60th, and 
80th percentiles

Probabilistic Above X10 1,…,6 Q, SM, R
High values; percentage of realizations above the reference 
monthly X10 for each ℓ

Probabilistic Below X90 1,…,6 Q, SM, R
Low values; percentage of realizations above the reference 
monthly X90 for each ℓ
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variables (i.e., precipitation, temperature, and potential 
evapotranspiration) were derived directly from the 
bias-corrected and downscaled forcing datasets.

The majority of CP-based SCIIs denote the 
changes in a given hydroclimatic variable (e.g., high 
flow as Q10) over a future 30-yr period with respect to 
their historical reference values. A reference value was 
established for every GCM–HM or GCM–LSM com-
bination using the model simulations for 1971–2000. 
Subsequently, SCIIs were estimated for every 30-yr 
period, starting from 2011 until 2095 with a gap of 
5 years between each 30-yr periods (i.e., 2011–40, 
2016–45,…, 2066–95). Some of the CP-based SCIIs 
related to soil moisture and groundwater recharge are 
expressed as quantile indices of monthly values for 
the entire period 1971–2099 (Samaniego et al. 2013). 
Figure 4 shows the projected changes in one of the 

SCIIs (high-flow indicator Q10) for different future 
periods using the multimodel ensemble consisting of 
five GCMs and four HMs/LSMs. This figure shows, 
for example, the level of detail made available by the 
EDgE simulations. Significantly drier hydrological 
conditions are expected across the Mediterranean 
region. Extended analyses of the implications of 
global warming on floods, low flows, and soil mois-
ture droughts based on EDgE water projections are 
available in Thober et al. (2018), Marx et al. (2018), 
and Samaniego et al. (2018), respectively.

The SF-based SCIIs are expressed as the percent-
age of realizations that detect a reference-based 
indicator at a given month and lead time (varying 
from 1 to 6 months) to assess the accuracy of the 
available seasonal forecast data. The reference is 
based on the E-OBS historical simulations conducted 

Fig. 3. Workflow of the (a) climate projection and (b) seasonal sorecast model chains. Both chains include oc-
casional (red) and routine tasks (blue).

Fig. 4. Multimodel ensemble mean of the projected changes in a high-streamflow indicator Q10 for two future 
time periods: (a) 2011–40 and (b) 2066–99, both under the RCP8.5 scenario. Note that Q10 is the daily streamflow 
equaled or exceeded 10% of the time over a 30-yr window. The historical reference period is from 1971 to 2000.
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for each calendar month from the relevant historic 
reference run.

Figure 5 presents the results of two SF-based SCIIs 
related to high river flow and soil moisture drought 
(i.e., quantile level ≤ 20%) at 1-month lead time. It 
shows two extreme events: a flood occurring in May 
2001 in France and the Alps regions (Figs. 5a,b); and 
the 2003 soil moisture drought in central Europe 
(Figs. 5c,d). The climatological-based Ensemble 
Streamflow Prediction (ESP) (Day 1985) was used 
to provide a benchmark of the GCM-based seasonal 
forecasts. In general, the GCM-based seasonal fore-
cast showed a larger agreement with observations 

for every HMs/LSM separately. For example, the 
high f low indicator quantifies the percentage of 
ensemble realizations above the reference monthly 
streamflow that is exceeded 10% of the time Q10 for 
each lead time. The value of Q10 is derived for each 
calendar month from the relevant reference model 
run. Similarly, the low flow indicator was based on the 
assessment of the streamflow forecasts falling below 
the reference monthly streamflow that is exceeded 
90% of the time. Another category of SF-SCIIs are 
the counts of monthly forecasts falling within each of 
the quantile intervals (≤20%, 20%–40%, 40%–60%, 
60%–80%, ≥80%), with the five level limits derived 

Fig. 5. Multimodel ensemble mean percentage of forecast realizations detecting the reference run–based high 
flow Q10 and soil moisture drought indicators at 1-month lead time for the (a),(c) ensemble streamflow predic-
tions (ESP) and (b),(d) climate model (GCM) forced hydrological model runs. The reference runs are based on 
hydrological model simulations driven by the observed meteorological forcing data (here, the E-OBS dataset).
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than the ESP-based forecast. A detailed analysis of the 
seasonal forecasting skill and uncertainty associated 
with EDgE seasonal streamflow hindcasts is reported 
by Wanders et al. (2019).

It was clear from the consultation with users that 
information on the uncertainty of climate projections 
and the skill of seasonal forecasts is critical for outputs 
to be used to their full potential (Taylor et al. 2015). 
This is especially true for large ensembles, like the 
EDgE seasonal forecast and climate projection chains, 
that contain many combinations of models, seasons, 
and geographical locations. Within this project, skill 
and uncertainty information were combined with 
expert knowledge to provide end users with both 
quantitative and qualitative information, designed to 
facilitate interpretation. The simulation quality was 
determined for each individual hydrometeorological 
model combination and initialization months, and was 
conducted for all parts of the geographical domain in-
dependently. In the following two sections we analyze 
the uncertainty and the skill of both modeling chains.

UNCERTAINTIES IN CLIMATE PROJEC-
TIONS. Due to project limitations, uncertainty 
analysis did not include that from parameter 
data, downscaling method, and geophysical data. 
Consequently, the term uncertainty here refers to 
the spread among the hydrometeorological ensemble 
members, calculated over all meteorological and 
hydrological model combinations.

The ability of GCMs and HMs/LSMs to capture 
the predictive uncertainty of key water f luxes and 
state variables has been extensively discussed in the 
literature (e.g., Prudhomme et al. 2014; Giuntoli et al. 
2015, and sources therein). The propagation of forcing 
data and meteorological model uncertainties and its 
dependency on RCP and time horizon were shown 
by Samaniego et al. (2017a) for streamflow for a few 
selected basins. In EDgE, the assessment was extended 
to all indicators shown in Table 1, and estimated 
over a large domain and at the high resolution of the 
EDgE modeling framework. Figure 6 provides clear 
evidence, when investigating the impact of climate 
change on water-related variables, of the importance 
of a multihydrological model ensemble over a single 
hydrological model to better capture the uncertainty 
propagation in water fluxes and state variables. There 
are regions where GCM forcing uncertainty clearly 
dominates the HM/LSM structural uncertainty for 
the high-streamflow indicator (see Figs. 6a,c,e), but 
there are other locations in which the opposite is true 
(Figs. 6b,d,f). Notably, the spatial distribution of un-
certainty varies between all indicators. Consequently, 
it is not possible to establish a priori the optimal size, or 
membership, of ensemble GCMs and ensemble HMs/
LSMs. Ideally, the ensemble size should be as large as 
possible to be able to identify the uncertainties origi-
nating from either GCMs or HMs/LSMs. These results 
clearly indicate that a single model or a subensemble 
may work well in a given location but perform poorly in 

Fig. 6. Uncertainty of the multimodel ensemble of the relative change of high-streamflow indicator Q10 for 
consecutive 30-yr periods with respect to the reference period for different combinations of GCMs and HMs/
LSMs and for two distinctive locations in central Europe (≈52.12°N, 9.38°E) and Scandinavia (≈62.98°N, 16.72°E) 
characterized by a larger and smaller ratios of GCM/HM uncertainty (σGCM/σHM), respectively. The reference 
runs are based on hydrological model simulations driven by the historical forcing data of the respective GCM.
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another, and hence should 
not be recommended for an 
operational system.

The uncertainty of the 
climate projections under a 
given RCP were estimated as 
in Samaniego et al. (2017a), 
which used the long-term 
mean of the interquartile 
range for a given SCII as the 
uncertainty metric, so that 
the contributions stemming 
from GCMs and HMs/
LSMs could be disentan-
gled. The 40-member en-
semble interquartile range 
of the relative change of the 
high-streamf low indica-
tor Q10 shows significant 
regional changes within a 
given RCP scenario for two 
future periods (2011–40 
and 2066–99 in Figs. 7a and 
7b, respectively). Southern 
Europe, in particular, ex-
hibits a significant decrease 
in uncertainty by the end 
of the century. This sug-
gests that GCM projections 
and HMs/LSMs tend to 
have a consistent estimate 
of the projected changes. 
The same method applied to 
subsamples of the ensemble 
can be used to systemati-
cally quantify uncertainties 
stemming from different 
origins (i.e., uncertainties 
from hydrological model 
structure and input uncer-
tainty—given that all HMs/
LSMs use an identical set of 
underlying physiographical 
land surface characteris-
tics), using, for example, the 
full ensemble interquartile 
range spread as the bench-
mark uncertainty. Users 
of the online platform can 
experiment with different 
combinations to assess the 
quality of a given combina-
tion of GCMs and LSMs/

Fig. 7. Ensemble interquartile range of the relative change of high-streamflow 
indicator Q10 for two 30-yr periods with respect to the reference period: (a) 
2011–40 and (b) 2066–99, both under the RCP8.5 scenario. Southern Europe 
exhibits, for example, a significant decrease in uncertainty by the end of the 
century. The historical reference period is from 1971 to 2000.
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HMs. Note, however, that a smaller ensemble might 
not capture the full uncertainty of the hydrological 
and meteorological combinations.

A detailed analysis of the contribution by GCMs 
and HMs/LSMs to the total uncertainty has been 
evaluated within the High-Resolution Climate 
Indicators for 1.5 Degree Global Warming project 
(HOKLIM; www.ufz.de/hoklim), which employed 
EDgE simulation data. It was found that the total 
uncertainty in modeled variables is dominated by the 
choice of hydrological models in Alpine and semiarid 
regions for both floods and low flows (Thober et al. 
2018; Marx et al. 2018). In these regions, different 

representations of snow processes and soil water 
redistribution in the HMs/LSMs have an impact on 
the projected climate change signal comparable to the 
different meteorological forcing data from the GCMs.

A further analysis of the GCMs and HMs/LSMs 
uncertainty contribution to the soil moisture drought 
duration (duration in Table 1) under different global 
warming levels reveals that the ensemble spread is 
dominated by the GCMs in comparison to the HMs/
LSMs (Fig. 8, lower panels), with the ratio of GCM 
and HM/LSM uncertainties (σGCM/σHM) being par-
ticularly high in the continental and Atlantic region. 
In these humid regions, the variability of precipitation 

Fig. 8. Uncertainty in the estimated number of drought months per year expressed as (top) signal-to-noise 
ratio and (bottom) the ratio of the uncertainty contribution of global climate models with respect to hydro-
logical models [using the method described in Samaniego et al. (2017a)]. The columns correspond to a global 
warming level of (left) 1.5, (center) 2, and (right) 3 K. The number in the brackets in each panel denotes the 
mean value over space.
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among GCMs has the largest effect on simulated 
soil moisture drought development. In Scandinavia, 
the Southern Alps, and parts of the Mediterranean, 
the HMs/LSMs contribute at least as much to the 
uncertainty as GCMs. In cold regions, this might 
be related to the importance of snow processes, 
where the rate of snowmelt and accumulation varies 
substantially among the HMs/LSMs. In arid regions 
such as the Mediterranean, the soil water restriction 
on evapotranspiration also varies among HMs/LSMs. 
This process greatly influences how fast soils dry and 
thus drought development. These results provide 
substantial evidence against the assumption that the 
uncertainty of derived SCIIs is equally distributed 
between atmospheric (GCM) and land surface/hy-
drological models (HMs/LSMs), in accordance with 
the findings of Samaniego et al. (2017a) for low-flow 
duration.

The spatial distribution of the signal-to-noise 
ratio for drought duration calculated as the median 
divided by the interquartile range is shown in the 
upper panels in Fig. 8. Low signal-to-noise ratios 
are generally found in Scandinavia, Germany, and 
Poland, irrespective of the amount of global warm-
ing. Note that the spatial distribution of GCMs/HMs/
LSMs uncertainty contribution does not correlate 
with that of the signal-to-noise ratio (cf. Fig. 8, top and 
bottom panels). For example, for a global warming of 
3 K (Fig. 8, right column), the signal-to-noise ratio is 
low in Scandinavia, where uncertainty is dominated 
by HMs/LSMs, but it is also low in Poland, where 
uncertainty is dominated by GCMs. In other words, 
low confidence in future projections (i.e., low signal-
to-noise ratio) can be created by both HMs/LSMs and 
GCMs, and be undifferentiated.

SKILL OF SEASONAL FORECASTS. The 
seasonal forecast skill was calculated employing one 
of the most commonly used skill scores for seasonal 
forecasting in meteorology and hydrology: the Brier 
score (BS; Brier 1950). The BS uses categorical forecast 
thresholds to determine the quality of the forecast 
compared to a reference simulation. E-OBS-based 
simulations were used as reference. Quintile classes 
were defined for the qualification of the streamflow 
skill whereas a threshold soil moisture value was used 
to discriminate soil moisture drought events (a soil 
moisture value that is exceeded 80% of the time in a 
given calendar month and location). Forecasts that hit 
the reference class of the E-OBS reference simulation 
were considered as “skillful,” whereas those that did 
not are denoted as “unskillful.” A lower BS indicates 
a better forecast. The spread of the BS values is 

estimated as a standard error: ε = tα(n – 1)S/√
—
n. Here, 

n denotes the ensemble size, S, the standard devia-
tion of the ensemble statistic (BS), and tα denotes the 
Student’s t critical value for 1 – α confidence interval 
(95%) and n − 1 degrees of freedom. Consequently, 
the uncertainty of the mean Brier score 

—
BS at a given 

location is 
—
BS ± ε. A forecast with large standard error 

is deemed highly uncertain because the accuracy of 
the forecast is low.

The ESP approach (Day 1985) is an often-used 
benchmark in seasonal hydrological forecasting (e.g., 
Thober et al. 2015; Wanders et al. 2019) and provides 
the forecast skill that can be obtained from the initial 
hydrological conditions. The method was implement-
ed in EDgE using a hindcast starting at month m and 
year y, generated from 15 years randomly drawn from 
the E-OBS forcing data during the period 1993–2011, 
starting at the calendar month m. The sample size 
was selected to resemble the maximum number of 
ensemble members of the seasonal forecast models, 
so that the forecast quality cannot be influenced by 
different ensemble size. For shorter lead times and 
in regions that have a long hydrological memory, the 
ESP can provide a highly skillful forecast because 
the impact of the initial hydrological conditions 
dominates the seasonal predictability (Wanders et al. 
2019). For longer lead times, the ESP tends to become 
close to hydroclimatology and the performance of 
ESP-based forecasts is comparable to that of GCM-
based forecasts. Users can evaluate the added value 
of the dynamical (GCM based) seasonal forecast by 
comparing it with ESP.

The full ensemble of GCMs and HMs/LSMs exhib-
its a BS of 0.14 over the entire domain for seasonal soil 
moisture droughts at 1-month lead time (Fig. 9a). The 
standard error of the BS values for the full ensemble is 
0.02 on average. In comparison, the average values us-
ing ESP is slightly higher than that of the full ensem-
ble (0.16), but has a standard error that is on average 5 
times higher than that of the full ensemble. Notably, 
the spatial patterns in BS are comparable among the 
full ensemble and ESP. This indicates that forecast-
ing skill does not only depend on the meteorological 
input, but also on other factors such as the persistence 
of initial hydrologic conditions (Wanders et al. 2019). 
Notably, the skill of the full ensemble (SF-GCM + 
LSM/HM) is consistently higher than that of ESP 
at almost all locations in Europe (BS tends to have 
lower values). This is remarkable because the analysis 
is favorable to ESP for two reasons: 1) the SF-GCMs 
were not bias corrected prior to being used as forcing 
data to the hydrological models, and 2) the reference 
values for the BS estimates are based on HMs/LSMs 
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simulations using E-OBS 
forcing. As a consequence, 
the ESP forecasts and the 
reference values share the 
same climatology, whereas 
the SF-GCMs have their 
own climatologies. The 
single best performing 
SF-GCM, ECWMF-S4, 
provides a minor improve-
ment with respect to the 
full ensemble, but has a 
threefold standard error 
as the latter (Figs. 9e,g). 
Similarly, the skill of indi-
vidual ECMWF-S4/HMs/
LSMs combinat ions is 
slightly higher than that of 
the full ensemble and all of 
these outperform ESP (see 
Fig. A2 in appendix D for 
individual combinations). 
However, the uncertainty 
for the individual model 
combinations cannot be es-
timated (because its sample 
size for the HMs/LSMs is 
one in this case), which 
lowers the credibility of 
their skill. Overall, any 
combination of SF-GCMs/
HMs/LSMs prov ides a 
higher forecasting skil l 
than ESP for soil moisture 
droughts at 1-month lead 
time. The full ensemble 
exhibits the highest fore-
casting skill with respect to 
both bias and uncertainty 
among all possible combi-
nations. This may not be 
true everywhere, which is 
why users can choose the 
SF-GCMs/HMs/LSMs that 
provides the best ensemble 
forecast for a given location 
and time in the web inter-
face of the demonstrator.

Improvement of skill us-
ing SF-GCM-driven fore-
casts instead of ESP can be 
measured using the Brier 
skill score (BSS), with a 

Fig. 9. Effects of the subensemble selection on the Brier score (BS) skill in SF 
mode for the first soil moisture quantile indicator (drought events). (a),(c) 
Ensemble mean and standard error of BS obtained with the full ensemble, 
which includes all SF-GCMs and all HMs/LSMs, respectively. (e),(g) As in (a) 
and (c), but for the subensemble of one SF–GCM (ECMWF-S4) with all HMs/
LSMs. (b),(d),(f),(h) Corresponding statistics of BS obtained with ESP instead 
of the SF–GCM model combination. The number in the brackets in each panel 
denotes the mean value over space.
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BSS > 0 showing an improvement. BSS was calculated 
at every location and for every SCII, and is available 
on the online demonstrator (EDgE 2017). Figure 10 
gives the histogram of the BSS for streamflow at 465 
selected gauging locations, and Fig. A1 shows the 
LSM/HM model performance. Results show a strong 
relationship between the LSM/HM model perfor-
mance and BSS, with high-performing hydrological 
models being associated with high median BSS values 
and a histogram skewed toward the right. For ex-
ample, the median BSS are around 0.2 for mHM and 
Noah-MP but are slightly less than 0.2 for VIC and 
less than 0.1 for PCR-GLOBWB (except for 6-month 
lead-time forecasts). This could be related to the 
initial model skill, but is also linked to the impact of 
the initial hydrological conditions. PCR-GLOBWB 
tends to show a long hydrological memory (Wanders 
et al. 2019), which limits the impact of the dynamical 

forecast improvement. Hydrological models that re-
spond rapidly to precipitation or temperature changes 
are more likely to benefit from accurate dynamical 
seasonal forecasts and thus show a strong improve-
ment in the BSS. This suggests that future hydro-
logical models with more accurate representations of 
the observed hydrology and applied in regions with 
shorter hydrological response times are likely to profit 
more from SF-GCMs.

CONCLUSIONS AND OUTLOOK. The EDgE 
project was one of the two proof of concepts (PoCs) 
commissioned as precursors to the development of a 
fully operational system for the water sector in Eu-
rope. Three highlights of the EDgE approach are 1) 
the unprecedented high resolution and consistency 
of inputs of the multimodel hydrological simula-
tions at time scales of seasonal forecasts and climate 

Fig. 10. Brier skill score (BSS) for dynamical seasonal forecasts over Europe. BSS is calculated for each gauging 
station individually (shown are hydrological forecasts and projections for improved decision-making in the water 
sector in Europe) for each lead time and model separately, using ESP as reference (BSESP). No separation has 
been made with respect to the forecast season. The red dashed line indicates the median of the distribution 
over 465 streamflow stations during the hindcast period. Positive BSS values indicate an improvement in the 
dynamical forecasts compared to the climatological forecast.
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projections, 2) the systematic uncertainty estimation 
for 36 codesigned water impact indicators, and 3) the 
delivery of a high quality water information service 
tailored to the needs of end users. These character-
istics of EDgE are preconditions for users to make 
informed decisions and therefore constitute the key 
for improved decision-making. The results shown 
here also highlight the relevance and value of having 
a multihydrological model ensemble capable of cap-
turing the total uncertainty of the prediction chain.

Operationalization of the modeling chain would 
be straightforward because it was designed to be 
upgradable and scalable. Including new hydrological 
models or updated versions of Noah-MP, mHM, VIC, 
and PCR-GLOBWB would be possible due to the flex-
ibility of the operational framework. Similarly, adding 
new climate models for the CP and the SF modeling 
chains would only be limited by the storage capacity 
and computational power available.

Skillful seasonal forecasts will depend on the 
quality of the initial conditions, the performance 
of the hydrological models against observations, 
the employed spatial resolution, and skill of the 
SF-GCM model. One limitation of this PoC is that 
no bias correction is applied to the SF-GCM data 
because of the short hindcast period of 19 years. A 
longer hindcast period should be used during an op-
erationalization phase. As shown in this PoC, model 
cross-validation at gauged locations is an excellent 
diagnostic tool to assess model deficiencies (i.e., 
model parameterization and/or structure). Ideally, 
a diagnostic tool should be part of the operational 
system giving updated information on a regular 
basis, with updates on skill assessments regularly 
conveyed to end users.

Next steps within the development of this water 
information system should focus on anthropogenic 
influences that alter the natural course and water bal-
ance of the hydrologic cycle in all hydrological mod-
els. These will greatly improve the quality of seasonal 
forecasts and the usability of the climate projections. 
For this reason, high-resolution data of water bodies, 
dam systems, and water distribution infrastructure in 
Europe should be further assembled. For climate pro-
jections, it is crucial to include dynamic land-cover/
land-use models coupled with hydrological models. 
Further work should also provide indicators related 
to water quality and river temperature as needed by 
end users. All hydrological and land surface models 
in EDgE used the same underlying static datasets (e.g., 
soil and land cover). These were, however, processed 
differently for the individual models. Applying a 
seamless parameterization following Samaniego et al. 

(2010, 2017b), would help to further increase the con-
sistency among hydrological model simulations. All 
these factors would improve the quality and realism 
of the impact indicators.

ACKNOWLEDGMENTS. EDgE was performed under 
a contract (C3S 441 Lot1 NERC) for the Copernicus Cli-
mate Change Service (http://edge.climate.copernicus.eu). 
ECMWF implements this service and the Copernicus 
Atmosphere Monitoring Service on behalf of the European 
Commission. We acknowledge the E-OBS data set from 
the EU-FP6 project ENSEMBLES (http://ensembles-eu 
.metoffice.com) and the data providers in the ECA&D 
project (www.ecad.eu), the Global Runoff Data Centre 
(GRDC), CORINE data (Copernicus European Commis-
sion EEA), Global land-cover data (ESA), Global 3D Soil 
Information System at 1 km resolution (ISRIC), Digital 
elevation model EU-DEM (EEA), Global 30 Arc-Second 
Elevation (USGS), Hydrogeological Map of Europe (BGR 
IHME). We also would like to thank the International 
Research Institute for Climate and Society (IRI; http://
iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/) for 
making the NMME dataset available. Last but not least, 
we thank the many private and public stakeholders who 
participated in this study. Without them this project would 
not have been possible.

APPENDIX A: BIAS CORRECTION AND 
DOWNSCALING. The bias correction technique 
proposed by Hempel et al. (2013) corrects systematic 
deviations of simulations from historical observa-
tions, but preserves the absolute warming signal 
for temperature and the relative warming signal for 
precipitation. Daily variability around the monthly 
means has been adjusted by a quantile mapping 
assuming a normal and gamma distribution for 
temperature and precipitation residuals, respectively 
(Hempel et al. 2013).

Coarse GCM daily values (CP and SF modes) of 
precipitation, daily mean temperature, daily maxi-
mum and minimum temperature were downscaled 
from their native resolution (ℓ2 = 1°, 0.75°, or 0.5°) 
to ℓ1 = 5 km using the external drift kriging (EDK) 
algorithm. EDK is an interpolation technique that 
provides the best linear unbiased estimation at un-
known locations (Kitanidis 1997). It also includes a 
drift governed by the terrain elevation. The advantage 
of this procedure over other estimation approaches is 
that it can account for the finescale orographic effects 
in interpolated precipitation and temperature fields. 
In this case, EDK can be considered as a simple but 
unbiased form of statistical downscaling because it 
uses coarser predictors and terrain characteristics 

2465AMERICAN METEOROLOGICAL SOCIETY |DECEMBER 2019

http://edge.climate.copernicus.eu
http://ensembles-eu.metoffice.com
http://ensembles-eu.metoffice.com
http://www.ecad.eu
http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/
http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/


within a variance minimization scheme. The spatial 
weights determining the EDK interpolation depend 
on the spatial variability of the meteorological fields, 
which is quantified by a semivariogram. The semivar-
iograms for the daily precipitation and temperature 
were derived from daily E-OBS station data (Haylock 
et al. 2008) covering the entire domain following the 
procedure proposed by Zink et al. (2017). It should be 
noted that EDK does not modify the long-term trends, 
making this a suitable technique for climate change 
impact studies. After downscaling the precipitation 
and temperature fields, the Mountain Climate simu-
lator tool (Bohn et al. 2013) was used to generate the 
3-hourly forcing data of air temperature, downward 
shortwave and longwave radiation, specific humidity 
and surface pressure required for running the LSMs. 
Daily wind speed climatology was derived from the 
EFAS forcing dataset.

APPENDIX B: LAND SURFACE DATA. A 
key feature of EDgE is the use of consistent land 
surface data at a high spatial resolution of 500 m. 
A summary of all open-source data used is listed in 
Table A1. Terrain characteristics (e.g., elevation, slope, 
aspect, flow direction, and flow accumulation) were 
derived from the joined Europe-wide (EU) and Global 
(GOTOP30) Digital Elevation Model (DEM). The 
Global dataset was used for delineating river basins at 
those locations that were not covered by the EU-DEM 
dataset. All datasets were reprojected to the European 
Terrestrial Reference System (ETRS) 1989 Lambert 
azimuthal equal area coordinate reference system 
with a spatial resolution of 500 m for consistency. The 
spatial domain covers the entire drainage area of all 
rivers within the pan-EU territory.

APPENDIX C: HMS/LSMS CALIBRATION 
AND EVALUATION. Different parameter esti-
mation strategies have been used for the individual 
HMs/LSMs, based on the expert knowledge of the 
different modeling teams involved: for example, 1) 
estimation of global transfer function parameters, 
2) manual tuning of selected (sensitive) model 
parameters, and 3) bilinear interpolation based 
on coarser-resolution parameter sets. The first ap-
proach, which leads to a seamless parameterization 
of hydrological model parameters, as described in 
Samaniego et al. (2010, 2017b), was applied to mHM 
and PCR-GLOBWB. Given the resources and time 
constraints of the EDgE project, a manual calibra-
tion was applied for Noah-MP focusing on adjusting 
the surface evaporation resistance parameter, which 
was identified as highly sensitive by Cuntz et al. 
(2016). The parameters for the VIC model (Liang 
et al. 1994) were mapped from a global simulation 
(Sheffield and Wood 2007) so that they are consistent 
with the land surface parameters specified for the 
other models.

All models were driven with the downscaled 
5 × 5 km2 historical E-OBS data (Haylock et al. 2008) 
and evaluated against observed GRDC streamflow 
data for 357 basins (www.bafg.de/GRDC/). It should 
be noted that the GRDC basins mainly consist of 
large rivers, which are often heavily modified by 
anthropogenic activities and infrastructure (e.g., 
large hydropower dams). As a result, it is difficult 
for models describing naturalized streamflows to 
simulate GRDC data inf luenced by river regula-
tions. Parameter estimation for each HMs/LSMs 
was conducted only on river basins without large 
hydroinfrastructure facilities because no dam 

Table A1. Physiographic information used for the EDgE Project.

Description Dataset name Data owner Source

Elevation
EU-DEM EEA www.eea.europa.eu/data-and-maps/data/eu-dem

GOTOPO30 USGS https://lta.cr.usgs.gov/GTOPO30

Pan-European 
River and Catch-
ment Database

CCM2 v2.1 EC -JRC http://ccm.jrc.ec.europa.eu/php/index.php?action=view&id=23

Soils texture SoilGrids1km ISRIC www.isric.org/explore/soilgrids

Land cover
GlobCOVER v2 ESA http://due.esrin.esa.int/page_globcover.php

CLC00, CLC06, 
CLC12, CLC90 v18.4

Copernicus, ESA http://land.copernicus.eu/pan-european/corine-land-cover

Hydrogeology IHME1500 v11/ BGR IHME www.bgr.bund.de/ihme1500

Leaf area index GIMMS UMD
https://iridl.ldeo.columbia.edu/SOURCES/.UMD/.GLCF 
/.GIMMS/.NDVIg/.global/.dataset_documentation.html

World Register  
of Dams

WRD CIGB-ICOLD
www.icold-cigb.org/GB/world_register/world_register_of 
_dams.asp
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management information was available at the time 
of the analysis.

Figure A1 summarizes the model performance 
in terms of predicting daily streamflow data for all 
HMs/LSMs. In total, 357 diverse basins with a median 
area of around 1,700 km2, and a complete streamflow 
record for a 30-yr period (1966–95), are evaluated 
using the Kling–Gupta efficiency (KGE; Gupta et al. 
2009). Figure A1a presents the basinwise spatial eval-
uation and reveals that the model performance based 
on historical forcing data strongly depends on model 
type and region, which highlights the added value of 
using multiple hydrological models. All models have 
some difficulties in capturing streamflow dynam-
ics in the northeastern part of the domain, where 
snowmelt processes are dominant. Figure A1b details 
quantitative estimates for KGE and its three compo-
nents: correlation r, ratio of variability α, and ratio 
of mean β. The median KGE varies between 0.1 and 
0.6. The mHM and PCR-GLOBWB models provide 
unbiased streamflow estimates at the majority of the 
basins, while Noah-MP and VIC tend to overestimate 
and underestimate the mean flows, respectively. In 
the majority of the 357 basins, the variability of ob-
served streamflow flow is well captured by all models 
except for PCR-GLOBWB. Overall, mHM exhibits 
the best model performance followed by Noah-MP, 
VIC, and PCR-GLOBWB. Within the project, the 
stakeholders evaluated the model results in their 

target basins and found that the all models exhibited 
reasonable performance.

APPENDIX D: PERFORMANCE OF ECMWF-
S4 DRIVEN FORECASTS. The individual HMs/
LSMs (i.e., mHM, Noah-MP, PCR-GLOBWB, and 
VIC) driven by ECMWF-S4 show unique spatial 
patterns of the seasonal soil moisture drought fore-
casting skill at 1-month lead time (Fig. A2). This 
analysis provides insights on how the individual 
models contribute to the forecasting skill of the full 
ensemble. The spatial distribution of BS values for 
the PCR-GLOBWB is very different from that of the 
other models (Fig. A2c). Notably, this model also has 
the highest forecasting skill both for ECMWF-S4 
and ESP-based forecasts among all four models. It 
appears as a paradox that the model with the least 
ability to simulate observed streamflow receives the 
highest forecasting skill. PCR-GLOBWB shows a high 
underestimation of both the observed variability and 
correlation (α and r in Fig. A1). This indicates that this 
model has a high persistence, which implies that the 
ECWMF-S4 and the ESP-derived forecasts do not de-
viate too much from the E-OBS-based reference run. 
ECMWF-S4-based forecasts for mHM and Noah-
MP outperform ESP and their forecasts are overall 
comparable (Figs. A2a–d). Among all models, VIC 
shows the least skill for both ECMWF-S4 and ESP-
based forecasts (Figs. A2g,h). Notably, it also has the 

Fig. A1. Evaluation of the hydrological models using the observed daily streamflow over 357 European basins 
forced with the E-OBS meteorological data. (a) Spatial maps of the daily Kling–Gupta efficiency (KGE) for HMs/
LSMs. (b) Cumulative frequency of the daily KGE measure and decomposition into its three components (cor-
relation r, ratio of variability α, ratio of bias β). Model statistics are based on the 30-yr period covering 1966–95.
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largest difference between these two 
forecasts. In other words, VIC shows 
the highest skill improvements of 
37% for ECMWF-S4 forecasts with 
respect to ESP-based ones. It is un-
known which characteristics of VIC 
are causing this behavior. Among 
the four models considered in the 
ECMWF-S4 ensemble (Figs. 9a,c), 
VIC contributes the most to the 
relatively higher BS values of this 
ensemble with respect to the ESP 
ensemble. Overall, there is no model 
that outperforms the other models 
at all locations, which highlights the 
necessity of a multimodel approach.

APPENDIX E: STAKEHOLDER 
FOCUS GROUPS AND FEED-
BACK. Stakeholder focus groups 
(FGs) in Norway, Spain, and the 
United Kingdom were formed as part 
of the EDgE project, comprising rep-
resentatives of national government 
agencies, regional and local govern-
ment authorities, international water 
and hydropower companies, agricul-
tural sector, river basin authorities, 
consultancies, and academic sector. 
To examine user needs in detail, 
each focus group considered a differ-
ent aspect of water information and 
decision-making: water supply in the 
United Kingdom; catchment plan-
ning and agriculture in Spain; hydro-
power generation and local authority 
planning in Norway. The number of 
active focus group members totaled 
29: 11 in the United Kingdom, 6 in 
Norway, and 12 in Spain. Stakehold-
ers in Germany were analyzed in a 
follow-up project (HOKLIM; www 
.ufz.de/hoklim).

Stakeholders welcomed the in-
formation provided by the EDgE 
demonstrator that combines seasonal 
forecasts and climate projections in a 
single platform, seeing it as a useful 
addition to the information they cur-
rently had access to. The international 
companies saw also a large potential 
in this system because it provides a 
consistent dataset across Europe. In 

Fig. A2. Effects of the subensemble selection on the Brier score (BS) 
skill in SF mode for the first soil moisture quantile. (a),(c),(e),(g) BS 
obtained with ECMWF-S4 and the mHM, Noah-MP, PCR-GLOBWB, 
and VIC, respectively. (b),(d),(f),(h) BS obtained with ESP and the 
corresponding HM/LSM. The number in the brackets in each panel 
denotes the mean value over space.
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general, it was found that the seasonal forecasts need to 
have a better skill before they can be used operationally, 
although they would be used as additional information 
to climatology. However, the value of using multiple 
hydrological models to assess hydrological modeling 
uncertainty was generally appreciated by stakeholders. 
A European sectoral information system like EDgE 
was thought to be useful for countries that do not have 
national climate services providing seasonal forecasts 
and climate and hydrological projections, but it should 
have higher spatial resolution to replace currently 
available national systems.
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