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Time domain reflectometry (TDR) potential for soil condition
monitoring of geotechnical assets
Giulio Curioni, David N. Chapman, Alexander C.D. Royal, Nicole Metje, Ben Dashwood, David A. Gunn,
Cornelia M. Inauen, Jonathan E. Chambers, Philip I. Meldrum, Paul B. Wilkinson, Russell T. Swift,
and Helen J. Reeves

Abstract: The performance of geotechnical assets is influenced by various external factors including time and changing loading
and environmental conditions. These changes could reduce the asset’s ability to maintain its function, potentially resulting in
failure, which could be extremely disruptive and expensive to remediate; thus, the ability to monitor the long-term condition of
the ground is clearly desirable as this could function as an early-warning system, permitting intervention prior to failure. This
study demonstrates, for the first time, the potential of using time domain reflectometry (TDR) for long-term monitoring of the
relative health of an asset (via water content and dry density) in a field trial where a clayey sandy silt was exposed to leaking water
from a pipe. TDR sensors were able to provide detailed information on the variation in the soil conditions and detect abrupt
changes that would relay a prompt for asset inspections or interventions. It is proposed that TDR could be used alone or together
with other shallow geophysical techniques for long-term condition monitoring of critical geotechnical assets. Early-warning
systems could be based on thresholds defined from the values or the relative change of the measured parameters.

Key words: time domain reflectometry, soil condition monitoring, gravimetric water content, dry density, degree of saturation.

Résumé : La performance des actifs géotechniques est influencée par divers facteurs externes, notamment le temps et les
conditions changeantes de chargement et d’environnement. Ces modifications pourraient réduire la capacité de l’actif à con-
server sa fonction, ce qui pourrait entraîner une défaillance qui pourrait être extrêmement perturbatrice et coûteuse à résoudre;
ainsi, la capacité de surveiller l’état à long terme du sol est clairement souhaitable, car cela pourrait fonctionner comme un
système d’alerte rapide, permettant une intervention avant la panne. Cette étude démontre, pour la première fois, la possibilité
d’utiliser la réflectométrie temporelle (TDR) pour surveiller à long terme la santé relative d’un actif dans un essai sur le terrain
(via la teneur en eau et la densité sèche) où un silt sableux argileux était exposé à des fuites d’eau. Les capteurs TDR ont été en
mesure de fournir des informations détaillées sur la variation des conditions du sol et de détecter les changements brusques qui
entraîneraient des inspections ou des interventions sur les actifs. Il est proposé que le TDR puisse être utilisé seul ou conjointe-
ment avec d’autres techniques géophysiques peu profondes pour la surveillance de la situation à long terme des actifs géotech-
niques critiques. Les systèmes d’alerte précoce pourraient être basés sur des seuils définis à partir des valeurs ou de la variation
relative des paramètres mesurés. [Traduit par la Rédaction]

Mots-clés : réflectométrie temporelle, surveillance de l’état du sol, teneur en eau gravimétrique, densité sèche, degré de saturation.

Introduction
Modern, developed societies are fundamentally dependent

upon the performance of their geotechnical assets (e.g., embank-
ments, cuttings, earth dams, flood levees, pavement subbase lay-
ers) to function properly; yet, many of these earth structures and
the infrastructure that they support (e.g., transport infrastruc-
ture, buried pipes and cables) have been constructed decades, if
not centuries, ago and as such are still being relied upon well past
their design life (Glendinning et al. 2015; Janik et al. 2017). Replace-
ment of these assets is often prohibitively expensive (Rosenbalm
and Zapata 2017); hence, effective management strategies are re-
quired to ensure prolonged function. Failure, or situations that
threaten the failure, of the geotechnical assets could result in signif-
icant damage and (or) disruption to surrounding infrastructure–

facilities (roads, rail, buried pipes, urbanized conurbations, etc.) and
society’s functions (loss of, or reduction in, service provision) (Du
et al. 2016; Clarke et al. 2017).

In addition, increasing population and climate variability are
applying unheralded pressures on these aging assets and this is
likely to have a negative impact on continued, uninterrupted pro-
vision of services (Davies et al. 2008; Jaroszweski et al. 2014;
Pritchard et al. 2014, 2015a).

Deterioration, and failure mechanisms, of ageing geotechnical
infrastructure have been attributed to a number of processes
often related to changes in water content (including rapid-
drawdown post-flooding, shrink–swell and desiccation, internal
and surface erosion, as well as changes in pore-water pressure and
(or) chemistry regimes) (Clayton et al. 2010; Farewell et al. 2012;
Rajeev et al. 2012; Glendinning et al. 2014; Pritchard et al. 2014,
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2015a, 2015b; Rosenbalm and Zapata 2017; Briggs et al. 2017; Janik
et al. 2017; Stirling et al. 2017). Hence, it is clear that water content
is a key parameter influencing the performance of geotechnical
assets.

The soil water content can be expressed on a gravimetric basis
(w) or on a volumetric basis (�); while the volumetric water con-
tent is used in many disciplines, it is the gravimetric variant that
is commonly used in geotechnical engineering and many funda-
mental indices and relationships in soil mechanics are based on
this quantity (e.g., liquid limit, LL, and plastic limit, PL). Electro-
magnetic (EM) techniques have been widely used for measuring �
(Robinson et al. 2008). Among these, time domain reflectometry
(TDR) is a well-established method that has been used to measure
� and electrical parameters at point locations in the field based
on the measurement of the apparent dielectric permittivity, Ka
(Herkelrath et al. 1991; Robinson et al. 2003a; Delin and Herkelrath
2005; Curioni et al. 2017).

TDR has recently been used to monitor earth structures such as
levees in controlled experiments and in real field case studies
(Scheuermann et al. 2009; Utili et al. 2015; Janik et al. 2017). Esti-
mating the degree of saturation (Sr) would be very beneficial as
this parameter is directly linked to the stability of earth structures
and could be used to trigger warnings (Valentino et al. 2011). Mea-
suring the soil parameters remotely from buried sensors would
clearly be advantageous and reduce the current reliance on the
visual qualitative inspections conducted by inspection engineers
(Utili et al. 2015). Studies using electrical resistivity tomography
(ERT) have shown the potential of using � and Sr for monitoring
the condition of ageing embankments and have suggested that
these parameters can be used for a more effective management of
geotechnical assets (Chambers et al. 2014; Gunn et al. 2015). Warn-
ings could be triggered based on levels of water content with
respect to the soil’s Atterberg limits (i.e., PL and LL) and relay a
prompt for inspections or interventions. It is apparent that mea-
suring w directly would be particularly convenient if indices such
as PL and LL are to be used in early-warning systems because these
are defined on a gravimetric basis. If the soil dry density (�d) is also
known, it could be used together with w to measure Sr and a wide
range of soil geotechnical properties (e.g., porosity, voids ratio, air
content) (BSI 1999b).

Previous studies showed the potential of measuring both w and
�d with TDR (Siddiqui and Drnevich 1995; Lin et al. 2000; Siddiqui

et al. 2000; Yu and Drnevich 2004; Drnevich et al. 2005; Thring
et al. 2014; Jung et al. 2013a, 2013b; Curioni et al. 2018), but these
methods have not been tested in field monitoring applications.
Recently, Bhuyan et al. (2017) reported an interesting application
of the TDR method for monitoring the condition of granular pave-
ment materials. The aim of this paper is to demonstrate the po-
tential use of TDR for soil condition monitoring from the
measurement of w and �d in a field case study. A clayey sandy silt
of high plasticity was flooded a number of times during controlled
pipe leak experiments designed to achieve saturation conditions
with TDR monitoring the changes induced and the movement of
water.

Proposed TDR method for soil condition monitoring
TDR has been used for some time in geotechnical engineering

for compaction quality control based on the measurement of both
w and �d (Siddiqui and Drnevich 1995; Lin et al. 2000; Siddiqui
et al. 2000; Yu and Drnevich 2004; Drnevich et al. 2005). These
works led to the development of ASTM standards that have been
updated over time to account for new findings and improvements
(ASTM 2003, 2005). Following reports of satisfactory and unsatis-
factory results (Lin et al. 2012), a new empirical calibration proce-
dure less dependent on compactive effort has been developed by
Jung et al. (2013a, 2013b) and forms the basis of the current ASTM
D6780/D6780M standard (ASTM 2012). The method consists of an
empirical soil-specific calibration conducted using TDR during a
standard compaction test (BSI 1999a). Two empirical equations are
used in combination and allow the measurement of both w and �d

from an analysis of the TDR waveforms (eqs. (1) and (2); Fig. 1).

(1) �Ka

�w

�d
� a1 � b1w

(2) Vr

�w

�d
� c1 � d1(Ka � 1) � c1e

�f1(Ka�1)

where Vr is the ratio between the first voltage drop V1 and the final
voltage Vf as shown in Fig. 1; �w is the density of water (1 Mg/m3);
and a1, b1, c1, d1, and f1 are soil-specific coefficients. Figure 1 shows
an example of waveforms taken in a clayey sandy silt displaying

Fig. 1. Example of TDR waveforms taken in a clayey sandy silt at different values of w and �d. Vi, input voltage.
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the variation of V1 and Vf at varying �d and w. Jung et al. (2013b)
investigated the effect of temperature on the parameters ex-
tracted from TDR waveform analysis. They found that the effect
on Ka was limited in the typical range of temperatures found in
the field while V1 and Vf (and therefore Vr) were more significantly
affected and had to be corrected. The authors proposed simple
empirical corrections designed for either fine-grained or coarse-
grained soils.

This method appeals to geotechnical engineers because the
standard compaction test is routinely performed and engineers
are more familiar with soil water contents expressed as w rather
than �. However, in the original method a specially designed TDR
probe was used that has been optimized for reliability and ease of
insertion and therefore was well suited for compaction quality
control. To use TDR sensors for long-term soil condition monitor-
ing, commercial three-rod TDR probes would be preferred be-
cause they are available off-the-shelf, can be easily multiplexed,
and are more suitable for burial. Curioni et al. (2018) found that
for a range of fine-grained soils the current ASTM D6780/D6780M
standard (ASTM 2012) did not produce accurate results when using
multiplexers, usually necessary in field monitoring applications
due to the number of probes required, and proposed to replace
eq. (2) with a simplified equation that led to better precision and
accuracy (eq. (3)). Further details on this procedure are described
later in the section titled “Laboratory calibration”, full details can
be found in Curioni et al. (2018).

(3) Vr

�w

�d
� a2 � b2�V1�Ka�c2

Measuring w and �d continuously in the field offers the oppor-
tunity of monitoring changes of a wide range of soil properties
with TDR, including, e.g., Sr, porosity, void ratio, and air content.
It is proposed that this method could be used as an assessment
tool during long-term soil condition monitoring and incorporated
in early-warning systems that trigger alarms based on approach-
ing saturation levels or on significant and potentially problematic
relative change. The method is simple, easily interpreted, and
does not require specific assumptions to be made. Similarly to
alternative sensing techniques that can be used for condition
monitoring (e.g., piezometers, inclinometers), the main disadvan-
tage of the proposed method is that it requires the installation of
a potentially large number of sensors for mapping the spatial
variation of the soil, depending on the desired spatial resolution.
However, point sensors provide highly detailed information at
point locations (the volume measured by TDR is typically of the
order of 0.001 m3) and are well suited for monitoring changes with
time. As TDR works on EM principles, it can be combined effec-
tively with other shallow geophysical techniques, e.g., ERT or
ground penetrating radar (GPR). The TDR measurements could be
used for calibration purposes and allow for monitoring of larger
volumes of soil.

Field case study

Site characterization
A grass-covered field test site surrounded by large conifer trees,

approximately 10 m by 10 m, was developed at Blagdon in North
Somerset (UK) in collaboration with Bristol Water plc. The site
geology belongs to the Sidmouth Mudstone Formation of the Mer-
cia Mudstone Group characterized by red-brown mudstone and
siltstone (Fig. 2). The shallow soil belongs to the Whimple 3 soil
association consisting of “reddish fine loamy or fine silty over
clayey soils with slowly permeable subsoils and slight seasonal
waterlogging” (National Soil Resources Institute 2015). In the
same report, the ground movement potential for this soil was
classified as moderate. Laboratory analyses of samples collected

from the site confirmed these classifications and the main char-
acterization parameters are reported in Table 1. The dominant
clay minerals determined with X-ray diffraction (XRD) analysis
were approximately two-third illite and one-third smectite clay
and approximately 50% of minerals were found to be of the clay
type.

Weathered Mercia Mudstone has some relatively unusual
geotechnical properties. This material was formed in the Triassic
period in “mainly arid, continental deposition” conditions (Hobbs
et al. 2002) and included aeolian and alluvial deposition mecha-
nisms. This has resulted in the nonhomogeneous distribution of
clay content within the soil; indeed, it is common to encounter
aggregations of clay particles: agglomerations of clay particles
forming larger particle sizes (silt sized or larger if “weakly ce-
mented” via precipitates; Hobbs et al. 2002). Whilst the clay min-
erals encountered on site are relatively active, the aggregation
ratio (i.e., the ratio of clay content from mineralogical analysis to
clay content from particle-size distribution, indicating the pres-
ence of aggregates) is known to be high in this material (Hobbs
et al. 2002). This suggests that the influence of the clay content on
the soil fabric was not as pronounced as could be expected from
the classification of the soil. The aggregation ratio was estimated
to be approximately 2 from XRD and particle-size distribution
analysis indicating that the clay minerals of the studied soil were
locked away in aggregates and explaining the seemingly unusual
behavior seen in the field (e.g., the high hydraulic conductivity, as
discussed later), despite the soil classification and the high plas-
ticity measured. It should also be noted that a high variation was
measured in the determination of the LL (separate tests resulted
in values ranging from 57% and 67%) and that the median value of
65% was used to give a general indication of the soil behavior, but
might not be fully representative of the conditions encountered
in the field, particularly given the presence of clay aggregates.

Field setup
Two trenches of dimensions 8 m × 1.2 m × 1.2 m (length × width ×

height) were excavated and the excavated soil was used to rein-
state the trench to achieve similar conditions to the original ma-

Fig. 2. Investigated soil at Blagdon, UK, and approximate positions
of sensors (red pegs) and pipe (yellow peg). [Color online.]
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terial. With the exception of the data used for validation purposes
(see section titled “Final sampling validation”), only the results
obtained from one of these trenches are discussed. The second
trench was investigated with noninvasive geophysical techniques
(i.e., multi-channel analysis of aurface waves (MASW) and ERT)
and a limited number of TDR sensors, and the results are dis-
cussed elsewhere (unpublished manuscripts). The soil was com-
pacted in layers approximately 0.1–0.2 m thick using a Kango
trench compactor. During the backfilling process, a number of
TDR and temperature sensors were buried at different depths
relative to the pipe (Figs. 2 and 3b). These sensors were buried both
at the centerline of the pipe (above and below the pipe) and also at
lateral distances on both sides of the pipe, as shown in Fig. 3b. The
pipe was specifically installed as part of the trial to generate con-
trolled water leaks. In this paper, the leak was used as a mecha-
nism to bring the soil to saturation levels (Fig. 3b) under
controlled conditions. The pipe, buried at approximately 0.70 m
from the surface, was sealed at one end and connected to a water
network at the other end that was used to control the flow and
pressure of the water entering the pipe. The point leak consisted
of a 3 mm hole facing upwards. The hole was covered with geo-
textile to stop solid particles entering the pipe and to avoid pres-
surized water to be directly injected into the soil, as the purpose of
the experiment was to saturate the soil from within and not to
study the effect of pressurized pipe leakage on the soil. Sensors
were installed at two locations: one next to the point leak and one
approximately 5 m away to be used as a control and not directly
affected by the saturation experiments (Fig. 3a).

The TDR sensors used in this study were three-rod CS635
probes, 150 mm long with a 6 m LMR200 low-loss cable (Campbell
Scientific, Logan, USA). The probes were connected to a single
TDR100 device using SDMX 50 � multiplexers and additional
0.5 m cables. The total cable length was kept to a minimum to
minimize signal attenuation. The TDR waveforms collected in this
study were saved and later analyzed to find Ka using the tangent
method (Heimovaara 1993; Curioni et al. 2012). Temperature sen-
sors (model 107, Campbell Scientific, Logan, USA) were also in-
stalled in the field corresponding to each TDR probe so that
temperature correction could be applied to the measurements. In
addition, three vibrating wire piezometers (model W4, Soil Instru-
ments Ltd., Uckfield, UK) and five negative water pressure sensors
(model MPS6, METER Group Inc., Pullman, WA, USA) were in-
stalled at different depths on one side of the pipe for monitoring
the pore-water pressures in the soil. The monitoring station con-
sisted of a CR6 datalogger and AM16/32B multiplexer positioned
in a nearby cabinet. Power was provided by a combination of
deep-cycling batteries and a solar panel. A WXT520 weather sta-
tion (Vaisala, Helsinki, Finland) was also installed next to the
cabinet.

Laboratory calibration
The TDR probes were individually calibrated in the laboratory

using the final setup deployed in the field and following proce-
dures reported in the literature (Heimovaara 1993; Robinson et al.
2003a, 2003b; Curioni et al. 2012). The reference materials used for
the calibration of the probes were air, acetone, and water. Bulk
samples of subsoil collected during field installation were used to
develop a soil-specific calibration following the method reported
by Curioni et al. (2018). The method consists of taking TDR mea-
surements while performing a standard compaction test and ap-
plying two fitting procedures between the parameters shown in
Figs. 4b and 4c and using eqs. (1) and (3). Following the determina-
tion of the soil-specific coefficients, eqs. (1) and (3) (Table 2) can be
rearranged to find w and �d. As shown in Figs. 4b–4d, physical
constraints were added to the relationships (i.e., for w (or �) = 0%:
�d = 1 Mg/m3, Ka = 1, V1 = 0, Vr = 0; for w (or �) = 100%: �d = 1 Mg/m3,
Ka = 81). The constraints for V1, Vr, and Ka are based on their
theoretical values in air and in pure water. The lower limit of
1 Mg/m3 assigned to �d (i.e., corresponding to the density of water)
was considered appropriate for this study, but caution should be
used in specific situations. Certain soils, e.g., peat, highly rich in
organic matter and highly porous, can have �d values lower than
1 Mg/m3. The same can occur in other highly porous materials.
However, shallow mineral soils are typically expected to exhibit
densities higher than 1 Mg/m3 and this is the case for UK shallow
soils, including the soil studied in this paper (confirmed during
discussions with the British Geological Survey and while search-
ing their records). Figure 4a shows the compaction curve for the
soil studied. For a detailed analysis of the laboratory procedure,
the reader is referred to Curioni et al. (2018). Using the same
dataset, an independent soil-specific calibration was developed by
fitting a third-order polynomial similar to Topp et al. (1980)
(Fig. 4d; Table 2). As seen in Fig. 4d, the difference between the
soil-specific polynomial and the Topp et al. (1980) equation was
relatively small for the soil studied, with deviations of � typically
smaller than 3%.

In this study, a temperature correction was applied to Ka, V1,
and Vf using the empirical equations suggested by Jung et al.
(2013b) for fine-grained soils (eqs. (4)–(7)).

(4) Ka cor � (1.02 � 0.0010T)Ka

(5) V1 cor � (1.06 � 0.0030T)V1

(6) Vf cor � � 2
Vf

Vi
(1 � TCF�) � 2TCF�

�Vf

(7) TCF� � 2.04 � 0.347 ln(T)

where Ka cor, V1 cor, and Vf cor are the corrected parameters corre-
sponding to a reference temperature (in this study, 20 °C); T is the
temperature at the time of the measurement (°C); Vi is the input
voltage as shown in Fig. 1; and TCF� is the temperature correction
factor for bulk electrical conductivity (Jung et al. 2013b).

Monitoring program
The soil field monitoring started in November 2015 and lasted

approximately 20 months. Measurements were taken from the
buried sensors at 4 h intervals, except during saturation tests
when the rate of sampling was increased to every hour. The
ground was saturated during three controlled saturation experi-
ments conducted in 2016 during different seasons. Further details
of the experiments are shown in Table 3. The site was manually
dug at the end of the monitoring period in June 2017 and undis-
turbed soil samples were taken using cylinders of volume be-
tween 400 and 500 cm3 in proximity of selected TDR probes for

Table 1. Characterization parameters of the soil
studied.

Parameter Value

Soil type (BSI 2015) MH: clayey sandy silt
of high plasticity

Gravel (%w) 4
Sand (%w) 36
SILT (%w) 29
Clay (%w) 31
Plastic limit (%) 37
Liquid limit (%) 65
Plasticity index (%) 26
Linear shrinkage (%) 13
Particle density (Mg/m3) 2.66

Curioni et al. 945
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Fig. 3. Details of field test site: (a) plan view and (b) cross section showing instrumentation layout. [Color online.]
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Fig. 4. Soil-specific laboratory calibration: (a) compaction curve; (b) step 1 of moisture–density soil-specific calibration; (c) step 2 of moisture–
density soil-specific calibration; (d) soil-specific and Topp et al. (1980) polynomials.
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Table 2. Soil-specific and Topp et al. (1980) calibration coefficients.

a1 b1 a2 b2 c2

Soil-specific moisture–density
calibration (eqs. (1) and (3))

1.5692 0.0767 0 0.1487 1.2005

y = a + bx + cx2 +dx3 a b c d

Soil-specific polynomial −7.6×10−2 2.75×10−2 −4.78×10−4 3.77×10−6

Topp et al. (1980) −5.3×10−2 2.92×10−2 −5.5×10−4 4.3×10−6

Table 3. Details of the controlled saturation experiments conducted
in this study.

Saturation test
Duration
(h)

Volume of
water (m3)

Mean flow
rate (L/min)

Pressure
(bar)

Leak1_Apr (2016) 25.75 5.20 3.366 1.5
Leak2_Jul (2016) 162.33 26.22 2.962 4
Leak3_Dec (2016) 121.50 18.69 2.564 4
Validation March (2018) 18.00 5.78 5.402 4

Note: 1 bar = 100 kPa.
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validation purposes. Additional undisturbed samples next to the
TDR probes were taken in March 2018 after running another
saturation experiment (Table 3) for validation during extreme
wetting conditions. It was decided to not excavate the soil for
intrusive sampling during the monitoring period to avoid disturb-
ing the equipment setup and to avoid changing the soil conditions
artificially; hence, compromising the test. Additional pore-water
pressure sensors were included (positive and negative), although
unfortunately the negative water potential probes failed to return
useful data.

Results and discussion

Long-term soil monitoring
Figure 5 shows the daily variation of soil parameters with depth

measured by TDR and temperature sensors during the entire
monitoring period for both measurement locations (i.e., control
and point leak, see Fig. 3). Daily rainfall data are also presented in
Fig. 5. Using eqs. (1) and (3), the TDR parameters extracted during
waveform analysis were converted to soil �d and w. The TDR read-
ings showed an initial step change after a few weeks from instal-
lation, following the first significant rainfall events occurring in
early January 2016. This change indicates soil particle rearrange-
ment and the establishment of good contact between the soil and
TDR probes. It is known that the presence of large air gaps next to
the rods relative to the rod diameter and spacing can affect the
reliability of the results (Ferré et al. 1996; Knight et al. 1997) and
the establishment of a good contact is important to collect high-
quality data. In shrink–swell soils, the contact can be lost during
drying events. However, due to the absence of prolonged dry pe-
riods, coupled with the behavior of the clay in this soil, this was
not considered a problem in this study. Due to the calibration
being conducted on subsoil samples, the measurements were ex-
pected to be less reliable in the topsoil (i.e., <0.2 m) and this is
shown by the more erratic behavior of the probes buried at 0.10 m.
The three spikes in the measured w at the point leak location
correspond to the three saturation experiments conducted in
2016. The site was covered by a large tree canopy and therefore the
site was not expected to change drastically during single rainfall
events, and it is clear that the natural variation of the soil condi-
tions caused by rainfall was significantly smaller compared to the
variation induced by the leaks. The three saturation experiments
were of different sizes (see Table 3); however, even the smaller one
(i.e., leak1_Apr) induced significant changes in the surrounding
soil. The presence of a large tree canopy limited the site exposure
to direct sunlight and the absence of a prolonged dry period dur-
ing the monitoring time is believed to be the reason why w did not
reduce drastically during the summer of 2016. This is not unusual
in the UK and past climatic records from nearby weather stations
(e.g., Yeovilton, Met Office 2018) confirm that on average, daily air
temperatures are rarely higher than 20 °C during the summer and
rainfall is relatively evenly distributed throughout the year.

Two important considerations for the TDR method used in this
study can be discerned from Fig. 5. As a result of the soil-specific
calibration, the TDR probes at the control location (i.e., not influ-
enced by the saturation experiments) measured a slight increase
in �d over time. Although an independent assessment of the rising
values of �d was not carried out, this result is promising because
the trench backfill would be expected to settle naturally with time
and demonstrates the high sensitivity of the TDR technique. TDR
measurements are not expected to drift over time, and consider-
ing that the trend was measured by multiple probes it seems
plausible that this is an indication of soil settlement and densifi-
cation over time. Final validation (see section titled “Final sam-
pling validation”) showed relatively good agreement between the
�d measured physically by intrusive sampling and by TDR under
unsaturated conditions.

In addition, following temperature correction (Jung et al. 2013b),
the method was insensitive to the temperature variations experi-
enced on site. This is an important result because TDR is an EM
technique and the EM parameters are known to depend on tem-
perature, particularly electrical conductivity (Rinaldi and Cuestas
2002; Persson and Berndtsson 1998; Yu and Drnevich 2004; Jung
et al. 2013b).

Figure 5 confirms the ability of TDR to measure both trends and
abrupt changes over time. The rapid decrease in �d shown in Fig. 5
during the saturation experiments is believed to be unrealistic as
the soil was not expected to exhibit large swelling over such a
short time and only indicates that the ground went through a
rapid and important change. However, following the saturation
experiments the soil returned to equilibrium and the TDR derived
�d at both the control and leak locations became more similar
(Fig. 5). It is worth mentioning that the TDR method for measuring
�d used in this paper has been shown to be accurate to within 5%
from laboratory tests (Curioni et al. 2018) and, as it will be dis-
cussed later, to within 10% from field tests under unsaturated
conditions (this study). This translates to an expected error of up
to approximately 0.1–0.15 Mg/m3. Therefore, the differences mea-
sured between the control and point leak locations are typically
within this range.

TDR response at saturation
The results of the three saturation experiments conducted dur-

ing different seasons in 2016 are shown in Fig. 6. For simplicity,
only the results from the vertical array of probes located close-by
the point leak are shown. The absence of spikes in w correspond-
ing to the probes installed at the control location (Fig. 5) demon-
strates that the injected water did not reach this location by
flowing along the pipe or the trench, which in itself is an interest-
ing result as this would be a natural flow path due to the disturbed
nature of the soil compared to the unaffected soil outside the
trench (this finding was independently confirmed with ERT sur-
veys on a separate trench). The first saturation test was smaller
compared to the others, as shown in Table 3. No attempts were
made to remove occasional outliers; however, as some of the TDR
probes recorded values of �d below 1 Mg/m3, a lower boundary of
1 Mg/m3 was applied to the data because shallow mineral soils,
certainly in the UK, are expected to have densities greater than
1 Mg/m3. As explained earlier, this might not be the case in other
soils and conditions and constraining density may not always be
appropriate. The fact that some values went below this threshold
is an indication that the TDR measurements at saturation were
not particularly accurate. This is probably due to the different
domain used to develop the soil-specific calibration, which did
not cover the near-saturation range (due to the impracticality of
conducting a standard compaction test at near-saturation condi-
tions) and it indicates that eqs. (1) and (3) may not cope well at
extreme wetting conditions. However, a sudden large change in
both �d and w was measured by the TDR sensors as soon as the
saturation tests were started (note that the rate of sampling was
increased to one full set of measurements from all the probes per
hour), confirming that TDR was able to detect the rapid and
abrupt change occurring in the system. It is worth stressing that
the ability to detect significant changes is of utmost importance
for applications such as asset health monitoring.

The sudden ingress of water caused the soil immediately sur-
rounding the pipe to approach saturation and experience small
localized expansion for the duration of the tests, allowing the
water to fill the pores and causing �d to decrease slightly. The
slight decrease of �d was confirmed with intrusive sampling con-
ducted immediately after stopping a saturation test (see section
titled “Final sampling validation”). Due to the presence of geotex-
tile on the pipe, the water in the soil was not expected to reach
high positive pressures. This was independently confirmed by the
measurements of positive pore-water pressure sensors located
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near the leak, which measured negligible positive pressures
smaller than 2 kPa during the saturation experiments. In addi-
tion, final validation sampling brought no evidence of voids
around the leak.

Following the saturation experiments, the values of �d re-
mained lower than before (also compared to the control point, see
Fig. 5) and increased slowly over time in a matter of weeks. This

increase might indicate particle rearrangement and densification
following softening caused by the saturation experiments. How-
ever, from the measured data and considering the aggregation
ratio of the clay, coupled with the large volume of water exiting
the pipe, it is suggested that the soil on site was behaving more
akin to a cohesionless soil than a fine-grained, high-plasticity, low
hydraulic conductivity material that the classification might sug-

Fig. 5. Daily variation of w, �d, and temperature with depth (note that leaking pipe was buried at 0.70 m depth), and daily rainfall measured
during entire monitoring period and for both measurement locations. [Color online.]

control point leak

1.0

1.2

1.4

1.6

� d
by

T
D

R
�M

g
m

3 �

Depth (m)
0.10
0.35
0.60
0.80
1.00
1.20

leak1_Apr

leak2_Jul leak3_Dec

0

20

40

60

w
by

T
D

R
� %
�

5

10

15

T
em

pe
ra

tu
re
�°

C
�

Feb16 Jun16 Oct16 Feb17 Jun17 Feb16 Jun16 Oct16 Feb17 Jun17
0

10

20

30

40

R
ai

nf
al

l �
m

m
�

948 Can. Geotech. J. Vol. 56, 2019

Published by NRC Research Press

C
an

. G
eo

te
ch

. J
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.n
rc

re
se

ar
ch

pr
es

s.
co

m
 b

y 
19

2.
17

1.
18

8.
42

 o
n 

08
/2

2/
19

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 



gest. The values of w during the saturation tests reached, and then
stabilized, peak values, indicating that the soil reached a steady-
state equilibrium at saturation (note that the data collection was
briefly stopped a few hours after the end of the first saturation test
and an additional 40 L of water was introduced into the soil as part
of a separate experiment not discussed here). As mentioned
above, the soil-specific calibration (eqs. (1) and (3)) was developed
on samples at a lower range of water contents and therefore the
absolute values of w measured by TDR at near saturation were less
reliable (see section titled “Final sampling validation”). However,
it is important to stress that the absolute values are less important
for the detection of extreme conditions (e.g., when approaching
saturation) and that it is sufficient to detect significant changes
compared to prior conditions (or compared to an expected range
of values) to indicate potential problems. TDR was clearly able to
detect the sudden significant changes induced by an extreme
event (in this case the ingress of water from a leaking pipe), and
this result validates the proposed approach of using TDR for mon-
itoring geotechnical assets.

Figure 6 also shows the change in soil temperature during these
experiments. The magnitude of change varied and was between
approximately 2 and 6 °C. The change was due to the temperature
difference between the water in the pipe and the soil. In April and
July the temperature of the water was higher and caused the soil
temperature to increase; in December the opposite was observed.
It was also found that the temperature was sensitive to changes
in flow rate. During the second saturation experiment (i.e.,
leak2_Jul), a second step change in temperature was recorded
when the flow rate was manually increased towards the end of the
experiment. Despite these changes, the measurements of w and �d
by TDR remained largely insensitive to the temperature variation.

The measurements of w from all the TDR probes installed in a
star configuration around the pipe at the point leak location (see
Fig. 3) corresponding to the end of the three saturation experi-
ments are shown in Fig. 7. The measurements demonstrate the
TDR ability to provide both spatial and temporal information on
the soil conditions. During the different saturation experiments
the water followed different flow paths and went predominately

Fig. 6. Variation of w, �d, and temperature with depth during controlled saturation experiments. [Color online.]
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downwards and to a slightly lesser extent to the sides without
reaching the surface. This is evidenced by the smaller magnitude
of w with increasing lateral distance from the pipe, suggesting
that the largest changes were restricted to the region immediately
close to the pipe. None of the 12 probes installed in a star config-
uration around the pipe at the control location measured an in-
crease in w for the duration of the saturation experiments,
confirming that the water did not flow preferentially along the
trench. Figure 7 also shows that the water content levels reached
at the end of each experiment were not constant (i.e., values at
negative times in Fig. 7 before the leak was closed) and that the
dissipation of water after stopping the leaks was dependent upon
these levels. Typically, a sharp drop in w and subsequent levelling
of the values was measured within the first 5 h after stopping the
inflow of water. Subsequently, pre-leak levels were reached sev-
eral days later (see Fig. 5). The nature of the soil studied potentially
explains the comparatively high draining behavior immediately
after stopping the water ingress. As described earlier in the sec-
tion titled “Site characterization”, the soil originated from weath-
ered Mercia Mudstone and consisted of a mix of clay minerals in
similar proportions with particles of sand and silt size. Direct
analysis (XRD and particle-size distribution) and previous studies

(Hobbs et al. 2002) suggest that the clay minerals formed larger
aggregates and therefore the soil did not behave as might be
expected from the high plasticity of the soil.

Final sampling validation
At the end of the monitoring period (approximately 20 months)

undisturbed soil samples were taken using cylinders of known
volume to validate the TDR measurements (note that the results
from the second trench, trench2, are also reported here; see pre-
vious section titled “Field setup”). Additional validation samples
were also taken 9 months later at the point leak location on
trench1 at or close to saturation. Tables 4 and 5 show the compar-
ison between the reference w and �d obtained by direct measure-
ment of the sample volumes and masses and the values measured
by TDR. Note that because the excavations were conducted man-
ually to minimize disruption, the samples were only taken at or in
the proximity of a selection of the TDR probes. Table 4 demon-
strates the relatively good accuracy achieved by TDR under unsat-
urated conditions, with mean absolute errors of approximately
2.5% and 0.09 Mg/m3 (≈7%) for w and �d, respectively. These mean
errors were calculated including the samples taken in the topsoil,
which showed higher errors up to approximately 7% for w and 17%

Fig. 7. Spatial and temporal variation of w around pipe at point leak location (see Fig. 3) corresponding to end of three saturation
experiments. [Color online.]
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for �d, but this was expected given that the soil-specific calibration
was conducted on subsoil samples only. For completeness, Table 4
also shows the percentage error for both w and �d. These values
can be useful for comparison exercises, but can be misleading.
The absolute errors are more meaningful because they give a
direct idea of the expected accuracy in the measurements. For
example, a percentage error for w of over 10% seems unsatisfac-
tory, but the corresponding absolute values are within approxi-
mately 3% water content, which is often within the accuracy range
of soil moisture sensors.

These results are very promising because they demonstrate that
the TDR sensors remained relatively accurate after a significant
period of time and even after the soil had been subjected to im-
portant changes, in this case three wetting cycles. This is impor-
tant and it indicates that TDR sensors can be relied upon even
after the soil reaches saturation and therefore, potentially, after
applying mitigation measures.

However, during severe wetting the absolute values measured
by TDR were less reliable. A number of samples were taken fol-
lowing a final saturation test (for details see Table 3), some taken
immediately after stopping the leak (“saturated” in Table 5) and
some taken in close proximity 6 h later (“partially saturated” in
Table 5). Some of the variation shown is due to soil heterogeneity
and to preferential water movement; however, it is evident that
TDR generally underestimated �d and considerably overestimated
w, with average errors of 0.21 Mg/m3 for �d and, remarkably, of
over 10% for w (with some errors greater than 20%). It is impossible
to know if these errors were similar during the saturation tests
conducted prior to the first disturbance caused by the first intru-
sive sampling. However, given the very large w (sometimes greater
than LL) measured by TDR during the previous saturation experi-
ments, and given that some probes measured a sharp and un-

realistic drop in �d (Figs. 5 and 6), it is probable that the TDR
measurements were also less accurate in these cases. As men-
tioned above, this is likely due to the fact that the calibration was
conducted at lower water contents and perhaps eqs. (1) and (3)
simply could not cope at extreme wetting conditions following
the sudden changes induced by the leaks. However, these impor-
tant changes were more clearly highlighted due to the magnified
measurements by TDR and can effectively be exploited for relative
health monitoring of geotechnical assets.

Early warnings from TDR
Results presented in the previous sections demonstrate the abil-

ity of TDR to measure both w and �d over a relatively long time
period with relatively good accuracy under unsaturated condi-
tions. These two soil parameters provide the opportunity of cal-
culating a wide range of soil properties using a single technique,
including, e.g., the Sr, porosity, and air content (BSI 1999b). These
properties are linked to the strength of the soil (particularly the
soil saturation level) and provide an indication of the soil stability.
In the case of geotechnical assets, such as earth dams, embank-
ments, cuttings, levees, and slopes, it is proposed that TDR be
included as part of a monitoring system that sends early warnings
based on specific thresholds of the measured soil parameters.
Depending on the soil values with respect to pre-defined thresh-
olds (absolute and (or) based on relative change), the system could
be used to prompt inspections or interventions. Considering the
results from this study and the suboptimal accuracy achieved by
TDR under extreme wetting conditions, it is recommended that
the system should not rely solely on absolute values.

Although TDR can be used for quantitative monitoring if the
soil in the field is within the range tested during calibration, the
absolute values are less important when approaching extreme

Table 4. Validation of the TDR measurements at the end of the monitoring period (June 2017) under unsaturated conditions.

Position
Depth
(m)

�d by TDR
(Mg/m3)

w by
TDR (%)

Reference �d

(Mg/m3)
Reference
w (%)

Error �d

(Mg/m3)* or w (%)*

Control (topsoil) 0.10 1.12 33.93 1.36 26.11 −0.24 [17.6] 7.82 [30.0]
Control (subsoil) 0.35 1.18 25.27 1.40 21.85 −0.22 [15.7] 3.42 [15.7]

0.60 1.21 26.52 1.34 23.26 −0.13 [9.7] 3.26 [14.0]
0.70 1.23 24.70 1.31 22.07 −0.08 [6.1] 2.63 [11.9]

Point leak (topsoil) 0.10 1.12 23.00 1.18 22.52 −0.06 [5.1] 0.48 [2.1]
Point leak (subsoil) 0.35 1.31 17.07 1.27 17.63 0.04 [3.1] −0.56 [3.2]

0.60 1.32 19.75 1.31 22.52 0.01 [0.8] −2.77 [12.3]
0.70 1.20 25.92 1.23 21.87 −0.03 [2.4] 4.05 [18.5]

Trench2 0.35 1.19 29.11 1.10 30.06 0.09 [8.2] −0.95 [3.2]
0.60 1.23 29.03 1.12 30.26 0.11 [9.8] −1.23 [4.1]
0.80 1.23 27.55 1.22 27.80 0.01 [0.8] −0.25 [0.9]

Mean absolute error 0.09 [7.2] 2.49 [10.5]

*Values in square brackets are % error.

Table 5. Additional validation of the TDR measurements (March 2018) at partially saturated and saturated conditions; position is
“point leak” in all cases presented.

Saturation
Depth
(m)

�d by TDR
(Mg/m3)

w by
TDR (%)

Reference �d

(Mg/m3)
Reference
w (%)

Error �d

(Mg/m3)* Error w (%)*

Partially saturated 0.70 1.00 55.47 1.31 37.05 −0.31 [23.7] 18.42 [49.7]
1.12 24.67 1.19 40.37 −0.07 [5.9] −15.70 [38.9]
1.00 56.96 1.26 46.45 −0.26 [20.6] 10.51 [22.6]

58.33 1.33 35.49 −0.33 [24.8] 22.84 [64.4]
52.51 1.28 38.71 −0.28 [21.9] 13.80 [35.6]

Saturated 0.70 1.00 57.87 1.26 46.45 −0.26 [20.6] 11.42 [24.6]
58.11 1.31 37.05 −0.31 [23.7] 21.06 [56.8]
56.13 1.02 50.73 −0.02 [2.0] 5.40 [10.6]
59.62 1.13 45.81 −0.13 [11.5] 13.81 [30.1]
67.86 1.12 52.04 −0.12 [10.7] 15.82 [30.4]
58.96 1.21 45.13 −0.21 [17.4] 13.83 [30.6]

Mean absolute error 0.21 [16.6] 14.78 [35.9]

*Values in square brackets are % error.

Curioni et al. 951

Published by NRC Research Press

C
an

. G
eo

te
ch

. J
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.n
rc

re
se

ar
ch

pr
es

s.
co

m
 b

y 
19

2.
17

1.
18

8.
42

 o
n 

08
/2

2/
19

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 



conditions. In order for a flag system approach to work, it would
be sufficient for it to detect changes with respect to previous
conditions or an expected range of values. The choice of thresh-
olds for the warnings and interventions are user-defined and need
careful consideration depending on the project. Practically, these
thresholds and their interpretation would have to be defined by

an expert on a case-by-case basis and should account for the effec-
tive management of false alarms (e.g., manage the risks and costs
associated with temporary service interruption of the asset). For
the soil studied, absolute thresholds indicating potential prob-
lems could, e.g., be set based on �d being equal (or lower, in case a
threshold is not applied) to 1 Mg/m3. As mentioned before, the soil

Fig. 8. Soil (a) �d and (b) Sr measured by TDR probes averaged according to oil layer in which they were installed (i.e., topsoil and subsoil), and
(c) relative change of Sr expressed by its first derivative. Examples of warnings are shown based on the values of �d and the large and abrupt
relative change of Sr. [Color online.]
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was not expected to have densities lower than 1 Mg/m3 (this was
confirmed during validation tests). During the saturation experi-
ments, TDR measured values ≤1 Mg/m3 clearly indicating unusual
and potentially problematic soil conditions. Due to the large TDR
errors under extreme wetting conditions (see Table 5), it would be
unwise to set warning thresholds based on the absolute values of
w or on other parameters calculated using �d and w, e.g., Sr. How-
ever, large relative change can still be used to indicate potential
problems. Figure 8 shows an example of warnings set based on the
lower and unrealistic �d values measured by TDR close to satura-
tion (Fig. 8a) and based on the large and sudden change of Sr
(expressed by its first derivative, Fig. 8c), which can be identified
visually by applying a specific threshold or by using change detec-
tion algorithms (e.g., Sadeghioon et al. 2018; change detection
algorithms are not discussed here as they are out of the scope of
this paper). The absolute values of Sr (Fig. 8b) should not be trusted
when approaching large values; however, they can still facilitate
interpretation by an expert, e.g., in the decision of what consti-
tutes a problematic change. Note that for simplicity and to reduce
uncertainty, the measurements from multiple TDR probes were
combined in Fig. 8 depending on the soil layer in which they were
installed (i.e., topsoil and subsoil).

Traditionally, TDR has been used to measure � instead of w. �
could also be used to provide early warnings but, if thresholds are
based on absolute values, this requires knowledge of the satu-
rated � to indicate approaching saturation conditions. However,
the soil saturated � is not easily defined or measured, particularly
in expansive soils and, for the soil studied, � would suffer from the
same doubtful accuracy at extreme wetting conditions. The ad-
vantage of using w and �d instead of � is that warning thresholds
can be defined on multiple parameters and that, under unsatu-
rated conditions, these parameters provide a more complete pic-
ture of the soil conditions, e.g., by estimating Sr, porosity, and air
content. Figure 9 shows the values of � measured for the probes at
the point leak location at different depths. The values were calcu-
lated using different calibration equations, i.e., Topp et al. (1980)
polynomial, third-order soil-specific polynomial and soil-specific
moisture–density calibration (Table 2). The three different models
measured very similar trends although the absolute values typi-
cally varied by up to approximately 5%. These results indicate that
the Topp et al. (1980) model provided comparable estimations of �

to the soil-specific polynomial developed for the soil studied. No-
tably, the soil-specific calibration using eqs. (1) and (3) produced
higher peak values during the saturation tests due to an underes-
timation of �d. The use of separate models would provide better
confidence in the measurements and would further support the
interpretation of potentially problematic conditions by an expert.

To fully exploit the potential of using TDR for soil condition
monitoring, it is suggested to combine the TDR technique with
other shallow geophysical techniques. An obvious choice is ERT,
which is suitable for permanent installations and can be used to
map water movement over much larger volumes of soil typically
of the order of tens or hundreds of cubic metres (Chambers et al.
2014; Gunn et al. 2015) compared to TDR probes that measure a
volume of approximately 0.001 m3, depending on the dimension
of the probe (Robinson et al. 2003). The TDR measurements at
point locations could be used to calibrate or facilitate the inter-
pretation of ERT results. TDR could also be used to inform other
shallow geophysical techniques such as GPR and MASW.

Conclusions
Monitoring changes in ground properties is important in the

analysis of stability of geotechnical assets and to monitor long-
term deterioration processes. This study presented a novel appli-
cation based on TDR technology for long-term monitoring of
geotechnical assets, by monitoring relative change in soil gravi-
metric water content and density, key parameters that affect
ground stability and its ability to support infrastructure. TDR sen-
sors were buried in a clayey sandy silt that was exposed to water
leaking from a pipe during controlled saturation experiments and
the changes in the soil properties were measured under saturated
and unsaturated conditions. Following soil-specific calibration,
TDR sensors were able to provide detailed information on the
temporal trends, but also on the magnitude of changes in the soil
under unsaturated conditions with relatively good accuracy (i.e.,
typical errors <3% for gravimetric water content and <10% for dry
density) after a 20 month period during which the soil had been
subjected to significant changes. It was found that the accuracy
decreased significantly during extreme wetting conditions. How-
ever, TDR was still clearly capable of detecting temporal changes.

Fig. 9. Daily variation of � with depth calculated with different models for TDR probes located at point leak location. [Color online.]
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It is proposed that TDR can be used for long-term condition
monitoring of critical geotechnical assets (e.g., earth dams, em-
bankments, levees) and for providing early warnings based on
thresholds of parameters measured directly by TDR or on the
detection of significant or unexpected change in the measure-
ments. The proposed system would allow asset owners the oppor-
tunity to take action prior to failure of the asset by prompting
inspections or interventions.

TDR could be used alone or in combination with other shallow
geophysical techniques (e.g., ERT, MASW, GPR) so that larger vol-
umes of soil could be mapped and monitored. Such an approach
could be a real benefit to asset managers.
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