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Abstract: Global change drivers (GCDs) are expected to alter community structure and 137 

consequently the services ecosystems provide. Yet few experimental investigations have 138 

examined effects of GCDs on plant community structure across multiple ecosystem types, and 139 

those that do exist present conflicting patterns. In an unprecedented global synthesis of over 100 140 

experiments that manipulated factors linked to GCDs, we show that herbaceous plant community 141 

responses depend on experimental manipulation length and number of factors manipulated. We 142 

found that plant communities are fairly resistant to experimentally manipulated GCDs in the 143 

short-term (<10 years). In contrast, long-term (≥10 year) experiments show increasing 144 

community divergence of treatments from control conditions. Surprisingly, these community 145 

responses occurred with similar frequency across GCD types manipulated in our database. 146 

However, community responses were more common when three or more GCDs were 147 

simultaneously manipulated, suggesting the emergence of additive or synergistic effects of 148 

multiple drivers, particularly over long-time periods. In half of the cases, GCD manipulations 149 

caused a difference in community composition without a corresponding species richness 150 

difference, indicating that species reordering or replacement is an important mechanism of 151 

community responses to GCDs and should be given greater consideration when examining 152 

consequences of GCDs for the biodiversity-ecosystem function relationship. Human activities 153 

are currently driving unparalleled global changes worldwide. Our analyses provide the most 154 

comprehensive evidence to-date that these human activities may have widespread impacts on 155 

plant community composition globally, which will increase in frequency over time and be 156 

greater in areas where communities face multiple GCDs simultaneously. 157 

 158 

Keywords: community composition, global change experiments, herbaceous plants, species 159 
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richness 160 

 161 

Significance Statement: Accurate prediction of community responses to global change drivers 162 

(GCDs) is critical, given the effects of biodiversity on ecosystem services. There is consensus 163 

that human activities are driving species extinctions at the global scale, but debate remains over 164 

whether GCDs are systematically altering local communities worldwide. Across 105 165 

experiments that included over 400 experimental manipulations, we found evidence for a lagged 166 

response of herbaceous plant communities to GCDs, caused by shifts in the identities and 167 

relative abundances of species often without a corresponding difference in species richness. 168 

These results provide evidence that community responses are pervasive across a wide variety of 169 

GCDs on long-term temporal scales, and that these responses increase in strength when multiple 170 

GCDs are simultaneously imposed.  171 
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/body 172 

Main Text: 173 

Human activities are driving unprecedented changes in many factors that may affect the 174 

composition and functioning of plant communities. Determining the factors that cause alterations in 175 

plant community structure is critical, as important ecosystem functions and services are influenced 176 

by plant community composition (1, 2). Changes in resource availability (e.g., atmospheric carbon 177 

dioxide (CO2), nitrogen (N), precipitation patterns) may have large consequences for plant 178 

community structure worldwide (3). Yet our ability to interpret and predict plant community 179 

responses to global change is complicated by many factors, such as the type of global change 180 

driver (GCD) and the environmental context. Observational and experimental evidence has 181 

demonstrated disparate and seemingly conflicting patterns of species richness responses to 182 

environmental change across a variety of independent studies, meta-analyses, and large data 183 

syntheses (4–11). As such, there is continued debate over whether local-scale biodiversity loss is 184 

a worldwide trend (12–14). Moreover, recent studies (15, 16) advocate the use of multivariate 185 

metrics (e.g., Bray-Curtis dissimilarity) that account not only for changes in species number, but 186 

also species identities and relative abundances to provide a more comprehensive picture of 187 

composition responses to GCDs. 188 

Both biotic (e.g., shifts in competitive dominance or susceptibility to herbivores) and 189 

abiotic (e.g., environmental filtering) processes (17–19) have been invoked to explain how 190 

GCDs affect plant community richness and composition at local scales, and it seems reasonable 191 

to expect that plant community responses will vary across a broad array of GCDs (2, 15). 192 

Resource additions (e.g., nutrient additions) are predicted to reduce plant species richness and 193 

alter plant community composition due to changes in competitive interactions among species for 194 

the remaining limiting resources (e.g., water or light) (7, 8, 20). In contrast, increased 195 
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environmental stress may have varying effects on plant community composition by either 196 

shifting or increasing niche availability. For example, repeated removal of plant material through 197 

haying (a common land use change in many herbaceous systems) may increase species richness 198 

by increasing light availability and favoring species that can tolerate removal of aboveground 199 

material. In contrast, increased drought or temperature stress may decrease plant species richness 200 

as many species may not be able to persist under these novel conditions (7, 21). In addition to the 201 

type of driver manipulated, the number of simultaneously imposed GCDs may also impact 202 

community responses. Previous studies have shown that plant community responses may be 203 

greater under multiple simultaneously imposed GCDs (22–24). In contrast, both empirical and 204 

theoretical evidence suggests that ecosystem function responses have been shown to dampen 205 

with increasing numbers of simultaneously imposed GCDs (25, 26), due to a canceling out of 206 

positive and negative effects on functions such as productivity and nutrient cycling. Based on 207 

these conflicting results, determining a generalizable pattern of the effects of multiple GCDs on 208 

community responses is needed. 209 

Here we examined results from 105 experiments conducted in grasslands around the 210 

world that together provide data on over 400 experimental manipulations of GCDs to determine 211 

whether we could identify general community response patterns across different types of 212 

manipulations, the magnitude of the manipulations imposed, or the attributes of the ecosystems 213 

where the experiments were conducted. In contrast to prior analyses, which have examined 214 

patterns of community change based on observational data (5, 16, 27), we focused on 215 

experiments because they provide an important baseline (control plots) that is critical for the 216 

accurate assessment of community responses to GCDs by separating stochastic community shifts 217 

from global change effects. By identifying generalities where they exist across complex 218 
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community patterns, we can make tangible progress toward prediction of future community 219 

responses to GCDs occurring worldwide, which is needed to develop strategies for maintaining 220 

the communities upon which many ecosystem services rely. 221 

We used hierarchical Bayesian modeling to examine how herbaceous plant communities 222 

responded to global change manipulations in 438 experimental treatments, encompassed within 223 

105 experiments at 52 sites around the world using the Community Responses to Resource 224 

Experiments [CoRRE] database (https://corredata.weebly.com/; see SI Appendix 2). The CoRRE 225 

database was assembled from plant species composition data collected by hundreds of 226 

researchers in field experiments across all continents except Antarctica, and includes 285,019 227 

species occurrence records of 2843 species from 26,788 time points in experiments ranging in 228 

duration from 3 to 31 years (Table 1; see SI Appendix 3). Global change treatments included 229 

resource additions and removals (e.g., nutrient additions, increased atmospheric CO2, irrigation, 230 

drought), as well as non-resource manipulations (e.g., increased temperature, burning, mowing, 231 

herbivore removals), and were designed to simulate predicted future global change scenarios in 232 

different areas of the globe. We measured plant community responses in treatments relative to 233 

controls using two commonly used metrics of community difference: (1) ln Response Ratios 234 

(lnRR) of plant species richness (i.e., species number without regard to identity) and (2) species 235 

composition responses in multivariate space using Bray-Curtis dissimilarities (encompassing 236 

shifts in plant species identities and their relative abundances). We also briefly present results 237 

from two additional richness metrics: percent difference of plant species richness from control to 238 

treatment plots and lnRR of effective species number (e
H
). Because these two metrics show 239 

qualitatively identical results to lnRR of richness, we focus on lnRR of richness here for most 240 

analyses. For all metrics, we investigated the temporal nature of the observed differences over 241 

https://corredata.weebly.com/
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the length of each experiment, as well as whether these effects varied based on the site-level 242 

(gamma) diversity or productivity of each experiment. 243 

In experiments less than 10 years in duration, we found that plant communities are 244 

relatively resistant to global change manipulations, with 79.5% and 77.0% of treatments showing 245 

no richness or composition response, respectively (Table 2; Fig. 1a,f). In contrast in long-term 246 

(≥10 years) experiments, fewer manipulations (50%) showed no difference in species richness 247 

(Table 2). Importantly, 70.7% of long-term manipulations exhibited composition responses 248 

(Table 2) and some communities experienced almost complete turnover after one to two decades 249 

(composition responses close to 1.0; Fig. 1). The increased prevalence of community responses 250 

in long-term experiments highlights the need for long-term data collection to better identify 251 

community responses to GCDs. In approximately half of the cases (54.5%) where experimental 252 

manipulations caused a composition shift through time, it occurred without a corresponding 253 

richness response. Consequently, the multivariate plant community composition responses 254 

observed here often reflect differences in species evenness, reordering of species ranks based on 255 

relative abundances, or species replacement (turnover) (15). Future consideration of these 256 

detailed community responses is warranted to (1) examine the temporal hierarchy of the response 257 

(i.e., is there an ordering to differences in evenness, reordering of species ranks, and turnover) 258 

(2), and (2) move beyond using only richness differences as a metric of biodiversity (16). 259 

Studying these detailed community shifts will provide important insight into how alterations in 260 

ecosystem function with GCDs relate to compositional aspects of biodiversity. 261 

When considering all manipulations regardless of experiment length, we find that the 262 

community responses to global change manipulations varied in both direction and magnitude 263 

(Fig. 1). When richness responded to experimental manipulations (22.3% of all manipulations), it 264 
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generally declined either linearly or asymptotically (Table 2; Fig. 1). Similarly, when 265 

composition responded to experimental manipulations (35.6% of all manipulations), it generally 266 

increased in dissimilarity from control plots (Table 2; Fig. 1). Interestingly, in a small subset of 267 

the cases studied here (10.5% of richness and 10.1% of composition responses), community 268 

responses to global change manipulations were parabolic, with the minimum or maximum of the 269 

curve occurring within the study period, suggesting that the community responses in these sites 270 

dampen over time (Table 2; Fig. 1). These parabolic trends were more often detected in the long-271 

term experiments and treatments that manipulated two or more factors. For richness responses, 272 

these parabolic trends were nearly equally split amongst those that were concave down, 273 

indicative of initial richness losses that later recovered due to immigration of new species or 274 

recovery of previously lost species, and those that were concave up, indicative of initial richness 275 

gains that later declined. In contrast, the parabolic trends in composition response were nearly all 276 

concave up, demonstrating an initial divergence of treatment and control plots, followed by 277 

convergence. The few cases of long-term convergence between treatment and control plots 278 

stemmed from a shift in control plots towards the altered state exhibited in the treatments (see SI 279 

Appendix 5). Overall, these parabolic trends caused by a shift in communities in control plots 280 

suggests that human activities may currently be impacting the environment at a scale beyond the 281 

scope of some experimental treatments, as has previously been demonstrated in global 282 

observational data syntheses (5, 8, 25). 283 

Across sites, we found that productivity was positively related to richness increases in 284 

response to global change manipulations, while gamma diversity (site-level species number) had 285 

no effect on the direction or magnitude of the richness or composition responses (see SI 286 

Appendix 4). Hence, high productivity ecosystems appear more responsive to GCDs, possibly 287 
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due to the greater availability of resources and therefore niche space in such systems (28), or the 288 

greater ability of species in these systems to respond to GCDs due to higher growth rates in 289 

productive herbaceous systems (29). The greater community responsiveness at high productivity 290 

sites may contribute to the maintenance of ecosystem function, as species with traits adapted to 291 

the novel environmental conditions presented by global change scenarios increase in abundance 292 

in these communities (30). However, higher abundances of species that are not functionally 293 

similar to the existing community (2, 3, 5) would likely result in altered ecosystem function. 294 

Declines in species richness are often attributed to decreased niche dimensionality with 295 

alleviation of resource limitations (17) or increased environmental filtering (19), while richness 296 

increases may be due to invasions or increased environmental heterogeneity (31). We did 297 

observe richness differences in a few cases that may be attributable to these mechanisms. For 298 

example, multiple resource additions may decrease niche dimensionality, leading to dominance 299 

of a few competitive species and therefore richness declines (20). In contrast, multiple resource 300 

additions can shift an ecosystem’s stoichiometry to alter the relative availability of the most 301 

limiting resource, and thus competitive interactions, thereby reducing species loss (32). Further, 302 

resource additions may increase species invasions by relaxing environmental filters (33), again 303 

reducing species loss. Nevertheless, in the majority of cases we found that global change 304 

treatments altered community composition with no corresponding richness responses. These 305 

results highlight the fact that, by not accounting for species identity species, richness does not 306 

entirely capture community responses to GCDs (16). Indeed, species richness can stay constant 307 

even with complete turnover in the identities of species within a community. Therefore, 308 

multivariate metrics of species abundances are needed to assess complex community responses 309 

to GCDs (15). 310 
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Interestingly, we did not find differences in richness or composition responses based on 311 

the type of global change driver applied (Table 3). Our results differ from previous meta-312 

analyses that show stronger richness losses with N additions than other GCDs (7). However, we 313 

did find that global change manipulations that simultaneously manipulated three or more GCDs 314 

were significantly more likely to show richness and composition responses than treatments that 315 

only manipulated one or two GCDs (Table 3; Fig. 3). These results are consistent with previous 316 

studies examining community responses to GCDs (22–24), but contrast with trends observed for 317 

ecosystem function responses to multiple GCDs from two previous studies, which tend to show 318 

damped responses with increasing factors manipulated (25, 26). This difference highlights the 319 

need to examine how differences in community composition relate to altered ecosystem function 320 

(2, 15, 25). 321 

While on average the effects of N addition on plant communities were not stronger than 322 

other global change treatments, we did find that the absolute level of N added interacted with 323 

mean annual precipitation (MAP) to influence richness responses (Fig. 4; see SI Appendix 6). 324 

Specifically, richness declined with increasing N added at sites with low MAP, and increased 325 

with increasing N added at sites with high MAP (Fig. 4a; see SI Appendix 6). In contrast, the 326 

magnitude of rainfall manipulations did not affect the richness or composition responses (Fig. 4; 327 

see SI Appendix 6). These results conflict with previous analyses of richness responses to N 328 

deposition, which show a decline in richness with increasing precipitation and N deposition (34). 329 

This discrepancy may be due to the high magnitude of N added in some of our experiments, 330 

more akin to nutrient runoff from agricultural fields than atmospheric deposition. Together, these 331 

results point towards co-limitation of species richness across ecosystems (34, 35), and highlight 332 

the need to address potential threshold responses of community responses to resource 333 
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manipulations. 334 

Although this analysis includes the effects of a wide variety of global change 335 

manipulations on plant communities, many combinations of GCDs potentially important to 336 

global change were under-represented or missing from our analysis, reflective of their lack of 337 

study worldwide. These include combinations that are posited to have large impacts on the 338 

biosphere, such as the combined consequences of increased nutrient availability and altered 339 

precipitation patterns (36). Further, the geographic scope of global change experiments is 340 

primarily constrained to the northern hemisphere (see SI Appendix 3). Experiments that 341 

incorporate higher order interactions at sites worldwide are critical for accurately predicting how 342 

communities will respond globally to predicted GCDs (25). Despite these limitations, our results 343 

clearly demonstrate that changes in plant community composition may be expected across a wide 344 

range of GCDs over the coming decades. 345 

In conclusion, our comprehensive analysis finds that plant community structure is 346 

frequently altered by a broad array of GCDs, and that these effects are largely only detectable 347 

over long (≥10 year) time scales. These community responses occurred at similar frequencies 348 

across the wide variety of GCDs examined in this study, but were more prevalent when three or 349 

more GCDs were manipulated simultaneously, representative of real-world situations where one 350 

GCD rarely operates in isolation. In about half of the cases where compositional responses were 351 

observed, they occurred without corresponding differences in species richness, indicating that 352 

coexistence mechanisms may be maintained in the face of changing environmental conditions, or 353 

that competitive displacement is slower than the time scales of these experiments. Rather than 354 

species gains or losses, in many cases community responses appear to be due to the abundances 355 

of species tracking environmental conditions through reordering within the existing community 356 
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or colonization from a regional species pool. Determining the functional consequences of these 357 

broad-scale community responses to GCDs demands investigation into the identities and traits of 358 

species that are most responsive to global environmental change (2, 37).  359 
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Figure Legends 475 

Figure 1. Experimental global change manipulations drive temporal differences in plant 476 

community composition. Richness responses (a-e) are measured as the ln Response Ratio (lnRR) 477 

in richness between treatment and control plots within a year; positive values indicate net species 478 

gains in treatment plots relative to control plots, while negative values indicate net species losses. 479 

lnRR richness response has a lower bound of -1 and no upper bound. Composition responses (f-j) 480 

are measured as the Euclidean distance between centroids of control and treatment plots within a 481 

year in a PCoA based on a Bray-Curtis dissimilarity matrix; composition response is bounded by 482 

0 and 1. Responses are grouped among five possible shapes, indicated along the left-side of the 483 

panels. For all panels, lines correspond to models for 438 individual global change treatments 484 

responses across 105 experiments. For all lines, slopes and intercepts are plotted as zero when 485 

95% credible intervals (CI) of parameters include zero. Values in parentheses are percentages of 486 

studies exhibiting a particular response shape across all experiments (i.e., not considering 487 

experiment length). Percentage responses for short-term vs long-term experiments can be found 488 

in Table 2. 489 

 490 

Figure 2: Across all datasets, the proportion of significant temporal plant community responses 491 

(lnRR richness and composition differences) to global change treatments do not vary by the type 492 

of global change manipulation imposed. Single-factor global change manipulations are 493 

categorized into treatment types (CO2=increased atmospheric CO2; drought=reduced 494 

precipitation; irrigation=increased precipitation; precip. vari.=variation in precipitation timing, 495 

but not amount; nitrogen=nitrogen additions; phosphorus=phosphorous additions; 496 

temperature=increased temperature; mow=mowing aboveground biomass; herbivore 497 
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rem.=removal of above- and/or below-ground herbivores; plant manip.=one time manipulation 498 

of plant community through seed additions or diversity treatments at the start of the experiment). 499 

 500 

Figure 3: Across all datasets, the proportion of significant temporal plant community responses 501 

(lnRR richness and composition differences) to global change treatments vary by the number of 502 

treatments simultaneously imposed. Global change manipulations are categorized into treatment 503 

categories (R=single resource; N=single non-resource; R*R=two-way interactions with both 504 

treatments manipulating resources; N*N=two-way interactions with both treatments 505 

manipulating non-resources; R*N=two-way interactions with one resource and one non-resource 506 

manipulation; R*R*R=three or more way interactions with all treatments manipulating 507 

resources; and 3+=three or more way interactions with both resource and non-resource 508 

manipulations). Significant differences in the proportion of significant richness and composition 509 

responses among treatment categories are indicated by letters as determined by Fisher’s exact 510 

test for all pairwise combinations. 511 

 512 

Figure 4: Differences in (a-c) richness and (d-f) plant composition to the magnitude of (a, d) 513 

nitrogen (N) addition treatments, (b, e) drought manipulation treatments, and (c, f) irrigation 514 

manipulation experiments. Points represent treatment responses for each experiment at each site 515 

in the final year of treatment, and lines indicate Bayesian regressions between treatment 516 

magnitude and richness or composition responses where significant. Points and lines are colored 517 

by site-level mean annual precipitation (MAP) where the independent effect of MAP was 518 

significant, and lines are colored by MAP where the interactive effect between MAP and 519 

treatment magnitude was significant. 520 
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Table 1: Summary statistics of experiments (N=105) included in the data synthesis. See methods 1 

for variable descriptions. 2 

 3 

Variable  minimum mean maximum 

Experiment Length (# years)     3     8     31 

Number of Manipulations     1     2       5 

Gamma Diversity (# species)     3   31     79 

Aboveground Biomass (g m
-2 

yr
-1

)        1.5 349 1415 

MAP (mm) 183 714 1526 

MAT (°C) -12     8     22 

 4 
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Table 2: Summary of the response shape of the richness (lnRR Richness, % Diff Richness), 1 

effective species number (lnRR eH), and composition differences across 438 treatments included 2 

in the data synthesis. Shown are percentages (with numbers in parentheses) of responses falling 3 

into each of 9 shape categories, split by experiment length into those less than 10 year (N=322 4 

responses) and those greater than or equal to 10 years (N=116 responses) in length. Note that 5 

these percentages differ from Figure 1, which presents percentages of each response shape across 6 

all experiments regardless of length. See methods for response variable descriptions. 7 

 8 

 

Response Shape 

lnRR 

Richness 

% (#) 

% Diff. 

Richness 

% (#) 

lnRR 

eH 

% (#) 

Composition 

Diff. 

% (#) 

      

<
 1

0
 Y

ea
rs

 

no 

response 
87.0 (280) 79.5 (256) 80.7 (259) 77.0 (248) 

linear 

increase 
  0.3     (1)   2.8     (9)   2.5     (8) 20.8   (67) 

delayed 

increase 
  0.0     (0)   0.0     (0)   0.3     (1)   0.0     (0) 

asymptotic 

increase 
  0.0     (0)   0.0     (0)   0.6     (2)   0.0     (0) 

linear 

decrease 
  6.5   (21)   9.0   (29)   8.4   (27)   0.0     (0) 

delayed 

decrease 
  0.6     (2)   0.3     (1)   0.9     (3)   0.0     (0) 

asymptotic 

decrease 
  0.0     (0)   0.6     (2)   0.0     (0)   0.0     (0) 

concave 

down 
  5.0   (16)   5.9   (19)   6.2   (20)   2.2     (7) 

concave 

up 
  0.6     (2)   1.9     (6)   0.3     (1)   0.0     (0) 

      

≥
 1

0
 Y

ea
rs

 

no 

response 
50.0   (58) 41.4   (48) 44.0   (51) 29.3   (34) 

linear 

increase 
  0.0     (0)   0.9     (1)   1.7     (2) 22.4   (26) 

delayed 

increase 
  0.0     (0)   0.0     (0)   0.0     (0)   4.3     (5) 

asymptotic 

increase 
  0.0     (0)   0.0     (0)   0.0     (0) 12.1   (14) 

linear 

decrease 
16.4   (19) 19.0   (22) 21.6   (25)   0.0     (0) 

delayed 

decrease 
  0.0     (0)   0.0     (0)   0.0     (0)   0.0     (0) 

asymptotic 

decrease 
  9.5   (11) 13.8   (16) 11.2   (13)   0.0     (0) 

concave 

down 
  5.2     (6)   8.6   (10)   7.8     (9) 30.2   (35) 



 

2 

 

concave 

up 
19.0   (22) 16.4   (19) 13.8   (16)   1.7     (2) 

      
 9 
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Table 3: Across all datasets, temporal plant community responses (lnRR richness and 1 

composition differences) to global change treatments do not vary by treatment type among single 2 

resource or non-resource manipulations (richness: Χ
2
=12.47, df=11, p=0.330; composition: 3 

Χ
2
=9.42, df=11, p=0.583), but do vary by treatment category among multi-factorial 4 

manipulations (richness: Χ
2
=21.85, df=6, p=0.001; composition: Χ

2
=15.78, df=6, p=0.015). 5 

Across only long-term (≥10 years) datasets, temporal plant community responses to global 6 

change treatments do not vary by treatment type among single resource or non-resource 7 

manipulations (richness: Χ
2
=3.36, df=10, p=0.972; composition: Χ

2
=4.21, df=10, p=0.938) or 8 

treatment category among multi-factorial manipulations (richness: Χ
2
=3.01, df=6, p=0.808; 9 

composition: Χ
2
=1.39, df=6, p=0.967). For the long-term experiments, exclusion of treatment 10 

types or categories with fewer than 3 replicates did not qualitatively affect the results. Number 11 

and proportion of each treatment type/category that showed a significant temporal response to 12 

experimental global change manipulations. Significant (p<0.05) differences in the proportion of 13 

richness and composition responses among treatment categories indicated by letters as 14 

determined by Fisher’s exact test for all pairwise combinations. 15 
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Treatment 

Type/Category 

 

Total 

Possible 

Responses 

 

# 

Richness 

Responses 

Proportion 

Significant 

Richness 

Responses 

 

# 

Composition 

Responses 

Proportion 

Significant 

Composition 

Responses 

 

T
re

at
m

en
t 

T
y
p
e 

CO2     9     1 0.11     3 0.33 

 drought   23     1 0.04     8 0.35 

 irrigation   28     4 0.14     7 0.25 

 precip. variability   10     1 0.10     1 0.10 

 nitrogen   69   15 0.22   24 0.35 

 phosphorus   20     6 0.30     4 0.20 

 other resource     4     0 0.00     0 0.00 

 temperature   16     1 0.06     3 0.19 

 mowing/clipping   16     1 0.06     2 0.13 

 herbivore removal     8     0 0.00     1 0.13 

 plant manipulation   11     1 0.09     1 0.09 

 other non-resource     6     3 0.50     4 0.67 

 

T
re

at
m

en
t 

C
at

eg
o
ry

 

single resource 163   28   0.17
a 

  47  0.29
a 

 single non-resource   57     6   0.11
a 

  11  0.19
a 

 resource*resource   46   12    0.26
ab 

  24   0.52
bc 

 non-res.*non-res.   13     2    0.15
ab 

    3    0.23
abc 

 resource*non-res.   70   12    0.17
ab 

  21   0.30
ab 

 3+ resources   41   23   0.56
c 

  26  0.63
c 

 #+ res. and non-res.   48   17   0.35
b 

  24   0.50
bc 

  OVERALL 438 100  0.23 156 0.36 
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