Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition
Fleischer, Katrin; Rammig, Anja; De Kauwe, Martin G.; Walker, Anthony P.; Domingues, Tomas F.; Fuchslueger, Lucia; Garcia, Sabrina; Goll, Daniel S.; Grandis, Adriana; Jiang, Mingkai; Haverd, Vanessa; Hofhansl, Florian; Holm, Jennifer A.; Kruijt, Bart; Leung, Felix; Medlyn, Belinda E.; Mercado, Lina M. ORCID: https://orcid.org/0000-0003-4069-0838; Norby, Richard J.; Pak, Bernard; von Randow, Celso; Quesada, Carlos A.; Schaap, Karst J.; Valverde-Barrantes, Oscar J.; Wang, Ying-Ping; Yang, Xiaojuan; Zaehle, Sönke; Zhu, Qing; Lapola, David M.. 2019 Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition. Nature Geoscience, 12 (9). 736-741. https://doi.org/10.1038/s41561-019-0404-9
Before downloading, please read NORA policies.
|
Text
N524958PP.pdf - Accepted Version Download (1MB) | Preview |
|
|
Text
N524958PPX.pdf - Accepted Version Download (269kB) | Preview |
Abstract/Summary
Global terrestrial models currently predict that the Amazon rainforest will continue to act as a carbon sink in the future, primarily owing to the rising atmospheric carbon dioxide (CO2) concentration. Soil phosphorus impoverishment in parts of the Amazon basin largely controls its functioning, but the role of phosphorus availability has not been considered in global model ensembles—for example, during the Fifth Climate Model Intercomparison Project. Here we simulate the planned free-air CO2 enrichment experiment AmazonFACE with an ensemble of 14 terrestrial ecosystem models. We show that phosphorus availability reduces the projected CO2-induced biomass carbon growth by about 50% to 79 ± 63 g C m−2 yr−1 over 15 years compared to estimates from carbon and carbon–nitrogen models. Our results suggest that the resilience of the region to climate change may be much less than previously assumed. Variation in the biomass carbon response among the phosphorus-enabled models is considerable, ranging from 5 to 140 g C m−2 yr−1, owing to the contrasting plant phosphorus use and acquisition strategies considered among the models. The Amazon forest response thus depends on the interactions and relative contributions of the phosphorus acquisition and use strategies across individuals, and to what extent these processes can be upregulated under elevated CO2.
Item Type: | Publication - Article |
---|---|
Digital Object Identifier (DOI): | https://doi.org/10.1038/s41561-019-0404-9 |
UKCEH and CEH Sections/Science Areas: | Hydro-climate Risks (Science Area 2017-) |
ISSN: | 1752-0894 |
Additional Information. Not used in RCUK Gateway to Research.: | Publisher link (see Related URLs) provides a read-only full-text copy of the published paper. |
Additional Keywords: | carbon cycle, climate and Earth system modelling, climate-change ecology, element cycles, tropical ecology |
NORA Subject Terms: | Ecology and Environment |
Related URLs: | |
Date made live: | 30 Aug 2019 09:38 +0 (UTC) |
URI: | https://nora.nerc.ac.uk/id/eprint/524958 |
Actions (login required)
View Item |
Document Downloads
Downloads for past 30 days
Downloads per month over past year