1	A review of the areoligeracean dinoflagellate cyst Cyclonephelium and morphologically
2	similar genera

Robert A. Fensome^a, Graham L. Williams^a, Stephanie E.L. Wood^b and James B. Riding^b
 5

⁶ ^aNatural Resources Canada, Geological Survey of Canada (Atlantic), Bedford Institute of

7 Oceanography, P.O. Box 1006, Dartmouth, Nova Scotia B2Y 4A2, Canada; ^bBritish Geological

8 Survey, Environmental Science Centre, Keyworth, Nottingham NG12 5GG, UK

9

10 **CONTACT** Robert A. Fensome <u>rob.fensome@canada.ca</u>.

11 Supplemental material for this article can be accessed here: http://doi.org/10.1080/xxxxxxx

12

13

14 ABSTRACT

15 A group of mainly Cretaceous areoligeracean dinoflagellate cyst genera, which we call the

16 *"Cyclonephelium* group", has proved difficult to classify. The group comprises *Aptea*,

17 Canningia, Canninginopsis, Cassidium, Cauveridinium, Cerbia, Circulodinium,

18 Cyclonephelium, Doidyx, Senoniasphaera and Tenua. As a group, they also converge

19 morphologically with ceratiaceans. *Cyclonephelium* group taxa show considerable

20 morphological diversity and gradation. However, the most important criteria for discriminating

21 dinoflagellate cyst-based genera — tabulation and archaeopyle type — are uniform among

22 areoligeraceans and ceratiaceans and so are not useful in this case. Any subdivision of the

23 Cyclonephelium group will break apparently natural continuities; nevertheless, any resolution

24 must involve on a hierarchy of morphological criteria. In developing a "best-fit" hierarchy of

25 morphological criteria for the *Cyclonephelium* group, and its separation from ceratiaceans, we

26 consider historical concepts, morphological variation, illustrations in the literature (especially of

27 types) and taxonomic stability. We conclude that the most pragmatic distinguishing feature of

ceratiaceans in contrast to the Cyclonephelium group (and areoligeraceans in general) is that the

29 former possess a lateral horn or distinct prominence on the inner body or wall. The hierarchy we

30 favour within the *Cyclonephelium* group (in decreasing importance) is: 1) wall structure; 2)

whether the ornament is linear or free standing; and 3) the distribution of the ornament. As a 31 consequence, we propose one new genus (Trimuridinium), one new species (Aptea cassis), two 32 new names (Canningia glomerata for Senoniasphaera rotundata and Circulodinium vectensis for 33 34 Pseudoceratium distinctum), 49 new combinations and one new status. We emend the descriptions/diagnoses of Aptea, Circulodinium, Cyclonephelium, Pseudoceratium, 35 Senoniasphaera, Tenua and Tenua hystrix. Cyclonephelium group taxa predominate in neritic 36 marine palaeoenvironments, and their use in palaeocological analyses should be improved by a 37 more cohesive and consistent taxonomy. The group may have been the root stock for 38 ceratiaceans in the Late Jurassic, the two families becoming more clearly separate from the Late 39 Cretaceous onwards. Cyclonephelium group areoligeraceans are sparse in the Palaeogene and 40 confirmed species are absent in the Neogene. 41 42 **KEYWORDS** Areoligeraceae; biostratigraphy; Cretaceous; *Cyclonephelium* group; 43 dinoflagellate cysts; evolution; taxonomy 44 45 46 47 1. Introduction 48 The Areoligeraceae is an extinct family of dinoflagellates known exclusively from cysts. 49 Areoligeraceans appeared in the Late Jurassic and had mostly disappeared by the end of the 50 Palaeogene. Common in many Cretaceous and Palaeogene assemblages, areoligeraceans exhibit 51 a cyst body that is generally dorsoventrally flattened, an apical archaeopyle, an asymmetry 52 53 involving the displacement of the parasulcus to the left, and commonly an asymmetrical antapical margin with the left side being more prominent. The displacement of the parasulcus is 54 usually clearly seen by an offset parasulcal notch in the archaeopyle margin. Where discernible, 55 the paratabulation is consistently sexiform gonyaulacalean (Evitt 1985, who referred to 56 areoligeraceans as "Gv cysts"; Fensome et al. 1993). Aside from these common traits, however, 57 areoligeracean morphology is very flexible. It includes variability in the nature and distribution 58 of the ornament, in wall structure (including acavate, holocavate and circumcavate forms), and in 59 shape, especially of the ambitus, which can vary from circular to triangular to lozenge-shaped. 60

The asymmetrical features of areoligeraceans distinguish them from gonyaulacaceans, which generally have symmetrical features including a mid-ventral parasulcus and a symmetrical antapical outline. Another family that shows similar asymmetry to the Areoligeraceae is the Cerateaceae, but its members are distinctive in generally having long horns, including one or more lateral horns or distinct prominences. Areoligeraceans lack lateral horns, although morphologically transitional forms exist between the Areoligeraceae and the Ceratiaceae that lead to problems in making clearcut distinctions.

Our focus is on a predominantly Cretaceous group of proximate to proximochorate 68 areoligeracean genera that we refer to as the "Cyclonephelium group", whose generic 69 differentiation has been a source of discussion and confusion for several decades, especially 70 during the late twentieth century. The group comprises the following genera: Aptea, Canningia, 71 72 Canninginopsis, Cassidium, Cauveridinium, Cerbia, Circulodinium, Cyclonephelium, Doidyx, Senoniasphaera and Tenua. We also consider the ceratiacean genus Pseudoceratium because of 73 its morphological continuity with some Cyclonephelium group genera, especially Aptea. This 74 75 apparent morphological continuum raises some interesting evolutionary questions. We consider that a review and rationalisation of the taxonomy of the above-listed genera (plus a few 76 synonyms) and their species is essential in refining their biostratigraphical and palaeoecological 77 applications. 78

As paratabulation and archaeopyle development in the Areoligeraceae (and Ceratiaceae) 79 80 are strikingly consistent and stable, subdivision into genera must rely mostly on wall structure, shape and ornamentation. Unfortunately, broad intergradations exist in these features, such that a 81 coherent scheme of genera that would not cut across at least some apparently natural boundaries 82 83 is not possible (and thus will inevitably perturb the conventions of some researchers for separating genera). But the alternative of including the entire Cyclonephelium group in a single 84 genus would be acceptable to few, if any. Hence, our aim is to develop a taxonomic scheme that 85 is pragmatic, but respects previous work and, most of all, the morphology of the nomenclatural 86 types of the genera in question. 87

88

90 2. Material and terminology

91

This paper was initially inspired by material rich in *Cyclonephelium* group taxa studied in middle
Cretaceous strata of the Mackenzie Plain, Northwest Territories and Axel Heiberg Island,
Nunavut, Canada (Fensome 2016). This has been augmented by material from offshore eastern
Canada (Fensome et al. 2009). For locality and stratigraphical information for all specimens
newly illustrated (excluding re-figured holotypes), see Appendix 3 and Supplemental data.

97 In this paper we have elected to use "paraterminology" for clarity, although recognise that 98 it can sometimes be cumbersome. Note that paraterminology indicates that the cyst features 99 referred to are "reflections" of features on the thecate cell, so "paratabulation" is synonymous 100 with "reflected tabulation". Ornament can be linear (involving rugulae, a reticulum or processes 101 linked to various extents) or free-standing (involving processes, spines, bacula, granula etc.). We 102 use the term "ambitus" to denote the outline in dorsoventral view.

The use of wall and cavity terminology used for areoligeracean cysts has been the source 103 104 of confusion. This is largely because the use of conventional terminology may mean that homologous features bear different labels in what are clearly closely related taxa. Thus, for a 105 form with two wall layers that are unconnected by intervening structural elements (although they 106 may be partially appressed locally), it is generally conventional for the inner layer to be called 107 the endophragm and the outer layer the periphragm; for a similar form that has interconnecting 108 structures, the inner layer is conventionally called autophragm and the outer layer the 109 ectophragm. These terminologies would be applied, for example, respectively to Senoniasphaera 110 microreticulata (which does not have structures connecting wall layers) and Canningia 111 112 reticulata (which does), even though the two species resemble one another in many ways and the wall layers are clearly homologous. We propose that for areoligeraceans and ceratiaceans, the 113 inner and outer wall layers of the cyst wall be referred to consistently as endophragm and 114 periphragm, whether or not connections exist. If only one undivided wall layer is present, we 115 retain the conventional term autophragm. We continue to use the term holocavate for forms with 116 two wall layers that are separated over some or all of the cyst but connected by intervening 117 structures, such as pillars or muri. It is not always easy to determine if the holocavate condition 118 is present over the entire cyst, marginally or locally, but we propose that the term be used 119

regardless of its extent. We use the term circumcavate for forms in which the wall layers are seen 120 to be separated around most of the ambitus in dorsoventral view, but lack supporting structures. 121 We acknowledge that the cavation of circumcavate may or may not extend dorsoventrally, 122 123 although, as with holocavation, the full extent of the cavation is usually very difficult to establish. However, we cannot conceive of a cyst in which the endocyst is totally detached from 124 the pericyst, since in such a relationship the endocyst would be floating in space. As we unfold 125 the taxonomic story below, we use quotes from the original literature freely, sometimes in 126 translation. Our inserts in these quotes are indicated by square brackets. 127

128 129

130 **3. History of study**

131

132 **3.1.** Introduction

In this section, we develop an overview of the history of taxonomic concepts for *Cyclonephelium* group cysts from particular morphological perspectives. In the process, we review what earlier authors have reported and considered. In a later section, we propose a resolution to problems arising from shifting and collectively confusing historical treatments. We also provide a chronological listing of events in *Cyclonephelium* group taxonomy as Appendix 1.

138

139 3.2. Early development of core generic concepts (1955 to 1970)

The genus Cyclonephelium was introduced by Deflandre & Cookson (1955, p. 285) for Late 140 Cretaceous aquatic palynomorphs comprising spheroidal, flattened shells "... with an equatorial 141 ornamentation that extends for varying distances from the equator but never to the poles." What 142 143 Deflandre & Cookson (1955) considered the equator, modern dinoflagellate workers would call the dorso-ventral outline, or ambitus; and what they called the poles we would now recognise as 144 the mid-dorsal and mid-ventral areas. Deflandre & Cookson (1955) included Cyclonephelium in 145 the zoological family Hystrichosphaeridae, not then recognised as being of dinoflagellate affinity 146 but classified as incertae sedis. Also, as part of their description, Deflandre & Cookson (1955) 147 recognised that the "shell" often had "a large ill-defined lateral opening". Thanks to the work of 148 149 Evitt (1961, 1963a, 1963b) and later authors, we now recognise Cyclonephelium as a

150 dinoflagellate cyst, with its "ill-defined lateral" opening now recognised as an apical

archaeopyle, and with the distinctive areoligeracean asymmetry and plate equivalency (Fensome

et al. 1993). Deflandre & Cookson (1955) designated their new species, *Cyclonephelium*

compactum, as type; this species has an ornamentation consisting at least in large part of

154 membranous crests. They also included the species *Cyclonephelium distinctum*, characterised by

155 generally slender processes. Both *Cyclonephelium compactum* and *Cyclonephelium distinctum*

156 exhibit dorsoventral areas devoid of ornament.

In a study of the Aptian of northern Germany, Eisenack (1958, p. 410) described a new 157 hystrichosphere genus, Tenua, as consisting of "Thin-walled oval casings, without tabulation ..., 158 rather densely covered with short, solid, rod-like spines" (translation). His focus was very clearly 159 on the nature of the spines, as would indeed befit a hystrichosphere. However, in an addendum to 160 the diagnosis of the type, Tenua hystrix, Eisenack (1958, p. 410) mentioned that "Frequently, 161 truncations are found ... resulting in the absence of one polar cap" (translation). He noted that 162 these seemed to be openings related to excystment and, with hindsight, we now know that Tenua 163 is an areoligeracean dinoflagellate cyst and that the "openings" are apical archaeopyles. All 164 specimens of Tenua illustrated by Eisenack (1958) have a rounded ambitus with little or no 165 suggestion of horns or protuberances. Although not mentioned by Eisenack, Tenua hystrix differs 166 from the type of Cyclonephelium (Cyclonephelium compactum) in having an ornament of 167 processes rather than crests. 168 In the same publication, Eisenack (1958, p. 393) erected Aptea, with Aptea polymorpha as 169 type, and provided the following diagnosis: 170 171 172 Shell compressed oval in cross-section, in outline irregularly triangular with convex sides and 3 (or 4?) small protruding horns, which can be largely reduced, so that the 173 outline is very variable and therefore tends to appear oval to circular. [Translation] 174 175 Eisenack compared Aptea only with Pseudoceratium, which he considered differed in having 176 distinctly developed horns. Pseudoceratium had been established by Gocht (1957), with 177 Pseudoceratium pelliferum as type - a form with three distinctive horns, including one in a 178

179 lateral position.

Cookson & Eisenack (1960, p. 251) erected Canningia, describing it as follows: "Shell 180 flattened, roughly five sided to almost circular with a slight apical prominence and a broadly 181 indented base." The generic description goes on to refine the shape, indicate a weakly defined 182 183 paracingulum, and note an opening. The structure of the wall and the nature of the ornament was not mentioned, although the type (Cookson & Eisenack 1960, pl. 38, fig. 1, as Canningia 184 *reticulata*) clearly shows a holocavate wall with a dense microreticulum formed by perforations 185 in a delicate periphragm. It is clear that Cookson & Eisenack (1960) did not consider wall 186 structure an important defining feature of the genus because they included other species in 187 Canningia with various wall types; for example, Canningia colliveri has an autophragm with low 188 ornament and Canningia reticulata is holocavate. This broader concept of Canningia was 189 followed by subsequent authors; but we follow recent authors in restricting the genus to cavate 190 191 forms, as further discussed below. The genus Circulodinium was introduced by Alberti (1961, p. 28), with Circulodinium 192 *hirtellum* as type, for forms that he diagnosed as follows: 193 194 Shell compressed to flat, with almost circular to irregularly rounded outline. With a 195 small apical process with a somewhat blunt tip. [Antapex concave, from] ... which 196 arise two antapical bulges, one of which may be reduced. Shell without ... tabulation. 197 Its surface, except for central ventral and dorsal areas and antapical concavity, with 198 short, solid spines [Translation] 199 200 The description of Cyclonephelium was emended by Cookson & Eisenack (1962, p. 493-201 202 494) mainly to re-interpret the opening as apical. More significantly, though, for the present discussion, they confirmed the peripheral distribution of the ornament. They stated that their new 203 specimens had "... demonstrated very clearly that the restriction of the ornament to the periphery 204 of the shell is a constant and reliable generic feature." Interestingly, Cookson & Eisenack (1962) 205 also indicated that they had difficulty "... in deciding with which species an example 206 [presumably meaning a specimen] should be identified, owing to the occurrence of ... 207 intermediate forms. For this reason we have allowed a rather wide margin of variation ... [for] 208

209 individual species, especially C. compactum and C. distinctum." The presence of intergrading

210	forms remains a continuing problematic theme in classifying Cyclonephelium group cysts.
211	Eisenack (1964, p. 322) stated that Circulodinium " contains the two species, C.
212	hirtellum [the type] and C. deflandrei. Their diagnoses and appearance would permit the
213	assignment of C. hirtellum to Canningia and C. deflandrei to Cyclonephelium" He
214	continued "Therefore I propose to eliminate the genus Circulodinium and from now on to call its
215	two species Canningia hirtella and Cyclonephelium deflandrei " [translation]. Thus,
216	Eisenack (1964) effectively considered Circulodinium to be a taxonomic junior synonym of
217	Canningia. These considerations by Eisenack became confused in later work: Fensome &
218	Williams (2004) indicated that Millioud (1969, p. 425) considered Circulodinium to be a
219	taxonomic junior synonym of Canningia. However, Millioud included only a brief entry in his
220	systematics section for Canningia hirtella (the type of Circulodinium) and lists 'Canningia
221	hirtella (Alberti) Eisenack 1964 in synonymy, apparently simply following Eisenack's ideas.
222	Sarjeant (1966, p. 205–206) introduced the genus Doidyx, with Doidyx anaphrissa
223	designated as type, and provided the following diagnosis:
224	
225	Proximate dinoflagellate cysts with flattened biconical shell, pronouncedly
226	asymmetrical. Epitract in form of high cone which may be drawn out into an apical
227	horn, giving a mammillate appearance: hypotract in form of flattened cone, with or
228	without antapical prominence. Shell bulging out laterally to one side more than to the
229	other: lateral horns lacking. Greater part of shell surface covered with short spines,
230	simple or bifurcate: arrangement is in general random, but sometimes in rows,
231	suggesting traces of tabulation. Equatorial zone, corresponding to cingulum, lacking
232	spines: not hollowed. No pattern of sutures visible, no clear indication of sulcus.
233	Apical archaeopyle formed by schism of shell on angular line of breakage.
234	

Several features of the type material (as reflected in Sarjeant 1966, fig. 55) identify *Doidyx* as an
areoligeracean, including the lozenge shape, symmetry and apical archeopyle with an offset
parasulcal notch; the latter feature is partly obscured by debris but is still evident. Sarjeant (1966,
p. 206) compared *Doidyx* mainly with genera that we would now consider peridiniaceans, but he
did state that *Doidyx* "... differs from the superficially similar genus *Aptea* in the lack of an

enclosing membrane." Aptea is more fully discussed below, but from our perspective, Aptea and 240 Doidyx, although similar in having a lozenge-like ambitus, differ in that the former (based on its 241 type) has an ornamentation consisting of muri arranged as a reticulum and the latter has 242 243 predominantly free-standing ornament. Nevertheless, Sarjeant & Stover (1978) considered Doidyx to be a taxonomic junior synonym of Aptea. Clearly impressed by the strong asymmetry 244 of their respective types, Bint (1986) subsequently considered both Doidyx and Aptea to be 245 taxonomic junior synonyms of the ceratiacean genus Pseudoceratium, although the type of 246 neither genus has a lateral horn formed by the endophragm. 247 Williams & Downie (1966, p. 223) presented an emended diagnosis for Cyclonephelium, 248 essentially to include chorate species with longer spines and processes. These primarily 249 Palaeogene chorate taxa were later re-assigned to *Glaphyrocysta* by Stover & Evitt (1978). 250 251 Although a detailed evaluation of *Glaphyrocysta* is beyond the scope of the present study, some confusion remains in the differentiation of Cyclonephelium group genera from Glaphyrocysta 252 and the similar genus Areoligera — an issue that we further address below. 253 The type of another genus proposed in the 1960s, Cassidium, was originally described as a 254 pollen grain, Ovoidites fragilis, by Harris (1965). Drugg (1967, p. 22) originally described 255 *Cassidium* as follows: 256 257 Test crudely circular in outline. Wall thick, rugulate to imperfectly reticulate. 258 Tabulation present consisting of apical and antapical plates plus several large 259 equatorial plates. No girdle or longitudinal furrow present. The test opens by means 260

261 262

The surface ridges that Drugg (1967) interpreted as parasutural may not actually reflect tabulation; for example, no paracingulum is evident. The ridges may represent a very coarse reticulation superimposed on a finer rugulate–reticulate pattern that covers the whole surface. The holotype of *Cassidium fragilis* clearly reflects tabulation in its archaeopyle outline, with a parasulcal notch appearing to be offset.

of an apical archeopyle, the line of separation being zigzag.

During the later 1960s, palynologists tried to constrain the concepts of *Cylonephelium*,
 Circulododinium and *Tenua*. Sarjeant (1968, p. 230–231) began by emending *Tenua*. He noted

that he was enlarging "The diagnosis of the genus ... to include reference to the [apical] 270 archaeopyle and to permit ... a wider range of ornamentation." He included in Tenua several 271 species that would now be placed in the gonvaulacacean genus Sentusidinium (see below). At 272 273 that time, the differences between areoligeraceans and gonyaulacacean cysts based on asymmetry had not been recognised. Although Tenua is now accepted as an areoligeracean, the 274 confusion was understandable because of the rounded symmetrical antapical outline of the 275 specimens of *Tenua* illustrated by Eisenack (1958). Subsequently, following Sarjeant's (1968) 276 concepts, Davey (1978) tried to change the type of Tenua to one of Sarjeant's species, Tenua 277 rioultii. This was an illegitimate nomenclatural proposal, with Davey (1978) in effect creating a 278 junior homonym, Tenua Davey, of Tenua Eisenack. Despite these issues, Sarjeant's emendation 279 of Tenua Eisenack, recognising the archaeopyle as apical and allowing a variety or 280 ornamentation, is still applicable. 281

Thus, by 1970 several genera were available to accommodate *Cyclonephelium* group forms with single-layered walls and free-standing ornamentation: *Cyclonephelium* (if one considers *Cyclonephelium distinctum* to be assigned to *Cyclonephelium*), *Tenua*, *Circulodinium* and *Doidyx*. And others were available to accommodate forms with single-layered walls with linear ornamentation: *Cyclonephelium*, *Aptea* and *Cassidium*.

- 287
- 288

3.3. Development of core generic concepts from 1970

In his emended diagnosis of *Tenua*, Pocock (1972, p. 94) was first to recognise the offset
parasulcal notch. Although this feature is not apparent on the type of *Tenua hystrix*, it is now
accepted as a general feature of the Areoligeraceae, to which family *Tenua* clearly belongs.
Pocock (1972) also expanded the generic concept to include forms with an ambitus that "…
varies from more or less circular or oval … to rounded subtriangular with one apical and one or
two antapical horns indicated by rounded lobes or angles."

Norvick (1976) was among researchers who clearly and admittedly struggled with
intergradation within and between species of what they considered to be *Cyclonephelium*. His
fig. 14 shows a range of variation that we would consider belongs to several genera, as outlined
in the systematics section below. Ioannides et al. (1977) proposed an emended diagnosis of *Cyclonephelium*, which however added nothing new and essentially followed the concept of

Williams & Downie (1966). Ioannides et al. (1977, p. 450) stated, somewhat cryptically, that 300 "The genus ... is here emended in order to clarify the types of cysts accommodated [It] ... is 301 believed to eliminate confusion regarding the taxonomy of these forms." 302 303 Davey (1978, p. 894) effectively synonymised both Circulodinium and Tenua Eisenack with Cyclonephelium by transferring their respective types to that genus, although he did not 304 indicate the synonymy formally at generic rank. Davey (1978) noted that he had experienced: 305 306 ... some difficulty ... allocating the rather variable group of dinocysts characterized 307 by a spinose ornament and an angular apical archeopyle to described species. 308 Variation is mainly in the shape of the antapex and the length, density and 309 distribution of the spines. As so many specimens over a considerable stratigraphic 310 interval were available for study, a re-evaluation of this group is attempted 311 312 Davey (1978) noted, in his entry for Cyclonephelium [al. Circulodinium] hirtellum, that 313 314 The original diagnosis of this species clearly indicates that the spines ... are 315 restricted to the lateral margins of the shell. [Thus] ... the affinities of C. hirtellum lie 316 more with Cyclonephelium than Canningia 317 318 Under Cyclonephelium [al. Tenua] hystrix, Davey (1978) stated that "Eisenack's type material of 319 this species possesses the characteristics ... [of] Cyclonephelium - processes more or less 320 restricted to a circumferential zone and an angular apical archeopyle." Davey (1978) went on to 321 322 note that "... Tenua was originally defined as having an overall covering of short processes Hence ... T. hystrix, possessing bald areas, never precisely complied with the generic diagnosis." 323 Thus, Davey (1978) considered that he was removing *Tenua hystrix* from *Tenua* and hence tried, 324 illegitimately, to redefine *Tenua* with a new type (as noted above). It is worth emphasising that 325 Davey (1978) observed that Tenua hystrix had areas devoid of ornament, but considered that this 326 was contrary to the original diagnosis of Tenua Eisenack. 327 In the same year as (and understandably unaware of) Davey (1978), Sarjeant & Stover 328 (1978, p. 49) reviewed the morphology of Tenua hystrix on the basis of published and 329

330 unpublished studies. They noted that a typical specimen of *Tenua hystrix* has:

1) a dorsoventrally flattened body.

332 2) a circular to subcircular outline (ambitus) with a tendency to have one or two low-rounded

333 antapical bulges.

334 3) an apical archaeopyle with an offset parasulcal notch.

4) indications of paratabulation expressed by the archaeopyle margin and "... on some

specimens, by faint alignment of features along paraplate boundaries ...".

5) "a fairly dense covering of short, solid, generally simple processes that may be somewhat

338 more widely spaced, as well as somewhat shorter, in the middorsal and midventral areas."

339 Sarjeant and Stover (1978) further noted that earlier revised diagnoses by Cookson &

Eisenack (1962) and Ioannides et al. (1977) "permit the inclusion of forms [in *Cyclonephelium*]

341 ... in which the zone of ornament is broad rather than strictly circumferential." They thus

342 concluded that *Tenua* is a taxonomic junior synonym of *Cyclonephelium* and reassigned what we

343 would now regard as non-areoligeracean species such as *Tenua rioultii* to a new genus,

344 Sentusidinium. The taxonomic concepts of Sarjeant & Stover (1978) thus paralleled those of

345 Davey (1978) when he tried to establish *Tenua* Davey, with the illegitimate name *Tenua* Davey

being a nomenclatural synonym of *Sentusidinium*, having the same type.

In their compendium of fossil dinoflagellate genera, Stover & Evitt (1978) accepted *Tenua* as a taxonomic junior synonym of *Cyclonephelium*, and established *Glaphyrocysta* for chorate forms, mainly of Palaeogene age, previously assigned to *Cyclonephelium*. In emending

350 Cyclonephelium, Stover & Evitt (1978, p. 35) gave the following synopsis:

351

Cysts proximochorate, lenticular; autophragm variously ornamented with numerous closely spaced features of low to moderate relief that may be spines or membranous septa; ornamentation generally reduced or lacking in midventral and middorsal areas; paratabulation rarely indicated by ornament; archeopyle apical ... [with tetratabular simple operculum]; parasulcal notch offset.

357

In comparing *Cyclonephelium* to *Canningia*, Stover & Evitt (1978, p. 36) contended that "... the ornamentation on *Cyclonephelium* is typically more discrete (isolated) Processes on 360 *Cyclonephelium* ... are short and rarely connected distally." This is misleading as the type,

361 Cyclonephelium compactum, is defined by its membranous ornament. Indeed, during the 1970s

there seems to have been a tendency for the concept of *Cyclonephelium* to be based on

363 *Cyclonephelium distinctum* rather than *Cyclonephelium compactum*, as evidenced by the

364 contention of Stover & Evitt (1978).

Dörhöfer & Davies (1980, p. 41) also emended *Cyclonephelium*, restricting it "... to forms
with an apteate ornament." (Dörhöfer & Davies (1980) used the term apteate "... for ornament
... developed on a proximate cyst, but does not reach any great length." They attributed *Cyclonephelium* to the Areoligeraceae, and continued the acceptance of *Tenua* as a taxonomic
junior synonym.

In a re-study of the material recorded by Pocock (1962, 1972), Jansonius (1986, p. 204) resurrected *Circulodinium* for forms ornamented with "... free elements of varying length and shape, usually spines with capitate or bifurcate tips ... generally more strongly developed in peripheral regions, more or less strongly reduced in size and density in central ventral and dorsal regions."

Helby (1987) did not directly address the generic definition of *Circulodinium*, and was apparently unaware of the paper by Jansonius (1986). However, from his generic designations of some species previously assigned to *Canningia*, it is clear that Helby (1987) had a concept for *Circulodinium* similar to that of Jansonius (1986), retaining it for areoligeraceans with relatively short ornamentation comprising free-standing elements (Helby 1987, table 3). Backhouse (1988) suggested that *Circulodinium* may be a taxonomic junior synonym of *Tenua*.

Thus, by the late 1980s, Backhouse's (1988) suggestion notwithstanding, we had a situation in which *Cyclonephelium* and *Circulodinium* were generally accepted as correct generic names (in the sense of International Code of Nomenclature; Turland et al. 2018) and *Tenua* was considered by many to be a taxonomic junior synonym of *Cyclonephelium*. Such concepts ignored the facts that *Tenua* and *Circulodinium* were based on types with free-standing elements and *Cyclonephelium* was based on a type with ornament consisting of crests.

One further genus that can be included in the *Cyclonephelium* group was added by Khowaja-Ateequzzaman & Jain (1990). This is *Cauveridinium*, which the authors described as having "... autophragm ornamentation elaborate with processes along circumferential border zone but [essentially absent] on central dorsal and central ventral areas; processes ... mostly

391 connected proximally through ridges, rarely distally fused" *Cauveridinium* is clearly an

areoligeracean; its relatively high crests make it intermediate between forms in the

393 Cyclonephelium group and the Glaphyrocysta/Areoligera complex. Khowaja-Ateequzzaman &

Jain (1990, table 1) differentiated *Cauveridinium* from *Cyclonephelium* in that the former has

395 processes proximally interconnected and the latter has processes proximally unconnected.

However, as further discussed below, based on the type of *Cyclonephelium* this difference doesnot withstand scrutiny.

From the historical progression of ideas discussed in this section, it is evident that by the 1990s no broad concensus in terms of generic distinctions within the *Cyclonephelium* group had emerged. We propose a resolution of this situation below, but for now we switch to a somewhat different focus.

402

403 **3.4.** Reflections of tabulation

The first indication that the expression of paratabulation might be important in defining some 404 genera in the Cyclonephelium group was the erection of Canninginopsis by Cookson & Eisenack 405 (1962, p. 488), with Canninginopsis reticulata as type. Canninginopsis is clearly an 406 areoligeracean, but is distinguished by having tabulation reflected by parasutural features such as 407 rows of nodules or low ridges, as well as generally (but not exclusively) a lack of ornament 408 within paraplates. The specimens illustrated by Cookson & Eisenack (1962, pl. 1, figs 16-19) 409 appear to show the paratabulation clearly, but the authors remarked that the "... small tooth-like 410 projections ... are sometimes only faintly indicated." 411

412 Below (1981, p. 8) introduced *Cerbia* for forms similar to *Canninginopsis* but in which

413 paratabulation is indicated by penitabular rather than parasutural elements. Below (1981) based

414 *Cerbia* on the species *Cyclonephelium tabulatum*, described by Davey & Verdier (1974).

However, *Cerbia* was synonymised with *Tenua* by Sarjeant (1985, p. 93–94). In his emended

416 diagnosis for *Tenua*, Sarjeant (1985) noted: "Peniplates outlined by continuous or discontinuous

417 lines of tubercles or short, solid processes; intratabular processes lacking." He believed that the

418 original description of *Tenua* by Eisenack (1958) was misleading in suggesting that the ornament

419 was non-tabulate and marginate. However, the distribution of the ornament on the holotype of

Tenua hystrix as shown in Sarjeant's (1985, pl. 10, fig. 5) re-illustration is unclear. The elements
 seem to show some alignment, but this is not obvious. Moreover, the original illustration of

422 Eisenack (1958) appears to show an overall cover of spines. From Sarjeant's (1985) re-

illustration it appears that the mid-ventral ornament could be reduced, but the dorsoventral areas

do not seem to be devoid of ornament altogether. Sarjeant (1985) referred to the illustrations of

425 *Cerbia tabulata* in Duxbury (1983, pl. 1, figs 6, 9, 12) as clearly showing the penitabular nature

426 of the ornament, as indeed they do; but this has no bearing on the interpretation of the

427 morphology of the type of *Tenua hystrix*.

Following Sarjeant's (1985) synonymising of *Cerbia* with *Tenua*, disagreements developed over the synonymy of these two genera. Stover & Williams (1987, p. 55–56) and Lentin & Williams (1989, p. 53) retained *Cerbia* separately, the former authors considering that the ornament on *Tenua* is uniformly distributed. Sarjeant (1992, p. 678) re-instated the synonymy,

432 but Duxbury (2002, p. 76, 78) again retaoined *Cerbia* as a separate genus.

In restating and emphasising the case for synonymy, Sarjeant (1992) re-illustrated the 433 holotype of Tenua hystrix. He provided an interpretative line drawing of it, reproduced two 434 photos of the type of Cerbia (the holotype of Cerbia tabulata), and reproduced several other 435 illustrations of Cerbia tabulata from Below (1981) and Duxbury (1983). The holotype of Cerbia 436 tabulata shows the penitabular nature of the ornament more clearly than the holotype of Tenua 437 *hystrix*, but some of the spines on the latter seem to be aligned. This is not apparent in the 438 interpretative drawings. The holotype of Tenua hystrix also appears to show spines within the 439 paraplates (Sarjeant, 1992, figs 1–2). In retaining Cerbia, Duxbury (2002) considered that 440 Sarjeant's images of the holotype of Tenua hystrix "show dense 'intratabular processes' ... with 441 442 apparently only minor evidence of 'lines of tubercles'". In our view, the evidence is not as clear as either Sarjeant (1992) or Duxbury (2002) contended, but we favour Duxbury's interpretation, 443 retaining *Cerbia* for clearcut cases showing penitabular rows, as further discussed below. 444 Duxbury (2002) also suggested that *Circulodinium* may be a taxonomic junior synonym of 445 Tenua. 446

447

448 **3.5.** A bridge between the Areoligeraceae and the Ceratiaceae

As previously mentioned, the families Areoligeraceae and Ceratiaceae share many

450 morphological features. This has led to confusion as to how to treat the genus Aptea, which has a

451 morphology intermediate between the areoligeracean *Cyclonephelium* and the ceratiacean

452 Pseudoceratium. Gocht (1957, p. 166) introduced Pseudoceratium for non-tabulate forms "...

with a peridinian shape (produced by several ... lengthy horns) ..." (translation). In the diagnosis

454 of *Pseudoceratium pelliferum*, the type of the genus, Gocht (1957) stated "Cyst flat, in outline

asymmetrical-triangular, longer than wide, with strong apical horn and two shorter antapical

456 horns of unequal length" (translation). From the protologue, it is clear that Gocht (1957)

457 recognised *Pseudoceratium* as a dinoflagellate cyst, and that the often-dislodged apex was the

458 result of excystment (i.e. an apical archaeopyle). It is also clear from the illustrations of Gocht

(1957) and from subsequent studies (e.g. Fensome et al. 1993) that the "two shorter antapical

460 horns of unequal length" are in fact an antapical horn and a lateral horn.

The morphological concept of Aptea was very confusing from the outset: Eisenack (1958, 461 p. 393) referred to "not very conspicuous horns" and the tendency to adopt "an oval or circular" 462 outline in the same sentence in his diagnosis. The type of Aptea (the holotype of Aptea 463 polymorpha: Eisenack, 1958, pl. 22, fig. 5) has a rounded asymmetrical ambitus for its central 464 body, but the ornament (of high crests) gives the overall ambitus a more pronounced angularity 465 and a short right lateral protrusion. Many of the other specimens of Aptea polymorpha illustrated 466 by Eisenack (1958) do not show a lateral prominence — indeed, in none of Eisenack's 467 specimens is a lateral prominence expressed by the central body. Of the eight specimens figured 468 in the protologue, five are completely rounded laterally; four show asymmetrical antapical 469 bulges, but one (Eisenack 1958, pl. 22, fig. 12) has an essentially rounded outline laterally and 470 antapically. Such variation is not unusual within (other) Cyclonephelium group species. 471

As already noted, the genus *Doidyx* was introduced by Sarjeant (1966) for spiny forms with an essentially identical autocyst shape to that of the type of *Aptea*, and was subsequently synonymised with it. However, *Doidyx* does not have a lateral prominence of any description, even one produced by ornament, as in the type of *Aptea*. *Doidyx* also differs from *Aptea* in having free-standing rather than linear ornament.

477 Dörhöfer & Davies (1980) developed a somewhat idiosyncratic interpretation of the
478 paratabulation of a group of genera that they included in the family Pseudoceratiaceae, including
479 *Aptea, Canningia* and *Pseudoceratium*, all three of which were emended accordingly. Dörhöfer

480 & Davies (1980) postulated the presence of two anterior intercalary paraplates in right lateral 481 position, each of similar size to the apical paraplates. These two intercalary paraplates were, 482 according to Dörhöfer & Davies (1980), incorporated into the operculum. However, subsequent 483 authors have considered these genera to be lacking anterior intercalary paraplates. Paratabulation 484 aside, Dörhöfer & Davies (1980, p. 39) considered that "... the sole difference between *Aptea* 485 and *Pseudoceratium* is the length of the horns which are reduced in *Aptea*", a somewhat vague 486 distinction.

In a review of fossil ceratiacean taxa, Bint (1986, p. 144–145) emended *Pseudoceratium* in part "... to include short-horned forms previously assigned to *Aptea* because a continuous range in horn length is now apparent." He further noted that *Cyclonephelium* differs from short-horned species of *Pseudoceratium* by having "no consistent indication of a right lateral horn". But neither does *Aptea*: based on its type material, the possession of a right-lateral horn is not just an inconsistent feature of *Aptea polymorpha*, but an atypical one — and moreover a superficial one formed by the ornament.

494 Helby (1987) reviewed Muderongia and related ceratiacean and similar areoligeracean genera. He considered Endoceratium to be a taxonomic junior synonym of Pseudoceratium on 495 the basis that some forms of the latter genus have an incipient ectophragm (i.e. a connected 496 periphragm in the terminology we are using here), and thus a generic separation is difficult to 497 maintain (Helby 1987, p. 313–315). Despite this, *Endoceratium* was retained by Lentin & 498 Williams (1989, p. 125). The retention seems justified to us because the type of *Endoceratium*, 499 Endoceratium ludbrookiae, is circumcavate with no supports between the two wall layers 500 (Cookson & Eisenack 1958, p. 52-54; pl. 5, figs 7-8). Species of Pseudoceratium with two wall 501 502 layers are always holocavate. Helby (1987, p. 315) retained Aptea but noted that "Pseudoceratium is distinguished from Aptea ... by reduced hypocystal horns of the latter, 503 although the range of variation in Aptea ... suggests that it will be difficult to maintain separation 504 of these genera." 505 Like Helby (1987), Quattrocchio & Sarjeant (1992, p. 2-224) retained Aptea. They noted 506

that Bint (1986) justified synonymising *Pseudoceratium* and *Aptea* because of a continuous

- range in morphology between long-horned and short-horned cysts (*Pseudoceratium* and *Aptea*
- 509 respectively). Quattrocchio and Sarjeant (1992) argued that Bint did not "... satisfactorily

510 demonstrate that this variation occurs at all stratigraphic horizons at which the two genera are

511 present; and, in our view, the evidence ... merely represents evolution from one [genus] to the

other." The problem with this argument is that the same case can be made for the gradation

513 between *Aptea* and a clearly areoligeracean genus such as *Cyclonephelium*.

As with many aspects of the group of genera reviewed herein, it is difficult to decide where 514 to draw the dividing line between genera. It is generally accepted that areoligeraceans lack lateral 515 prominences and that ceratiaceans have distinct horns, but the gradational middle ground 516 presents a conundrum. Two attempts have been made to avoid basing distinctions between 517 areoligeraceans and ceratiaceans on horn length. Evitt (1985, fig. 10.6; Fig. 1) suggested that the 518 distinction could be based on the position of hypocystal horns in relation to paratabulation. Thus, 519 according to Evitt (1985), areoligeraceans (his "Gv cysts") have antapical prominences, where 520 present, completely within the single antapical paraplate (Fig. 1B); in contrast, hypocystal horns 521 in ceratiaceans (his "Gc cysts") straddle paraplate boundaries (Fig. 1D). Bint (1986) suggested 522 that the difference is that the first precingular paraplate (1") in ceratiaceans has a straight 523 524 (planate) anterior margin (Fig. 2A) whereas the equivalent paraplate in areoligeraceans is angular (camerate; Fig. 2B). The present authors have not been able to apply either of these suggestions 525 as paratabulation is rarely clearly expressed in these groups, and the critical angle for viewing the 526 anterior edge of the 1" paraplate usually coincides with the ambitus of the cyst and is thus 527 indeterminable in the vast majority of specimens when viewed under transmitted light. Clearly a 528 529 practical solution, insofar as possible, is needed and a proposal is discussed below.

530

531 (Please insert Figures 1 and 2 near here)

532

533

3.6. A question of wall layers: Canningia and Senoniasphaera

As noted above, in erecting *Canningia*, Cookson & Eisenack (1960) did not indicate wall structure to be an important distinguishing feature. However, the type (Cookson & Eisenack 1960, pl. 38, fig. 1, as *Canningia reticulata*) is clearly holocavate.

537 *Senoniasphaera* was introduced by Clarke & Verdier (1967), who recognised it as being 538 cavate. They noted that the inner body is round or oval (i.e. has a round or oval ambitus) and that 539 the outer membrane "... is extended ... to form one apical, two antapical and often two lateral horns." They also stated in the diagnosis that paratabulation is present and that the archaeopyle is

- ⁵⁴¹ apical. A potential complication is that Clarke & Verdier (1967, p. 62) noted that "The outer
- 542 membrane [periphragm] is attached to the inner body ... by a series of perforated pillars which
- 543 may be so short as to be hardly visible."
- 544 Below (1981, p. 30) provided the following emended diagnosis for *Canningia*.
- 545

546 Spheroidal to lenticular cyst with round to pentagonal outline. Apex rounded or with 547 a low apical knob. Antapex rounded, flattened or with a lobe. Cyst wall two-layered. 548 Periphragm smooth or ornamented. Endocyst smooth toward the inside of the cyst. 549 Between the two membranes is a variable structural infilling. The surface is usually 550 nontabulate, only rarely divided into a gonyaulacoid paratabulation. Paracingulum 551 and parasulcus indented or absent. Archaeopyle apical Operculum simple, 552 attached and enlarged. [Translation]

- 553
- Below (1981) considered that the difference between *Canningia* and *Senoniasphaera* is that the latter is (circum)cavate rather than holocavate, thus lacking structural supports or infilling between wall layers.

Hedlund & Norris (1986, p. 295) considered Below's (1981) emendation of *Canningia* to be "not applicable" because "It is possible that the single wall layer in *C. colliveri* in … [their] material may be the result of weathering of samples." However, *Canningia colliveri* is not the type of the genus, and *Canningia* is now generally considered to be restricted to forms with the wall structure described by Below (1981).

Helby (1987, p. 321–322) emended *Canningia*, stating that "*Canningia* as used here
embodies lenticular cysts that are subpentangular in outline, 2-layered [i.e., with a wall
composed of two layers] and with or without indications of paratabulation ...". Furthermore,
"*Canningia* is distinguished from *Senoniasphaera* by the distinctive pericoel of the latter ...". It
is clear that Helby (1987) intended *Canningia* to be restricted to holocavate forms and *Senoniasphaera* to (circum)cavate forms, concepts that have been generally followed. However,
Clarke & Verdier (1967, p. 62) noted that in the holotype of *Senoniasphaera protrusa*, "The

outer membrane is attached to the inner body ... by a series of perforated pillars which may be so

short as to be hardly visible." Even though they may be hard to see, the presence of "pillars"

between wall layers in the type material of *Senoniasphaera* (Clarke & Verdier 1967, ig. 24, pl.

572 14, figs 7–8) undermines the generally accepted current distinction between *Canningia* and

- *Senoniasphaera* based on holocavate versus ccircumcavate wall structure, a problem we return tobelow.
- 575
- 576
- 577 578

4. The challenge of intergradation

579 **4.1.** Introduction

Many of the genera discussed in the present study exhibit internal variation and external 580 intergradation with other genera. As demonstrated by the literature review above, these factors 581 have caused extensive discussion and great confusion. Although few papers have addressed the 582 taxonomy of the Cyclonephelium group in recent decades, we consider that the generic 583 584 circumscriptions need to be further rationalised to enhance the practical utility of the group. A more concise delineation of the generic circumscriptions will improve communication and 585 identification. However, any resolution must strictly respect the morphology of the 586 nomenclatural types, although not necessarily the morphological concepts expressed by the 587 original authors, not least because our understanding of dinoflagellate cyst morphology has 588 evolved over the years. A resolution should respect existing taxonomic treatment and aspire to 589 pragmatic application insofar as possible. Ideally, the morphological circumscriptions of related 590 or similar genera should reflect a hierarchy of characters. We discuss the various features that 591 592 could be used taxonomically, given that paratabulation and archaeopyle type do not vary in the Cyclonephelium group. The discussion that follows has been informed in part by observations on 593 Canadian material, which includes some species with abundant specimens in which the apparent 594 importance of the various morphological factors can be assessed — for example cyst ambitus 595 within many of the species studied is very variable, in contrast to general ornament type. 596

597

598 **4.2**. *Cyst ambitus*

599 The presence of a lateral horn is a distinctive character of ceratiacean cysts. We prefer the term

lateral horn to postcingular horn, since the position of such horns can impinge on the cingular

- area, sometimes substantially. Hence, the type of *Pseudoceratium*, *Pseudoceratium pelliferum*,
- with its single lateral horn, is unequivocally ceratiacean. However, the holotype of Aptea
- 603 *polymorpha*, the type of *Aptea*, has a lateral prominence produced by the ornamentation.

Antapical margins of many areoligeracean species vary from being rounded to having one 604 or two antapical bulges or, rarely, pointed prominences. Moreover, the degree of expression of 605 the apical horn or prominence is also highly variable in what would generally be considered a 606 single species. It might be useful to recognise some of these variations in ambitus outline at 607 species level, but this has not been previously attempted and would probably be difficult to apply 608 in an already taxonomically difficult group. In conclusion, cyst ambitus is critical in 609 distinguishing areoligeracean from ceratiacean cysts, but seems to have low value in 610 distinguishing genera within the Cyclonephelium group. 611

612

613 **4.3.** *Wall structure*

Most genera considered herein have an autophragm, usually covered with an ornament involving processes or crests of short to moderate height, the processes sometimes interconnected and/or arranged linearly. Exceptions to this general wall structure are the distinctly holocavate *Canningia*, the indistinctly holocavate to clearly circumcavate *Senoniasphaera*, and our new genus *Trimuridinium*, which has three separated wall layers. Wall structure tends to be intraspecifically stable, and hence of high hierarchical significance within the *Cyclonephelium* group.

621

622

4.4. Nature and distribution of the ornament

The ornament of the *Cyclonephelium* group may consist of linear elements, as in *Cyclonephelium compactum*, or free-standing elements such as spines, hairs or short processes, as in *Tenua hystrix*. In some cases, the ornament may contain a mixture of linear and free-standing elements, in which case we suggest that the generic assignment should be based on the predominant type.

627 Ornament in the *Cyclonephelium* group can vary from a general uniform covering to a 628 concentration on the periphery, with the mid-dorsal and mid-ventral areas devoid of 629 ornamentation. The peripheral concentration of ornament can be strongly to weakly developed. *Cauveridinium*, *Circulodinium* and *Cyclonephelium* are based on types with a peripheral
 concentration of ornament. In *Aptea* and *Doidyx*, ornamentation is more or less uniform. The
 type of *Tenua* is more intermediate in coverage, as discussed further below. The ornamentation
 may or may not reflect tabulation. In *Cerbia*, paratabulation is indicated by penitabular rows of
 processes or other elements. *Canninginopsis* has rows of free-standing elements, typically
 tubercles, marking the parasutures.

- 636
- 637
- 638 5. A proposed resolution
- 639

In determining an appropriate hierarchy of morphological features for dinoflagellates,
paratabulation is considered fundamental (Fensome et al. 1993). Even in cases where the group
to be classified has a uniform paratabulation, some aspect of paraplate shape may be available:
an example is the shape of the 2a paraplate in wetzelielloideans (Williams et al. 2015). However,
among areoligeraceans the paratabulation is remarkably stable, as are features associated with
the archaeopyle. Therefore, we must use other features, even though whatever we choose will
tend to cut across what appear to be natural intergradations.

The separation of areoligeraceans from morphologically intergrading ceratiaceans is 647 primarily focused on the genus Aptea. Because its type, the holotype of Aptea polymorpha, has a 648 lateral prominence (not a horn) developed by ornament, and that other specimens in the 649 protologue show no such feature, we propose that Aptea be considered an areoligeracean. We 650 consider that the distinction between areoligeraceans and ceratiaceans be based on the 651 652 development of a distinct right-lateral horn produced by the central body (autophragm/endophragm) of the cyst as in the ceratiaceans, not by ornament alone as in the 653 areoligeraceans. On that basis, all specimens of Aptea polymorpha illustrated in the protologue 654 can be considered areoligeraceans. We recognise that this is to some extent still arbitrary (as 655

discussed in section 8), but it seems to us the most practical way to proceed.

Next, we need to consider how *Cyclonephelium* group areoligeraceans themselves are best
subdivided into genera. Perhaps the clearest distinction within the group can be based on wall
structure. Genera based on cavate cysts are *Canningia* and *Senoniasphaera*. The currently

660 generally accepted distinction between these two taxa is that *Canningia* has structures connecting

the two wall layers and *Senoniasphaera* lacks such structures. However our revisiting of the

662 protologue of the type of Senoniasphaera, Senoniasphaera protrusa, reveals that Clarke and

663 Verdier (1967) acknowledged the presence of perforated pillars between wall layers sometimes

664 "hardly visible". We propose that *Canningia* be retained for holocavate forms with dense

supporting structures and a generally narrow pericoel, and that *Senoniasphaera* be redefined to

666 encompass cavate species with no or very sparse connecting structures and a generally wide

667 pericoel. A third genus, *Trimuridinium*, is proposed to encompass a single species,

668 Senoniasphaera whitenessense, with three separate wall layers.

In the early years of study of Cyclonephelium group taxa, emphasis was placed more on 669 distribution of ornament, especially its commonly marginate nature, rather than whether the 670 ornament was linear or free-standing. This is evidenced by the observation that Cyclonephelium 671 itself became more closely identified with Cyclonephelium distinctum, with free-standing 672 ornament, than the type, Cylonephelium compactum, which has linear ornament. An example is 673 the generic synopsis of Cyclonephelium by Stover and Evitt (1978), as discussed above. In more 674 recent studies the emphasis seems to have reversed, as witnessed by the increased use of the 675 genus *Circulodinium* for forms with free-standing ornament for example by Jansonius (1986) 676 and Helby (1987). We propose to retain the separation of forms with linear and free-standing 677 ornament as a higher order distinction, and then use marginate versus uniform distribution of 678 679 ornament as a lower order distinguishing feature (among non-cavate forms in which the ornament does not clearly define paratabulation). Neither of these distinctions is completely 680 clearcut, but the alternative is to have unhelpfully large genera with excessively broad 681 682 definitions. Cyclonephelium fills the need for a genus with marginate linear ornament, and Aptea, considered here as an areoligeracean, can accommodate forms with uniformly distributed linear 683 ornament. We consider Cauveridinium and Cassidium to be taxonomic junior synonyms of 684 Cyclonephelium and Aptea respectively. Of forms with free standing ornament, Circulodinium is 685 based on a type with a marginate distribution of ornament and the type of *Doidyx* has uniformly 686 distributed ornament. However, Tenua is senior to both Circulodinium and Doidyx and its 687 ornament distribution has been long-debated (see subsection 3.4). We conclude from most 688 published illustrations of the type of Tenua (the holotype of Tenua hystrix) that it does not show 689

dorsal and ventral surfaces devoid of ornament, and hence we propose that *Tenua* be used for species with (more or less) uniformly distributed free-standing ornament. Hence, in this concept, *Tenua* becomes the senior taxonomic synonynm of *Doidyx*, and *Circulodinium* becomes the senior name for forms with marginate free-standing ornament. We propose that *Cerbia* be retained for forms with penitabular ornament, with little or no ornament in the central areas of paraplates; and *Canninginopsis* be retained for forms with parasutural ornament, free-standing or linear. These generic concepts are illustrated in Fig. 3.

One further issue needs to be resolved — how to distinguish forms in the Cyclonephelium 697 group from those of the Areoligera-Glaphyrocysta complex. Both groups of dinoflagellate cysts 698 have a variety of linear and free-standing ornament, but it is generally understood that the former 699 has relatively low ornament and the latter relatively high ornament: to our knowledge, however, 700 701 exactly how high and how low has never been defined. We suggest that the Cyclonephelium group be restricted to forms with ornament generally 25% or less in length compared to the 702 maximum cyst width; and the Areoligera-Glaphyrocysta complex be restricted to forms in 703 704 which the ornament is general greater than 25%. From our experience we consider that this will provide a practical distinction that will generally maintain existing usage. We add this feature to 705 the diagnosis/synopsis of genera as appropriate. 706

707

708 (Please insert Figure 3 near here)

709 710

6. Systematic palaeontology

711

Appendix 2 provides a listing of genera and species in the *Cyclonephelium* group and *Pseudoceratium* accepted as correct (*sensu* ICN) in Williams et al. (2017) with their status
according to the present work. We include two sets of figures illustrating *Cyclonephelium* group
and *Pseudoceratium* species. The first is a batch illustrating our new material of selected species
(Figs 4–11) and the second set presents reproductions of the holotypes of many of the species
treated herein (Figs 12–20). Figs 4–20 are inserted throughout section 6.
All specimens newly illustrated herein are are curated in the National Collection of Type

719 Invertebrate and Plant Fossils, Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario,

720	Canada K1A 0E8. At the time of writing, these specimens are on long-term loan to GSC		
721	Atlantic, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada B2Y 4A2. In		
722	Appendix 3 these specimens are designated by GSC collection numbers.		
723			
724	Cyclonephelium group taxa and Pseudoceratium		
725			
726	Division Dinoflagellata (Bütschli 1885) Fensome et al. 1993		
727	Subdivision Dinokaryota Fensome et al. 1993		
728	Class Dinophyceae Pascher 1914		
729	Subclass Peridiniphycidae Fensome et al. 1993		
730	Order Gonyaulacales Taylor 1980		
731	Suborder Gonyaulacineae (autonym)		
732	Family Areoligeraceae Evitt 1963b		
733			
734	Genus Aptea Eisenack 1958 emend. nov.		
735	1958 Aptea Eisenack, p. 393.		
736	1967 Cassidium Drugg, p. 22.		
737			
738	Type. Eisenack 1958, pl. 22, fig.5, as Aptea polymorpha.		
739			
740	Emended Diagnosis. Areoligeracean cysts that are proximate to proximochorate, with ornament		
741	height less than 25% of maximum cyst width. Central body dorsoventrally compressed, ambitus		
742	subcircular to lenticular, with a rounded to more commonly asymmetrical antapex and an apical		
743	horn; lateral horns or prominences formed by the central body are absent, although a lateral		
744	prominence may be formed by ornament. Acavate. Ornamentation consisting of linear elements		
745	such as crests or ridges, or free-standing elements that are in large part fused or connected to		
746	adjacent elements; ornament is more or less uniformly distributed over the cyst. Archaeopyle		
747	apical, with formula $A_{(1-4')}$, operculum free; parasulcal notch offset to the left.		
748			
749	Comments. As expressed above, Aptea is here considered an areoligeracean genus and not, as		

determined by some authors, a taxonomic junior synonym of Pseudoceratium. It is distinguished 750 by ornament that is entirely or for the most part composed of linear elements, and this ornament 751 is not absent dorsoventrally, although it may be reduced. Cyclonephelium also has predominantly 752 753 linear sculptural elements but has dorsoventral areas devoid of ornament. Eisenack (1958, p. 393) provided the following diagnosis for Aptea: 754 755 Shell compressed oval in cross-section, in outline irregularly triangular with convex 756 sides and 3 (or 4?) small protruding horns, which can be largely reduced, so that the 757 outline is very variable and therefore tends to appear oval to circular. [Translation] 758 759 The "small protruding horns" mentioned by Eisenack (1958) are absent in most specimens 760 761 illustrated in the protologue of the type and hence, as Eisenack (1958) also noted, specimens tend to be oval to circular. Among the specimens that do have a small protruding right-lateral horn, 762 including the type, the protrusion is produced by the ornament, not the central body. Thus, Aptea 763 764 can be distinguished from *Pseudoceratium* in lacking a lateral horn or prominence produced by the central body. 765 Cassidium is also an areoligeracean with more or less uniformly distributed linear 766 ornament; and hence we consider it to be a taxonomic junior synonym of Aptea. Drugg (1967, p. 767 22) originally described *Cassidium* as follows: 768 769 Test crudely circular in outline. Wall thick, rugulate to imperfectly reticulate. 770 Tabulation present consisting of apical and antapical plates plus several large 771 772 equatorial plates. No girdle or longitudinal furrow present. The test opens by means of an apical archeopyle, the line of separation being zigzag. 773 774 Accepted species. 775 776 777 Aptea cassis sp. nov. 778 (Figs 4 A–N) 779

Holotype. Fig. 5C, from the lowermost Slater River Formation (uppermost Albian or lower 781 Cenomanian), Hume River section, Northwest Territories, Canada. Sample 07-Peel-43, 724.5 m 782 783 from base of section, slide 5262-012C, coordinates 190x0909, England Finder T33-2; GSC type number 139874, curated in the National Collection of Type Invertebrate and Plant Fossils, 784 Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario, Canada K1A 0E8. At the time 785 of writing, this specimen was on long-term loan to GSC Atlantic, Bedford Institute of 786 Oceanography, Dartmouth, Nova Scotia, Canada B2Y 4A2. See also Appendix 3 herein and 787 Fensome (2016) for further details. 788 789 Derivation of name. From the Latin cassis, meaning hunting net or snare, in reference to the 790 791 reticulate nature of the ornament. The epithet is a noun in apposition. 792 **Diagnosis.** A species of *Aptea* with a coarse reticulum formed of simple low membranous crests; 793 794 there are no free-standing elements. The reticulum is distributed across the dorsal and ventral surfaces, although it may be somewhat more weakly developed in mid-ventral and mid-dorsal 795 areas. The antapex is symmetrical or asymmetrical, with developments of two usually unequal 796 antapical protuberances or horns. 797 798 Dimensions. Overall width 62 (71) 80 µm (range of 13 specimens); overall length (operculum in 799 place) 77 (83) 90 µm (range of 4 specimens); overall length (operculum absent) 60 (70) 81 µm 800 (range of 8 specimens). Holotype: Overall width 62 µm; overall length (operculum in place) 77 801 802 μm. 803 **Comments.** This species is characterised by a simple network of low crests; no additional 804 convoluted or free-standing elements occur. The ornament of Aptea polymorpha tends to be 805 higher and more convoluted. Aptea cassis also resembles Cyclonephelium compactum, but the 806 latter has distinct dorsoventral areas devoid of ornament and higher and generally more 807 convoluted muri. Extreme variants have a bulging lateral protuberance formed by the 808 endophragm, but otherwise clearly belong to this species. 809

811	Stratigraphical occurrence. Aptea cassis occurs in the lowermost part of the Slater River		
812	Formation on the Mackenzie Plain, previously dated as early Cenomanian in age based on rare		
813	ammonites, fish scale and lithostratigraphical correlation, but dated by Fensome (2016) as latest		
814	Albian based on dinoflagellate cysts.		
815			
816			
817	Aptea fragilis (Harris 1965) comb. nov.		
818	(Fig. 12 A)		
819	1965 Ovoidites fragilis Harris 1965, p. 97, pl. 27, figs 4-5		
820	1967 Cassidium fragile (Harris) Drugg, p. 22.		
821			
822	Comments. Originally described as a pollen species by Harris (1965), Drugg (1967, p. 22)		
823	recognised the dinoflagellate affinity of the holotype and provided a revised diagnosis. He noted		
824	that it had a relatively thick wall (2–3 μ m), and that its " outer surface [is] rugulate to		
825	imperfectly reticulate, the rugulae being low, thick, and rounded." The cyst surface appears to		
826	have ridges that appear initially to be parasutural, but they may not actually reflect tabulation; for		
827	example, no paracingulum is evident. The ridges may represent a very coarse reticulation		
828	superimposed on a finer rugulate-reticulate pattern that covers the whole surface. The presence		
829	of apparent parasutures led Drugg (1967) to compare Cassidium (now Aptea) fragile with		
830	Canninginopsis denticulata, noting as differences the lack of a paracingulum and much thicker,		
831	rugulate wall in the former.		
832	Although the coarser reticulum of Aptea fragilis may not reflect plate boundaries, the		
833	holotype clearly reflects tabulation in the archaeopyle outline and accessory archaeopyle sutures		
834	between precingular paraplates. The holotype is bowl shaped rather than lenticular, but the		
835	parasulcal notch appears to be offset; Drugg (1967) noted that antapical lobes are sometimes		
836	present. Therefore, it seems reasonable to consider this species to be an areoligeracean.		
837			
838	Stratigraphical occurrence. Harris (1965) recorded this species from the Lower Eocene of		
839	Victoria, Australia. According to Drugg (1967) it is abundant in the Maastrichtian–Danian		

840	interval of California, USA.
841	
842	
843	Aptea polymorpha Eisenack 1958
844	(Fig. 12 B)
845	1958 Aptea polymorpha Eisenack, p. 394, pl. 22, figs 5–12; pl. 24, fig. 5.
846	1986 Pseudoceratium polymorphum (Eisenack) Bint, p. 145.
847	
848	Comments. Eisenack (1958, p. 394) provided the following diagnosis for Aptea polymorpha:
849	
850	Body flat, irregularly triangular in outline with convex sides and distinctly
851	prominent 'horns', standing out from a strongly rounded and dark inner body,
852	surrounded by a more or less complete border. The surface is covered by a very
853	irregular fully developed low network of ridges, which forms a more or less fine-
854	meshed, but indistinct honeycomb pattern. The ridges spread in a somewhat radial
855	trend onto the delicate, unevenly broad border, whose edges seldom form a smooth
856	line, but commonly appear jagged and fragmented. Of the 3 (or 4?) [potentially]
857	developed horns all but one may be more or less rudimentary. [Translation]
858	
859	For further discussion of this species and the reason for retaining it as Aptea polymorpha, see
860	under the genus Aptea.
861	
862	Stratigraphical occurrence. Eisenack (1958) recorded Aptea polymorpha from the Aptian of
863	northern Germany. Costa & Davey (1992) restricted the species to the Aptian. According to
864	Stover et al. (1996), the stratigraphical range is late early Aptian to latest Albian.
865	
866	
867	Aptea? retirugosa (He Chengquan 1991) comb. nov.
868	(Fig. 12 C)
869	1991 Canningia retirugosa He Chengquan, p. 56; pl. 8, fig. 11.

870	2009	Kallosphaeridium retirugosum (He Chengquan) He Chengquan et al., p. 164.		
871	2016	Canningia? retirugosa He Chengquan; Wood et al., p. 69-71.		
872				
873	Comn	nents. This species was originally described in Chinese with a single illustration, which		
874	appear	appears to show an areoligeracean with linear ornament. Thus, it does not belong in		
875	Kallosphaeridium, which is a gonyaulacacean with five climactal paraplates (Jan du Chêne &			
876	Adediran 1985, Wood et al. 2016). Wood et al. (2016) tentatively retained this species in			
877	Canningia, but as a cyst with a single wall layer and probably linear ornament (although possibly			
878	affecte	ed by corrosion), this species better fits the definition of Aptea. Hence, we questionably		
879	transfer it to Aptea, but recommend that the name be restricted to the holotype, pending further			
880	study.			
881				
882	Strati	graphical occurrence. He Chengquan (1991) recorded this species from the Upper		
883	Cretac	eous of China		
884				
885				
886		Aptea rotundata (Cookson & Eisenack 1961) comb. nov.		
887		(Fig. 12 D)		
888	1961	Canningia rotundata Cookson & Eisenack, p. 72, pl. 12, figs 1-5.		
889	1962	Cyclonephelium paucimarginatum Cookson & Eisenack, p. 494, pl. 6, fig. 5-7.		
890	1978	Canningia? rotundata Cookson & Eisenack: Stover & Evitt, p. 25.		
891	1980	Batiacasphaera rotundata (Cookson & Eisenack) Dörhöfer & Davies, p. 41.		
892	1987a	Circulodinium vermiculatum Stover & Helby, p. 230, figs 4A-M.		
893				
894	Comn	nents. Cookson & Eisenack (1961, p. 72) described this species as having a wall "of		
895	variab	le thickness, $c 2-5 \mu$, closely covered with a dense indistinctly vermiculate pattern." The		
896	wall is	thus single layered, with ornament of linear elements, and so fits with Aptea rather than		
897	Canni	ngia. Although the epithet implies a bowl-shaped body, the holotype is asymmetrical,		
898	attesti	ng to its areoligeracean affinity.		
899]	n describing Cyclonephelium paucimarginatum, Cookson & Eisenack (1962) noted that		

900 the cyst has "... a narrow, continuous circumferential zone in which the sculptural elements, in 901 the form of short, wavy ridges, are densely arranged and often intertwined. The general surface 902 ... is finely to coarsely granular to vermiculate, the individual elements coarser and more widely 903 spaced on the central region of each side." Thus, the ornament is continuous, as is clear from the 904 illustrations of the type material. We consider *Cyclonephelium paucimarginatum* to belong to 905 *Aptea*, as a taxonomic junior synonym of *Aptea rotundata*, the type material of which also has 906 vermiculate ornamentation.

Stover & Helby (1987a, p. 230) described *Circulodinium vermiculatum* as lenticular
(although their illustrations show mainly specimens with a regularly bowl-shaped ambitus), with
very irregular vermiculate ornamentation that varies considerably over the cyst. They did not
compare *Circulodinium vermiculatum* with *Aptea rotundata*, although we consider the two as
synonymous.

912

Stratigraphical occurrence. Cookson & Eisenack (1961) recorded Aptea (as Canningia) 913 914 rotundata from the Senonian of Australia. The term "Senonian" is a former term for a Late Cretaceous epoch generally considered to encompass the Coniacean to Campanian interval but 915 sometimes defined as including the Maastrichtian - we are uncertain as to the definition applied 916 by Cookson and Eisenack (1961) Cookson & Eisenack (1962) described Cyclonephelium 917 paucimarginatum from the ?late Albian to Cenomanian of Australia. The type material of 918 919 Circulodinium vermiculatum is from the late Hauterivian to Barremian of offshore Western 920 Australia. 921 922 Aptea? spongireticulata (Prössl 1990 ex Prössl 1992) comb. nov. 923 924 (Fig. 12 E) Canningia spongireticulata Prössl, p. 97, pl. 13, figs 2, 5, 13 (name not validly published; 925 1990 lodgement of holotype not specified). 926 1992 Canningia spongireticulata Prössl ex Prössl, p. 113–114. 927 928 Comments. Prössl (1990, p. 97) provided the following diagnosis and description for this 929

930	species.		
931			
932	Diagnosis: Spherical to polygonal cysts with a spongeous ectophragm, [formed] by a		
933	coarse-meshed reticulum. Description: The two-walled cyst exhibits a smooth or		
934	porous ectophragm. This is divided by spongeous septa. The septal pattern shows		
935	a coarse-meshed, polygonal reticulum, which appears to follow the paratabulation		
936	formula 4', 6'', Xc, 6''', 1p, 1''''. The archaeopyle corresponds to type tA.		
937	[Translation; two paragraphs combined]		
938			
939	Although Prössl (1990) mentioned a "spongeous" ectophragm, it seems that the ornament		
940	consists of an autophragm bearing an extremely coarse reticulum with high septa. Prössl (1990)		
941	interpreted the reticulum as directly reflecting tabulation. Such a morphology fits better with		
942	Aptea than Canningia and hence we make the reassignment here. However, the material		
943	illustrated by Prössl (1990) seems more bowl shaped than lenticular and the characteristic		
944	areoligeracean asymmetry is at best weakly shown; thus, we question the assignment to Aptea.		
945			
946	Stratigraphical occurrence. Prössl (1990) recorded this species from the late Albian to middle		
947	Turonian of Saxony, Germany.		
948			
949			
950	Aptea uncinata (Norvick 1976) comb. nov,		
951	(Figs 4 Q–S, 12 F)		
952	1976 Adnatosphaeridium uncinatum Norvick, p. 74–75, pl. 8, figs 11–12.		
953	1978 Cyclonephelium uncinatum (Norvick) Stover & Evitt, p. 36.		
954			
955	Comments. In his diagnosis of Adnatosphaeridium uncinatum, Norvick (1976, p. 74) described		
956	the ornament as follows:		
957			
958	Processes numerous, short, solid, narrow, and parallel-sided. Processes divide		
959	distally into narrow, flattened, smooth, unbranched aculei, which unite with those		

960	from adjacent processes. Processes similar or slightly longer at the antapex.
961	
962	In the description, Norvick (1976, p. 75) expanded on the details as follows:
963	
964	The central body bears numerous straight, parallel-sided, solid processes with
965	slightly expanded bases, about 3 to 5 μ m apart. They are 0.5 to 1 μ m in diameter
966	(most are about 1 μ m) and 5 to 10 μ m in length. Distally they divide into ribbon-like
967	aculei (0.5 to 1 μ m wide), which become recurved and connect with those from
968	adjacent processes. The aculei bear no spines and are seldom branched. The overall
969	appearance of the processes is of a series of simple loops standing out from the
970	central body wall. They are variably arranged but appear to be more closely set
971	around the periphery. They are slightly longer at the antapex. The dorsal and ventral
972	faces sometimes bear slightly smaller processes, arranged in soleate and linear
973	complexes.
974	
975	Thus, although some apparently paratabulation-related arrangement to the ornament exists, as
976	does some differentiation between dorsoventral and lateral surfaces, the dorsoventral surfaces not
977	entirely devoid of ornament. This distribution, together with the linked (i.e. linear) nature of the
978	processes, prescribe an assignment to Aptea.
979	Cyclonephelium compactum has dorsoventral areas devoid of ornament, which is typically
980	more complex than that of Aptea uncinata. Aptea polymorpha has distinct muri rather than
981	linked processes. The arrangement of the processes into soleate complexes in Aptea uncinata is
982	not readily apparent on the illustrations of the type material, although the ornament is clearly
983	bunched, the bunches likely reflecting tabulation. This might be useful as a diagnostic criterion
984	for the species, but was not apparent in the material newly illustrated herein.
985	
986	Stratigraphical occurrence. Norvick (1976) recorded this species from the Cenomanian of
987	northern Australia.
988	
989	

990	Aptea? vannophora (Davey 1969) comb. nov.	
991	(Fig. 12 G)	
992	1969 Cyclonephelium vannophorum Davey: 168, 170; pl. 9, fig. 3; pl. 11, figs 11–12; text-f	ig
993	16E.	
994		
995	Comments. This species, which has been used as a stratigraphical marker, was described by	
996	Davey (1969, p. 168) as follows:	
997		
998	The processes vary greatly in size from mere enlarged granules (0.5 μ) to 8 μ in length	ı. In
999	the larger processes the stem is quite narrow, the distal third widening rapidly and	is
1000	sometimes bifurcate. The processes are often joined to form a short line on the shell	
1001	surface. Rarely the cingulum is just discernible by a concentration of small processes	
1002	along its borders.	
1003		
1004	The close-up of the holotype (Davey 1969, pl. 9, fig. 3) shows very fine hairs that may join,	
1005	splay or thicken distally, forming a kind of filigree pattern, and in plan view commonly form	
1006	linear clumps. However, subsequent photographs of the holotype by Iain Prince show that thi	S
1007	"filigree" development is localised and the ornament over areas of the cysts appears free-	
1008	standing (Martin Pearce, personal communication 2018). Thus, this species is intermediate	
1009	between Aptea and Tenua, and hence we question its assignment to the former. Aptea?	
1010	vannophora closely resembles Tenua hystrix, the difference (at least in theory) being that the	
1011	former has predominantly interconnected (i.e. linear) ornament and the latter has predominan	tly
1012	free-standing ornament. However, it may be difficult in future to retain both species separatel	y.
1013	Although Davey (1969) did not specifically mention whether ornament is present or aba	sent
1014	dorsoventrally, from the full illustration of the holotype of Aptea vannophora (Davey, 1969, 1	pl.
1015	11, fig. 11) the mid-ventral area appears to bear a less intense ornament cover than peripheral	l
1016	areas. Nevertheless, the dorsoventral areas do appear to bear ornament, which accords with a	n
1017	assignment to Aptea.	
1018	Davey (1969) noted that Cyclonephelium vannophorum " is most closely comparable	e to
1019	?C. attadalicum The processes are similar in form but the shell of ?C. attadalicum is more	e

1020	polygonal and the cingulum is always well defined." For us, the main difference between these		
1021	two species is that Cyclonephelium (now Tenua) attadalicum appears to have isolated processes		
1022	whereas Aptea vannophora (as represented in the holotype) has hair-like processes that tend to		
1023	join and clump. However, the processes of the former are quite hair-like, so a re-examination of		
1024	the typ	be material of both species may reveal a closer resemblance.	
1025			
1026	Strati	graphical occurrence. Davey (1969) recorded Aptea vannophora (as Cyclonephelium	
1027	vannophorum) from the Cenomanian of southern England.		
1028			
1029			
1030		Genus <i>Canningia</i> Cookson & Eisenack 1960	
1031	1960	Canningia Cookson & Eisenack, p. 251.	
1032	1980	Canningia Clarke & Verdier; emend. Dörhöfer & Davies, p. 36.	
1033	1980	Hashenia Yu Jingxian & Zhang Wangping, p. 107.	
1034	1981	Canningia Clarke & Verdier; emend. Below, p. 30 (however, see Hedlund & Norris	
1035		1986, p. 295).	
1036	1987	Canningia Clarke & Verdier; emend. Helby, p. 321–322.	
1037			
1038	Туре.	Cookson & Eisenack 1960, pl. 38, fig. 1, as Canningia reticulata.	
1039			
1040	Synop	sis. Areoligeracean cysts that are proximate, dorsoventrally compressed, lenticular, with	
1041	asymn	netrical to rounded antapex and a generally short apical prominence. Holocavate with	
1042	genera	ally narrow pericoel; the connections between endophragm and periphragm generally	
1043	densel	y distributed and may be in linear (muri) or isolated elements (pillars). Periphragm	
1044	continuous or discontinuous, generally smooth or with ornamentation of low relief. Archaeopyle		
1045	apical	, with formula $A_{(1-4')}$; operculum free or attached; parasulcal notch offset to the left.	
1046			
1047	Rema	rks. Cookson & Eisenack (1960, p. 251) provided the following description for	
1048	Canni	ngia:	

1050Shell flattened, roughly five-sided to almost circular with a slight apical prominence1051and a broadly indented base. The basal projections (corresponding to antapical horns)1052are either equal or unequal and frequently differ slightly in shape. An equatorial1053girdle is either absent or faintly indicated both on the surface or by re-entrant angles1054at the sides. The shell opens by a proximal break which results in the complete1055detachment of the apical region.

1056

Wall structure was clearly not considered an important feature of this genus at the outset. In
contrast, as discussed above, we regard the wall structure as a critical feature in distinguishing
genera within the *Cyclonephelium* group, and define *Canningia* primarily on its holocavate wall
structure.

Senoniasphaera is similar to Canningia in being cavate, but connecting structures are
 absent, sparse, or barely visible under the light microscope (see also discussion under
 Senoniasphaera). The pericoels are also generally broader in dorsoventral view in
 Senoniasphaera. In Renidinium, the walls are separated in mainly ventral marginal areas so that
 in apical view they project ventrally.

We consider the emendations of *Canningia* by Below (1981) and Helby (1987) as useful in developing our current concept of *Canningia*, but not that by Dörhöfer & Davies (1980); see the introductory sections for a full discussion of the contributions of these authors. At present, the genus contains species with an overall holocavate structure (as in the type) and species in which the holocavation is restricted to the ambital periphery of the cyst. Separation of the latter group of species into their own genus might merit future consideration.

1072

1073 Accepted species.

- 1074
- 1075
- 1076
- 1077

1078 1962 Cyclonephelium clathromarginatum Cookson & Eisenack, p. 495, pl. 6, figs 1–4.

Canningia? clathromarginata (Cookson & Eisenack 1962) comb. nov.

(Fig. 12 H)
1080	Comments. Cookson & Eisenack (1962, p. 495) described this species as follows:
1081	
1082	Shell flat, subcircular to approximately oval in plan aspect, with a circumferential
1083	border zone delimited by low and straight or fluted clathrate edges The edges are
1084	usually deepest in the antapical region and connected at wide intervals by short,
1085	narrow ridges The sculpture of the shell varies from finely to coarsely
1086	granular or vermiculate.
1087	
1088	The "circumferential border zone" appears to be a reflection of a distinctive peripheral
1089	holocavate structure. The type material consists of large cysts, all greater than 100 µm in length
1090	and width. We transfer this species to Canningia because it appears to be partially holocavate,
1091	but we do so questionably pending further clarification of the wall structure.
1092	
1093	Stratigraphical occurrence. Cookson & Eisenack (1962) recorded this species from the Albian
1094	to Cenomanian of Australia.
1095	
1096	
1097	Canningia crassimarginata (Cookson & Eisenack 1974) comb. nov.
1098	(Fig. 12 I)
1099	1974 Cyclonephelium crassimarginatum Cookson & Eisenack, p. 74–75, pl. 28, figs 1–4.
1100	
1101	Comments. Cookson & Eisenack (1974, p. 74–75) provided the following diagnosis for this
1102	species.
1103	
1104	A species of Cyclonephelium with a more or less strongly rounded border, with
1105	perpendicular [?], strong, radial, but irregularly structured and arranged supports,
1106	which are covered and connected by a more or less wide, smooth bordering
1107	membrane. As usual with Cyclonephelium species, the base of the supports originate
1108	around the margin on both of the flat sides of the shell; the membrane is thus double,
1109	which of course is difficult to discern. The surface of the shell is distinctly granular.

1111	The presence of an outer wall layer (periphragm) and relatively densely arranged supporting	
1112	structures indicates that this species belongs in Canningia rather than Cyclonephelium, and we	
1113	effect the transfer here. The periphragm and supporting processes appear to be restricted to	
1114	peripheral areas.	
1115		
1116	Stratigraphical occurrence. Cookson & Eisenack (1974) described this species from the middle	
1117	Cretaceous of Australia.	
1118		
1119		
1120	Canningia duxburyi Harding 1990 ex Williams et al. 1998	
1121	(Fig. 12 J)	
1122	1990 Canningia duxburyi Harding, p. 22–23, pl. 5, figs 1–13; text-fig. 8 (name not validly	
1123	published — lodgement of holotype not specified).	
1124	1998 Canningia duxburyi Harding ex Williams et al., p. 88.	
1125		
1126	Comments. Harding (1990, p. 22–23) differentiated Canningia duxburyi from Canningia	
1127	reticulata in that "it has an ectophragm [outer wall layer] which clearly breaks into paraplate	
1128	related areas". Harding illustrated Canningia duxburyi through scanning electron microscope	
1129	(SEM) images. In our experience, some specimens of Canningia reticulata seen under the light	
1130	microscope do show suggestions of tabulation, which might be more clearly seen in SEM	
1131	images. Hence we question whether separation of the two species is justified, but retain	
1132	Canningia duxburyi as it is considered a useful biostratigraphic marker (Martin Pearce, personal	
1133	communication).	
1134		
1135	Stratigraphical occurrence. Canningia duxburyi was originally described from the upper	
1136	Hauterivian to lower Barremian of Norfolk, England.	
1137		
1138		
1139	Canningia fairfieldensis Willumsen 2012	

1140	(Figs 12 K–L)	
1141	2012 Canningia fairfieldensis Willumsen, p. 59–60, pl. 2, figs 1–6.	
1142		
1143	Comments. Willumsen (2012, p. 59) indicated that the autophragm [i.e. endophragm in our	
1144	terminology] in this species " is covered by numerous short isolated clavate processes which	
1145	are partly interconnected distally [by] an irregular perforate periphragm." The pericoel is	
1146	typically narrow, bulging to form two antapical prominences, and the ornament and periphragm	
1147	show no clear indication of paratabulation. This species is very similar to, and possibly a	
1148	taxonomic junior synonym of, Canningia areolata, although the difference in age of the	
1149	holotypes of the two species is considerable.	
1150		
1151	Stratigraphical occurrence. The species was originally described from the Early Paleocene of	
1152	New Zealand.	
1153		
1154		
1155	Canningia? filosa (Wilson 1988) comb. nov.	
1156	(Figs 12 M–N)	
1157	1988 Cassidium filosum Wilson, p. 14–15, pl. 2, figs 8a–b, 9; pl. 3, figs 2a–b.	
1158		
1159	Comments. Wilson (1988, p. 14–15) described this species as having a " relatively thick	
1160	reticulate or rugulate autophragm [i.e. endophragm in our terminology], and bearing short	
1161	irregular filamentous intratabular processes which are usually solitary but may occasionally be	
1162	joined distally." This description is difficult to relate to the original illustrations, which appear to	
1163	show a ragged membranous development arising from the reticulate autophragm, apparently	
1164	connected by a discontinuous periphragm. Given the apparent presence of a periphragm, we	
1165	questionably transfer this species to Canningia.	
1166		
1167	Stratigraphical occurrence. Canningia? filosa was originally described from the Paleocene of	
1168	New Zealand.	

1170	
1171	Canningia glomerata nom. nov. subst. pro Senoniasphaera rotundata Clarke & Verdier 1967
1172	(Fig. 12 O)
1173	1967 Senoniasphaera rotundata Clarke & Verdier, p. 62–63, pl. 14, figs 1–3; text-fig. 25.
1174	1999 Senoniasphaera rotundata Clarke & Verdier; emend. Prince et al., p. 162.
1175	
1176	Derivation of name. From the Latin glomeratus, formed into a ball, in reference to the shape of
1177	the inner body, following the same intent of the original species epithet.
1178	
1179	Comments. This species was proposed (as Senoniasphaera rotundata) by Clarke & Verdier
1180	(1967, p. 62-63) essentially for forms of Senoniasphaera in which the inner body " seldom
1181	protrudes into the horns" and with ornament consisting of "a combination of perforations and an
1182	irregular reticulum". Clarke & Verdier (1967) noted that:
1183	
1184	In the ideal case the outer membrane is closely attached to the inner body [i.e.
1185	autocyst/autophragm] by short perforated pillars except where the membrane is
1186	detached and expanded to form the horns. In atypical forms the outer membrane is
1187	detached over a larger and more irregular area and the attachment pillars become
1188	more visible.
1189	
1190	This species is thus holocavate with a relatively dense arrangements of connecting structures
1191	between wall layers. Thus we transfer it to Canningia under the substitute name Canningia
1192	glomerata. The new epithet is necessary because the name Canningia rotundata is preoccupied
1193	(Canningia rotundata Cookson & Eisenack 1961).
1194	
1195	Stratigraphical occurrence. Clarke & Verdier (1967) recorded Canningia glomerata (as
1196	Senoniasphaera rotundata) from the Senonian of the Isle of Wight, England. (Regarding
1197	"Senonian", see discussion under Aptea rotundata; we are uncertain as to exactly how Clarke &
1198	Verdier (1967) used this term.) Costa & Davey (1992) gave its stratigraphical range as earliest
1199	Coniacian to early Maastrichtian. Stover et al. (1996) considered the species to range from the

1200	Coniacian to early Maastrichtian. Williams et al. (2004) placed its FAD within the early
1201	Turonian and its LAD within the late Campanian. Martin Pearce (personal communication)
1202	considers the range to be Coniacian to Campanian.
1203	
1204	
1205	Canningia grandis Helby 1987
1206	(Figs 12 Q–T)
1207	1987 Canningia grandis Helby, p. 324–326, figs 29A–D, 30A–D.
1208	
1209	Comments. Helby (1987, p. 324–326) noted that the "supports" of the outer wall layer are "
1210	generally substantial, up to 9 μm long, up to 1.5 μm thick at base but thickening to 2.5 μm where
1211	[sic] they anastomose into the ectophragm." From Helby's illustrations, the structure seems to be
1212	a coarse reticulum with lumina of variable diameter supporting a reticulum. There is no obvious
1213	reflection of the tabulation other than the furrows (weakly) and archaeopyle. Although the name
1214	suggests large cysts, overlap exists between the size range of Canningia grandis and that of the
1215	type material of Canningia reticulata. Helby (1987, p.324–326) noted that Canningia pistica is
1216	" usually smaller and shows a wider range of parasutural alignment of ectophragm supports
1217	" And that Canningia reticulata has " more delicate, densely packed, ectophragm supports
1218	and a very finely reticulate to rugoreticulate ectophragm". Helby (1987) considered that
1219	Canningia cf. reticulata of Duxbury (1977) may be conspecific with Canningia grandis. Harding
1220	(1990) listed Canningia cf. reticulata of Duxbury (1977) in synonymy with his new species,
1221	Canningia duxburyi.
1222	
1223	Stratigraphical occurrence. Helby (1987) recorded this species from the Hauterivian of
1224	offshore northwestern Australia.
1225	
1226	
1227	Canningia? hulinensis He Chengquan et al. 1999
1228	(Figs 13 A–C)
1229	1999 Canningia hulinensis He Chengquan et al., p. 192,199–200, pl. 1, figs 1–6; text-fig. 3.

1231	Comments. He Chengquan et al. (1999, p. 199) noted that the autophragm is " covered by a	
1232	great number of short processes which are slender, solid, unequal[ly] long, nontabular" On	
1233	the holotype the processes are " arranged in many groups, each group of 3 or 4 processes,	
1234	some or all groups of processes connected distally by pieces of smooth ectophragm which	
1235	is thickened, resulting in tuberous autophragm surface" The illustrations appear to show	
1236	short, irregular outgrowths from the endophragm, possibly resulting from corrosion. The species	
1237	may be a taxonomic junior synonym of Tenua scabrosa; but given its unclear morphology, we	
1238	retain it questionably in <i>Canningia</i> and suggest that it be restricted to the type material.	
1239		
1240	Stratigraphical occurrence. Canningia? hulinensis was originally described from the upper	
1241	Hauterivian to Barremian of Heilongjiang Province, China.	
1242		
1243		
1244	Canningia inconspicua (Duxbury 1983) comb. nov.	
1245	(Figs 5 H–O; 12 P)	
1246	1983 Cyclonephelium inconspicuum Duxbury, p. 32–33, pl. 3, fig. 6.	
1247		
1248	Comments. Duxbury (1983, p. 811) noted that this species has	
1249		
1250	" most distinctive [ornament] around the dorsal and ventral periphery [in the form	
1251	of] a punctate/microreticulate layer which is attached to the cyst [sic] by very short rods	
1252	(approximately 1 μ m in height). Local increases in ornament height are apparent above the	
1253	left antapical bulge and to the left of this [i.e. reflecting asymmetrical antapical	
1254	prominences]."	
1255		
1256	Duxbury (1983) compared this species with Cyclonephelium (now Aptea) vannophorum and	
1257	Cyclonephelium intonsum. However, neither of these species have a periphragm (Duxbury's	
1258	"punctate/microreticulate layer"), the presence of which leads us to transfer this species to	
1259	Canningia. The periphragm in Canningia inconspicua is far less continuous than in Canningia	

1260	<i>reticulata</i> and the reticulum is relatively poorly and inconsistently developed.	
1261		
1262	Stratigraphical occurrence. Duxbury (1983) described Canningia inconspicua (as	
1263	Cyclonephelium inconspicuum) from the upper Aptian of southern England.	
1264		
1265		
1266	Canningia keiemensis Louwye 1997	
1267	(Figs 13 E–H)	
1268	1997 Canningia keiemensis Louwye, p. 149, pl. 1, figs 1-6.	
1269		
1270	Comments. In erecting this species, Louwye (1997, p. 149) indicated that "The autophragm [i.e.	
1271	endophragm in our terminology] is relatively thick (approx. 2 μ m), scabrate and slightly	
1272	granular." Further, "Solid, pillar-like protrusions [up to $6 \mu m$ high] and irregular septa cover the	
1273	autophragm dorsally and laterally [and] are fibrous and flare distally and proximally. They	
1274	support a scabrate, perforate ectophragm [periphragm in our terminology]." The periphragm,	
1275	which forms a small, distinct apical horn and one or two antapical protrusions, has its widest	
1276	perforations in penitabular positions. Louwye (1997) noted that the periphragm is always absent	
1277	from the ventral surface, " where occasionally some isolated septa or pillarlike protrusions	
1278	occur." This species is distinguished by its thick wall, distinctive ornament and wall structure,	
1279	and the absence of the periphragm ventrally.	
1280		
1281	Stratigraphical occurrence. Louwye (1997) recorded this species from the uppermost	
1282	Cenomanian to Santonian of western Belgium.	
1283		
1284	Canningia macroreticulata Lebedeva in Ilyina et al. 1994.	
1285	(Figs 13 I–J)	
1286	1994 Canningia macroreticulata Lebedeva in Ilyina et al., p. 71, pl. 30, figs 6-7; pl. 31, figs 1-	
1287	6; text-fig. 10.	
1288		
1289	Comments. This species appears to be distinguished by its relatively coarse network of crests	

1290	supporting a periphragm, the structure absent or reduced dorsoventrally. Paratabulation seems
1291	well developed, a feature especially clear on the scanning electron images (Ilyina et al. 1994).
1292	
1293	Stratigraphical occurrence. Canningia macroreticulata was recorded from the upper Coniacian
1294	of Siberia.
1295	
1296	Canningia pistica Helby 1987
1297	(Figs 13 M–P)
1298	1987 Canningia pistica Helby, p. 326–327, figs 29E–L, 30E–L.
1299	
1300	Comments. This is a distinctive, well-illustrated species. Helby (1987, p. 326) noted that the two
1301	wall layers are " separated by supports up to 10 μ m in length, 0.5–2 μ m at base, often
1302	expanding distally to 3 μ m at their junctions with ectophragm [i.e. periphragm] reticulum." He
1303	further noted that the supports are variably distributed, "generally concentrated in the vicinity of
1304	parasutural boundaries, but also as intratabular clusters" He commented that the outer wall
1305	layer (periphragm) is thin, finely reticulate, and often incomplete in the parasulcal area. Although
1306	not tightly followed in detail by the ornament and outer wall layer, the general reflection of the
1307	tabulation is quite striking in a broad sense. Helby (1987, p. 327) indicated that Canningia
1308	grandis differs from Canningia pistica mainly in lack of clear reflection of the tabulation, and
1309	that Canningia reticulata has more densely packed autophragm supports and a finely reticulate
1310	to rugoreticulate periphragm.
1311	Helby (1987, p.326) noted that "Distinct lateral protrusions [are] evident at [the]
1312	paracingulum." However, as these do not appear from the original illustrations to be pronounced,
1313	and seem to be formed by the periphragm only, we do not consider their presence to put into
1314	doubt the affinity of this species with Canningia, and with areoligeraceans in general.
1315	
1316	Stratigraphical occurrence. Helby recorded Canningia pistica from the Hauterivian of
1317	Australia.
1318	
1319	<i>Canningia plera</i> (Duxbury 1983) comb. nov.

1320	(Fig. 13 D)	
1321	1983 Aptea plera Duxbury, p. 22, 25, pl. 1, figs 7–8, 11; pl. 10, fig. 3; text-figs 5–6).	
1322	1986 Pseudoceratium plerum (Duxbury 1983) Bint, p. 145.	
1323		
1324	Comments. Duxbury (1983, p. 22) noted that "Short, solid, distally and proximally flaring rods	
1325	cover paraplate areas and these are distally united by a fine reticulum. Parasutural areas are free	
1326	of such ornament." In ambital view, the reticulum appears as a more or less continuous	
1327	periphragm similar to that in many species of Canningia, including the type, Canningia	
1328	reticulata. Duxbury (1983) also stated that the species has well-developed right lateral and left	
1329	antapical horns and more weakly developed left lateral and right antapical horns may be	
1330	developed. However, especially in the holotype, the "horns" are actually prominences produced	
1331	by the ornament. Because of the presence of an outer wall layer (periphragm) and lack of a right	
1332	lateral horn produced by the inner wall layer (endophragm), we reassign this species to	
1333	Canningia.	
1334		
1335	Duxbury (1983, p. 25) further commented that:	
1336		
1337	Davey & Verdier (1974, p. 641) have stressed the 'typical and characteristic	
1338	asymmetry' of Aptea which they consider distinguishes that genus from similar	
1339	genera Such asymmetry has prompted the present author to include Aptea plera	
1340	in that genus. However, that species termed Canningia cf. reticulata in Duxbury,	
1341	1977 has been re-examined [and] the only relevant difference between A. plera	
1342	and C. cf. reticulata is the absence in the latter of the 'typical and characteristic	
1343	asymmetry' of Aptea, largely because of its lack of or possession of shorter	
1344	horns The presence or absence of the Aptea asymmetry may prove a difficult	
1345	criterion to maintain at generic level.	
1346		
1347	Thus Duxbury (1983) informally anticipated one of our major conclusions: that symmetry of the	
1348	inner body is not a useful generic criterion within the Cyclonephelium group.	
1349		

1350	Stratigraphical occurrence. Duxbury (1983) recorded this species from the lower Aptian of		
1351	southern England.		
1352			
1353		Canningia reticulata Cookson & Eisenack 1960	
1354		(Figs 5 A–G; 13 K–L)	
1355	1960	Canningia reticulata Cookson & Eisenack, p. 251, pl. 38, figs 1-2.	
1356	1960	Cyclonephelium areolatum Cookson & Eisenack, p. 253, pl. 38, fig. 8 (non fig. 7).	
1357	1977	Canningia palliata Brideaux, p. 11-12, pl. 3, figs 1-4.	
1358	1980	Hashenia reticulata Yu Jingxian & Zhang Wangping, p. 107, pl. 1, fig. 17; pl. 2, figs 1-2	
1359		(subsequently Canningia xinjianensis).	
1360	1980	Yalkalpodinium areolatum (Cookson & Eisenack) Morgan, p. 34.	
1361	1981	Cyclonephelium chabaca Below, p. 12–13, pl. 4, figs 9–11; pl. 9, figs 2–3; pl. 15, fig. 25.	
1362	1981	Cyclonephelium palliatum (Brideaux) Below, p. 10.	
1363	1981	Canningia reticulata Cookson & Eisenack; emend. Below, p. 32.	
1364	1987	Canningia reticulata Cookson & Eisenack; emend. Helby, p. 322-323.	
1365	1987	Cyclonephelium areolatum Cookson & Eisenack; Stover & Williams, p. 231.	
1366	1988	Canningia xinjiangensis Chen et al., p. 16 nom subst. pro Hashenia reticulata Yu	
1367		Jingxian & Zhang Wangping 1980.	
1368			
1369	Comn	nents. Canningia reticulata is distinguished by its finely reticulate periphragm and dense	
1370	system	n of supports. We follow Helby (1987) in synonymising Canningia palliata with	
1371	Cannii	ngia reticulata, and add the following taxonomic junior synonyms: Cyclonephelium	
1372	areola	tum, Cyclonephelium chabaca, Cyclonephelium inconspicuum and Canningia	
1373	xinjiar	agensis (formerly Hashenia reticulata).	
1374	(Cookson & Eisenack (1960, p. 253) described Cyclonephelium areolatum as comprising	
1375	cysts t	hat are circular to slightly oval in outline (i.e. ambitus), flat, and with " a peripheral	
1376	sculptured zone in the form of a thin, finely vermiculate or areolate membrane" with an		
1377	"unscu	Ilptured portion", presumably mid-ventrally and/or mid-dorsally. Cookson & Eisenack's	
1378	illustra	ation of the holotype (their pl. 38, fig. 8) appears to show a form very similar to Canningia	
1379	reticul	ata (the type of which is illustrated on the same plate) with a dark mid-dorsoventral area	

that these authors interpreted as unsculptured, and which presumably led them to assign this

- 1381 form to *Cyclonephelium* rather than *Canningia*. To us, the "areolation" described by Cookson &
- 1382 Eisenack (1960) reflects a holocavate wall very similar (if not identical) to that of *Canningia*
- *reticulata*, except for a dark, central "unsculptured" area. The latter feature we consider not
- 1384 sufficiently distinctive to justify retaining *Cyclonephelium areolatum* separately from *Canningia*
- 1385 *reticulata* and hence propose the synonymy.
- 1386
- Below (1981a, p. 12) provided the following diagnosis for Cyclonephelium chabaca.
- 1387

Proximate, nontabulate, lenticular central body of almost rounded outline, apically 1388 rounded or with a very low bulge. Low, broad apical horn frame-like, formed of 1389 periphragmal processes. Hypocyst asymmetrical with left antapical horn and 1390 1391 marginally displaced bulge [?], or rarely rounded. Ornamentation of numerous thin, process-bearing, delicate, fine-meshed reticulum covering the whole cyst with the 1392 exception of a broad ventrally located surface corresponding to the parasulcal zone. 1393 1394 Archaeopyle of type (A). The angular archaeopyle outline indicates six precingular paraplates and [paraplate] as [anterior sulcal]. Pandasutural bands are rarely partially 1395 developed. [Translation] 1396

1397

Below (1981a, p.13) appeared to suggest that *Cyclonephelium chabaca* differs from *Canningia reticulata* in that the periphragm in the former is mesh-like, whereas that of the latter is complete. However, in our view this difference does not accord with the original description and illustrations of *Canningia reticulata* (even with regard to the parasulcal hiatus in the outer wall layer), and so we consider *Cyclonephelium chabaca* to be a taxonomic junior synonym of *Canningia reticulata*. *Canningia xinjiangensis* (originally *Hashenia reticulata*) appears identical to *Canningia reticulata*.

1405

Stratigraphical occurrence. *Canningia reticulata* was originally described from the Tithonian
of Australasia. The type material of *Canningia areolata* is also from the Tithonian of Australia.
Brideaux (1977) recorded *Canningia palliata* from the Barremian of northwestern Canada. *Canningia xinjiangensis* was originally described from the Turonian to Maastrichtian of China.

1410	Below (1981a) recorded Cyclonephelium chabaca from the Aptian to Cenomanian of		
1411	southwestern Morocco.		
1412			
1413	Canningia rugulosa (Clarke & Verdier 1967) Stover & Evitt 1978		
1414	(Fig. 13 Q)		
1415	1967 Aptea rugulosa Clarke & Verdier p. 57–58, pl. 12, figs 5–6; text-fig. 23.		
1416	1978 Canningia rugulosa (Clarke & Verdier) Stover & Evitt, p. 25.		
1417			
1418	Comments. From its original description and illustrations, this species is clearly holocavate.		
1419	Clarke & Verdier (1967, p. 58) noted that the " inner body is attached to the outer membrane		
1420	except at the apex and antapex" And that "The outer membrane is wavy in outline, and gives		
1421	the appearance of a rugulation or an irregular reticulum." This wall structure and the apparent		
1422	offset position of the parasulcal notch (Clarke & Verdier 1967, pl. 12, fig. 5) accords with an		
1423	areoligeracean affinity, and with Canningia in particular. Although Clarke & Verdier (1967)		
1424	emphasised the rugulate nature of the ornament, this may be difficult to distinguish from the		
1425	ornament of Canningia reticulata, and thus the two species may be synonymous.		
1426			
1427	Stratigraphical occurrence. This species was originally recovered from the Santonian of the		
1428	Isle of Wight, England.		
1429			
1430	Canningia senonica Clarke & Verdier 1967		
1431	(Fig. 13 R)		
1432	1967 Canningia senonica Clarke & Verdier, p. 20–21, pl. 1, figs 12–14; text-fig. 7.		
1433			
1434	Comments. Clarke & Verdier (1967, p. 21) noted that the "Sculpture [consists of] thin irregular		
1435	processes up to 12 μ long which join distally to form an incomplete and irregular reticulum".		
1436	They distinguished Canningia senonica from Canningia reticulata by its higher reticulum.		
1437			
1438	Stratigraphical occurrence. Clarke & Verdier (1967) recorded Canningia senonica from the		
1439	Santonian of the Isle of Wight, England.		

1440	
1441	Canningia transitoria Stover & Helby 1987b
1442	(Figs 14 A–E)
1443	1987b Canningia transitoria Stover & Helby, p. 262–263, figs 3A–P, 4A–B.
1444	1990a Canningia bassensis Marshall, p. 13-14, figs 9F-G, 15A-K.
1445	
1446	Comments. This species represents distinctive holocavate cysts with an apical archaeopyle and
1447	usually one to two antapical prominences asymmetrically disposed. The antapical prominences
1448	are formed primarily by the periphragm, although the endophragm does form a prominence on
1449	the more pronounced left side. Some specimens show weak lateral bulges, which would probably
1450	not bring areoligeracean affinity into question were it not for the stronger lateral bulges in the
1451	type material of Canningia bassensis, which we consider a taxonomic junior synonym of
1452	Canningia transitoria. The two species seem otherwise identical. Given all other morphological
1453	traits, however, we retain Canningia transitoria in Canningia. The pericoel is broad, 10–20% of
1454	the entire cyst width, and the overall ornament provides a penitabular reflection of the tabulation.
1455	Marshall (1990a) did not compare Canningia bassensis with Canningia transitoria.
1456	
1457	Stratigraphical occurrence. The type material of Canningia transitoria is from the Barremian
1458	to lower Aptian of Western Australia. That of Canningia bassensis is from the Campanian of
1459	southeastern Australia.
1460	
1461	
1462	Genus Canninginopsis Cookson & Eisenack 1962
1463	1962 Canninginopsis Cookson & Eisenack, p. 488.
1464	1990b Canninginopsis Cookson & Eisenack; emend. Marshall, p. 80-82.
1465	
1466	Type: Cookson & Eisenack, 1962, pl.1, fig.16, as Canninginopsis denticulata.
1467	
1468	Synopsis. Areoligeracean cysts with parasutures marked by low ridges or other elements of low
1469	relief. Autophragm otherwise typically smooth or inconspicuously ornamented.

1470	
1471	Remarks. Cookson & Eisenack (1962, p. 488) provided the following description for
1472	Canninginopsis:
1473	
1474	Shell flat, roughly seven-sided in outline, with a slight apical prominence and an
1475	indented base. Girdle helicoid, approximately equatorial on the dorsal surface.
1476	Longitudinal furrow obliquely directed. Both surfaces of shell marked out into large
1477	fields that border both girdle and longitudinal furrow. Shell opening by the
1478	detachment of the proximal part of the epitheca.
1479	
1480	Cookson & Eisenack (1962) differentiated Canninginopsis from Canningia by the presence of
1481	paratabulation of the former. In recent usage, Canningia has a holocavate wall and may or may
1482	not show evidence of paratabulation, usually through pandasutural zones when it does.
1483	Canninginopsis has an autophragm and paratabulation marked along parasutures; it is not cavate.
1484	Canninginopsis differs from Cerbia in having parasutural rather than penitabular features.
1485	
1486	Accepted species.
1487	
1488	Canninginopsis bretonica Marshall 1990b
1489	(Figs 13 S–T)
1490	1990b Canninginopsis bretonica Marshall, p. 84-86, figs 4L-T, 5F-H, 6L-U.
1491	
1492	Comments. The critical feature of this species is the clearly outlined paratabulation on the dorsal
1493	and lateral surfaces, with the mid-ventral surface devoid of features. Marshall (1990b, p. 86)
1494	stated: "Paratabulation usually clearly indicated [except ventrally] by parasutural septa up to 7
1495	μ m high; fragments of parasutural boundaries occasionally outlined by 2 close-spaced rows of
1496	penitabular septa." Thus, although the tabulation is reflected mostly by parasutural features, parts
1497	of it are reflected by penitabular features, and thus the species is transitional between
1498	Canninginopsis and Cerbia. However, as the paratabulation is mostly reflected by parasutural
1499	features, we retain this species in Canninginopsis without question. Aside from its dorsal and

1500	lateral	crests, this species is also characterised by fine foveolation on its surface and crests,
1501	which	may be developed to give the crests denticulate margins. Some specimens may show
1502	lateral	bulges, but these are mostly subdued.
1503		
1504	Strati	graphical occurrence. Marshall (1990b) recorded this species from the upper Campanian
1505	to mid	dle Maastrichtian of Western Australia.
1506		
1507		Canninginopsis denticulata Cookson & Eisenack 1962
1508		(Fig. 14 F)
1509	1962	Canninginopsis denticulata Cookson & Eisenack, p. 488, pl. 1, figs 16-19; text-fig. 2.
1510		
1511	Comm	nents. This species, the type of the genus, is characterised by distinct rows of denticles
1512	marki	ng the parasutures.
1513		
1514	Strati	graphical occurrence. Cookson & Eisenack (1962) recorded Canninginopsis denticulata
1515	from t	he Albian to Cenomanian of Australia.
1516		
1517		Canninginopsis maastrichtiensis Slimani 1994
1518		(Figs 14 I–K)
1519	1994	Canninginopsis verrucosa Wilson in Slimani 1994, p. 97 (name not validly published).
1520	1994	Canninginopsis maastrichtiensis Slimani, p. 97–98, pl. 16, figs 5–8, 13–14.
1521		
1522	Comm	nents. Slimani (1994) provided the following diagnosis.
1523		
1524		Cysts of Canninginopsis, lenticular to pentagonal with an apical protrusion and two
1525		unequal antapical protrusions of which that on the left is longer. The autophragm is
1526		typically ornamented by solid verrucae and/or granules (0.5 to 3 μ m across), the
1527		smallest of which are always seen on the cingulum. The paratabulation is weakly
1528		indicated by low, solid, smooth or rarely undulating crests (up to 3 μ m). It conforms
1529		to the following formula: 4', 5–6", ?c, 5–6"', 1p, 1"". The archaeopyle is apical, of

1530	type (tA), with an attached or rarely free operculum. [Translation]
1531	
1532	This species thus conforms to Canninginopsis.
1533	
1534	Stratigraphical occurrence. Canninginopsis maastrichtiensis was originally described from the
1535	upper Maastrichtian of the Maastricht area, The Netherlands.
1536	
1537	Canninginopsis monile (Duxbury 2002) comb. nov.
1538	(Figs 14 G–H)
1539	2002 Cerbia monile Duxbury, p. 78, pl. 1, figs 7–8, 10–12.
1540	
1541	Comments. Duxbury (2002, p. 78) noted that "Short spines are aligned very largely along
1542	epicystal and hypocystal parasutures, although occasionally these also may occur along
1543	paracingular margins." Although from the illustrations, the alignment appears to be quite loose,
1544	we transfer the species to Canninginopsis on the basis that the ornament is parasutural rather
1545	than penitabular. The epithet is a noun in apposition.
1546	
1547	Stratigraphical occurrence. Duxbury (2002) recorded this species from the Albian of the North
1548	Sea.
1549	
1550	
1551	Genus <i>Cerbia</i> Below 1981
1552	1981 <i>Cerbia</i> Below, p. 8.
1553	
1554	Type. Davey & Verdier 1974, pl. 92, figs 1, 4, as Cyclonephelium tabulatum.
1555	
1556	Synopsis. Areoligeracean cysts that are proximate to proximochorate, with ornament height less
1557	than 25% of maximum cyst width. Central body compressed, ambitus subcircular to lenticular,
1558	with a rounded to more commonly asymmetrical antapex and an apical horn. Acavate, with
1559	processes predominantly penitabular and thus reflecting tabulation. Archaeopyle apical, with

1560	formu	la A(1-4'), operculum free; parasulcal notch offset to the left.
1561		
1562	Comm	nents. Below (1981) diagnosed Cerbia as follows:
1563		
1564		Proximate to proximochorate, single-layered lenticular cysts. Outline rounded, oval
1565		or rounded pentagonal. Apex rounded or with a weak bulge. Antapex rounded or
1566		with lobe [?] and two bulges. Membrane smooth or sculptured. Paratabulation 4', 6",
1567		Xc, 6", 1p, 1"", Xs. Fields bordered by penitabular ornament, without intratabular
1568		processes. Archaeopyle apical, (A). [Translation]
1569		
1570	:	Sarjeant (1985, p. 93–94) considered <i>Cerbia</i> to be a taxonomic junior synonym of <i>Tenua</i> ;
1571	howev	ver, Duxbury (2002, p. 76, 78) retained Cerbia, an action that we support. Cerbia differs
1572	from 7	<i>Tenua</i> in having processes that are clearly penitabular in arrangement. See further
1573	discus	sions above.
1574		
1575	Accep	ted taxa.
1576		
1577		Cerbia? aucda Below 1981
1578		(Fig. 14 L)
1579	1981	Cerbia aucda Below p. 8–9, pl. 4, fig. 3; pl. 12, fig. 20; text-figs 6a–c, g (non pl. 4, figs
1580		5а-b).
1581	1993	Tenua aucda (Below) Lentin & Williams, p. 638.
1582		
1583	Comm	nents. Below (1981, p. 8) diagnosed Cerbia aucda as follows:
1584		
1585		Proximate, dorsoventrally compressed, tabulate, one-layered cyst of elongate oval to
1586		pentagonal outline. Epicyst triangular or with rounded apex. Hypocyst trapezoidal.
1587		Antapex rounded, flattened or with a lobe, whereby two symmetrically disposed
1588		bulges are developed. The archaeopyle is expressed as type (A). Paracingulum spiral,
1589		undivided; parasulcus sigmoidally curved. From low penitabular rows, truncated [?]

1590		or conical, solid tubercles allow a paratabulation scheme of 4', 6", Xc, 6"', pc, 1"" to
1591		be recognised. The surface is verrucate to smooth. [Translation]
1592		
1593	We reta	in this species in Cerbia as ornament on the holotype is penitabular. However, the
1594	specim	en shown in Below (1981, pl. 4, figs 5a-b) does not clearly reflect the tabulation.
1595		
1596	Stratig	raphical occurrence. Below (1981) recorded Cerbia aucda from the Barremian of
1597	Moroco	20.
1598		
1599		Cerbia? formosa Mao Shaozhi & Norris 1988
1600		(Fig. 14 M)
1601	1988	Cerbia formosa Mao Shaozhi & Norris, p. 31–32, pl. 1, figs 9–10; text-fig. 8, nos 1–2.
1602	1991	Cerbia suturispinosa He Chengquan, p. 173, pl. 10, figs 1-3.
1603	1993	Tenua formosa (Mao Shaozhi & Norris) Lentin & Williams, p. 639.
1604	1993	Tenua suturispinosa (He Chengquan) Lentin & Williams, p. 640.
1605		
1606	Comm	ents. We retain this species in Cerbia, albeit questionably, because some of the process
1607	tips loo	k dolabrate, and hence this species may be better assigned to <i>Cleistosphaeridium</i> , as is
1608	also sug	ggested by the age (Eocene–Oligocene) of the type material. Tenua suturispinosa is also
1609	an Eoc	ene species with similar morphology, and hence we consider it a taxonomic junior
1610	synony	m of <i>Cerbia? formosa</i> .
1611		
1612	Stratig	raphical occurrence. Cerbia formosa was originally described from the Upper Eocene of
1613	China.	He Chengquan (1991) recorded Cerbia suturispinosa from the Middle Eocene of China.
1614		
1615		Cerbia? hexalobosa (Cookson & Eisenack 1974) comb. nov.
1616		(Fig. 14 N)
1617	1974	Cassidium hexalobosum Cookson & Eisenack, p. 76, pl. 26, fig. 7 (non 6).
1618	1978	Cyclonephelium hexalobosum (Cookson & Eisenack) Stover & Evitt, p. 36.
1619	2004	Cyclonephelium? hexalobosum (Cookson & Eisenack); Fauconnier & Londeix in

Fauconnier & Masure. p. 147. 1620 1621 **Comments.** In their diagnosis, Cookson & Eisenack (1974, p. 76) stated that "The type reveals a 1622 1623 distinct but indecipherable paratabulation, and at its widest part a weakly discernible cingulum is recognisable." They further noted that "The surface is covered with shaggy spines, which in the 1624 type give the impression of a coarse granulation ..." [both quotes translated from the German]. It 1625 is notable that the authors had to separate the type and paratype several times in their diagnosis. 1626 We consider that the paratype (Cookson & Eisenack 1974, pl. 26, fig. 6) is not conspecific with 1627 the holotype (Cookson & Eisenack 1974, pl. 26, fig. 5), and probably belongs to Tenua hystrix. 1628 1629 As the type of this species appears to reflect the tabulation through penitabular lineation of the ornament, we tentatively transfer the species to Cerbia. 1630 1631 Stratigraphical occurrence. Cookson & Eisenack (1974) described Cerbia? hexalobosa from 1632 the middle Cretaceous to Senonian of Australia. (Regarding "Senonian", see discussion under 1633 1634 *Aptea rotundata.*) 1635 Cerbia intermedia (Morgan 1980) comb. nov. 1636 (Figs 14 O–P) 1637 1980 Canninginopsis intermedia Morgan, p. 18, pl. 3, figs 4-8. 1638 1639 Comments. Morgan (1980, p. 18) noted that the ornament consists of "... 0.5–1.0 µm diameter 1640 granules, larger, denser and more aligned in two paracingular rows and in peritabular [i.e. 1641 1642 penitabular] position around dorsal paraplates" Most of the rest of the cyst is evenly covered with granules. The morphology of this species thus accords better with Cerbia than 1643 *Canninginopsis*, and hence we propose the re-assignment here. Morgan used the epithet 1644 *"intermedia"* because he considered the species intermediate between *Canningia* (now *Tenua*) 1645 1646 colliveri and Canninginopsis denticulata. 1647 Stratigraphical occurrence. This species was originally described from the lower Albian of 1648

1649

Australia.

1650		
1651		Cerbia ordospinosa (Smith 1992) comb. nov.
1652		(Fig. 14 Q)
1653	1992	Canninginopsis ordospinosa Smith, p. 342, figs 5g-h, k-l, n, p; fig. 11i.
1654		
1655	Com	nents. Smith (1992, p. 342) noted that "The cyst surface bears variably developed
1656	granul	ate sculpture and pandasutural rows of spines." He further stated that:
1657		
1658		The autophragm is thin (<0.5 μ m) and bears an ornament of intratabular grana and two to
1659		three pandasutural rows of spines and/or grana. These spines are up to 6 μ m in length and
1660	:	may be furcate at their distal extremities.
1661		
1662	The sp	becies thus accords with the morphology of Cerbia rather than of Canninginopsis, and we
1663	thus re	eassign it. Some specimens show development of a short postcingular prominence, which
1664	may b	e a reason to question the present assignment.
1665		
1666	Strati	graphical occurrence. Smith (1992) recorded Cerbia (as Canninginopsis) ordospinosa
1667	from t	he upper Campanian to lower Maastrichtian of Vega Island, Antarctica.
1668		
1669		Cerbia tabulata (Davey & Verdier 1974) Below 1981
1670		(Figs 14 R–S)
1671	1974	Cyclonephelium tabulatum Davey & Verdier, p. 630, 632, pl. 92, figs 1-4; pl. 93, fig. 6.
1672	1977	Canninginopsis tabulata (Davey & Verdier) Duxbury, p. 27.
1673	1981	Cerbia tabulata (Davey & Verdier) Below, p. 9.
1674		
1675	Comr	nents. For this species, Davey & Verdier (1974) stated that "The processes [actually short
1676	spines] are predominantly peritabular [i.e. penitabular] in position and clearly define the
1677	precin	gular and postcingular paraplates and the cingulum." The short, stout, capitate to rarely
1678	brancl	ned spines are essentially absent from paraplate centres and the parasulcus.
1679		

1680	Stratigraphical occurrence. Cerbia tabulata (as Cyclonephelium tabulatum) was originally
1681	described from the Aptian of France. Costa & Davey (1992) gave the stratigraphical range of the
1682	species as earliest Barremian to late Aptian. Duxbury (2001) plotted the FAD of this species (as
1683	Canninginopsis tabulata) at the base of the middle Barremian and the LAD at the Aptian-Albian
1684	boundary.
1685	
1686	Cerbia? wenquanensis (Cheng Jinhui & He Chengquan 2006) comb. nov.
1687	(Figs 15 A–B)
1688	2006 Tenua wenquanensis Cheng Jinhui & He Chengquan, p. 280–281, fig. 3s1–3s2; fig.5a–b.
1689	
1690	Comments. We transfer this species to Cerbia because Cheng Jinhui & He Chengquan (2006)
1691	refer to "penitabular spines" in the protologue. As this is not clear from their illustrations, we
1692	question the assignment.
1693	
1694	Stratigraphical occurrence. Cheng Jinhui & He Chengquan (2006) recorded Cerbia? (as
1695	Tenua) wenquanensis from the upper Kimmeridgian of China.
1696	
1697	
1698	Genus Circulodinium Alberti 1961 emend. nov.
1699	1961 Circulodinium Alberti, p. 28.
1700	
1701	Type. Alberti 1961, pl. 4, fig. 20, as Circulodinium hirtellum (herein considered a taxonomic
1702	junior synonym of Circulodinium distinctum).
1703	
1704	Emended diagnosis. Areoligeracean cysts that are proximate to proximochorate, with ornament
1705	height less than 25% of maximum cyst width. Central body dorsoventrally compressed with a
1706	subcircular, broadly subovoidal to asymmetrically lenticular ambitus, usually with an apical
1707	horn; posteriorly rounded to asymmetrical, with one or two weak to moderately developed
1708	antapical horns. Ornamentation consists of free-standing elements, some of which may be
1709	aligned to reflect aspects of tabulation; however, processes are marginately distributed, with mid-

1710	ventral and mid-dorsal areas devoid of, or with substantially reduced, ornament. Archaeopyle
1711	apical, type A(1-4'), operculum free; parasulcal notch offset to the left.
1712	
1713	Comments. As discussed extensively above, Circulodinium is herein retained for forms that, like
1714	the type, have a more or less marginate distribution of free-standing elements. Cerbia differs in
1715	having forms in which the ornament is clearly penitabular, and Cyclonephelium differs in having
1716	a marginately distributed ornamentation consisting at least in part of linear elements. Tenua
1717	differs in having more or less uniform, rather than marginate distribution of free-standing
1718	ornament.
1719	Alberti (1961, p. 28) provided a diagnosis for Circulodinium as follows:
1720	
1721	Shell compressed to flat, its outline almost circular to irregularly rounded. With a
1722	small apical process, somewhat blunt at its tip. Hypotheca concave at the antapex.
1723	From this arise two antapical bulges, of which one may be more or less reduced.
1724	Shell without transverse furrow or tabulation. Its surface, with the exception of the
1725	central parts of ventral and dorsal surfaces and the antapical concavity, bears short,
1726	solid spines, in part broadening distally in paddle-like fashion, rarely branching.
1727	[Translation]
1728	
1729	
1730	Accepted species.
1731	
1732	Circulodinium almohadense (Below 1984) comb. nov.
1733	(Figs 15 C–D)
1734	1984 Aptea almohadensis Below, p. 635, pl. 1, figs 5A-B, 6-7.
1735	1989 Pseudoceratium almohadense (Below) Lentin & Williams, p. 306.
1736	
1737	Comments. Below (1984, p. 635) noted that this species " occasionally [has] a right lateral
1738	bulge in the region of the postcingular paraplate girdle [sic]", which he considered gave the
1739	species (as Aptea almohadensis) a "close connection" to Pseudoceratium. However, such a bulge

1740	is not evident in Below's illustrations of the holotype (his pl. 1, figs 5A-B). Below stated in his
1741	diagnosis that the cyst ornamentation is:
1742	
1743	very sparse and in most cases without rules of orientation. Ornaments as low,
1744	solid, flattened, interconnected ledges, isolated short spines with distally acuminated
1745	or blunted ends, or simple cones forming tubercles. Sometimes these ornaments are
1746	arranged to pandasutural [i.e penitabular] lines.
1747	
1748	However, in his description, Below (1984) noted that "The sparse distribution of low ornaments
1749	makes any consideration of penitabular alignment along parasutures impossible." Below's
1750	illustrations (pl. 1, figs 5A-B, 6-7) clearly show sparse, low ornament with weak penitabular
1751	alignment; the dorsoventral areas appear essentially devoid of ornament, but Below (1984) did
1752	not comment on this. Although he mentioned "interconnected ledges", these may be flattened
1753	spines. On balance, we consider that the morphology of this species fits best with that of
1754	Circulodinium.
1755	
1756	Stratigraphical occurrence. Below (1984) described this species from the middle to upper
1757	Aptian of offshore northwestern Africa.
1758	
1759	Circulodinium circulatum (He Chengquan 1991) comb.nov.
1760	(Fig. 14 T)
1761	1991 Cyclonephelium circulatum He Chengquan, p. 135, pl. 10, figs 7-12.
1762	
1763	Comments. The type material appears similar to Circulodinium distinctum, although there may
1764	be some connections between processes. The ornament, however, appears to be predominantly
1765	free-standing, so transfer this species to Cyclonephelium.
1766	
1767	Stratigraphical occurrence. He Chengquan (1991) described this species from the Middle to
1768	Upper Eocene of China.

1770	Circulodinium distinctum (Deflandre & Cookson 1955) Jansonius 1986
1771	(Figs 6 A–D; 15 E)
1772	1955 Cyclonephelium distinctum Deflandre & Cookson, p. 285-286, pl. 2, fig. 14; text-figs 47-
1773	48
1774	1958 Tenua hystricella Eisenack, p. 411, pl. 23, figs 5-7.
1775	1961 Circulodinium hirtellum Alberti, p. 28–29, pl. 4, fig. 20.
1776	1961 Circulodinium deflandrei Alberti, p. 29, pl. 4, figs 7-13.
1777	1969 Canningia hirtella (Alberti) Millioud, p. 425.
1778	1969 Cyclonephelium paucispinum Davey, p. 170, pl. 9, figs 1-2.
1779	1974 Aptea securigera Davey & Verdier, p. 642-643, pl. 91, fig. 3 (non pl. 91, fig. 2; text-fig. 5-
1780	vii).
1781	1978 Cyclonephelium hirtellum (Alberti) Davey, p. 894.
1782	1986 Cyclonephelium distinctum subsp. laevigatum Mehrotra & Sarjeant, p. 719-720, pl. 8, figs
1783	1–2; pl. 9, fig. 2; text-fig. 7a.
1784	1986 Circulodinium distinctum (Deflandre & Cookson) Jansonius, p. 204.
1785	1986 Pseudoceratium securigerum (Davey & Verdier) Bint, p. 145.
1786	1986 Cyclonephelium distinctum subsp. laevigatum Mehrotra & Sarjeant, p. 719-720, pl. 8, figs
1787	1–2; pl. 9, fig. 2; text-fig. 7a.
1788	1989 Circulodinium distinctum subsp. laevigatum (Mehrotra & Sarjeant), Lentin & Williams, p.
1789	63.
1790	1992 Circulodinium formosum Iosifova, p. 61; pl. 9, figs 3a-c; text-figs 1c-d.
1791	2004 Cyclonephelium formosum (Iosifova) Fauconnier in Fauconnier & Masure, p. 146.
1792	2004 Circulodinium paucispinum (Davey) Fauconnier in Fauconnier & Masure, p. 115.
1793	
1794	Comments. This species differs from Tenua hystrix in generally having longer spines that have a
1795	clearly marginate distribution. The photograph of the type of Circulodinium (Alberti 1961, pl. 4,
1796	fig. 20 — the holotype of Circulodinium hirtellum) appears to have marginately distributed
1797	ornament, and processes similar to those of either Circulodinium distinctum or Tenua hystrix;
1798	since the processes of Circulodinium hirtellum appear to be marginately distributed, we consider
1799	that species to be a taxonomic junior synonym of Circulodinium distinctum. We note that the

1800 cysts comprising the type material of both *Circulodinium distinctum* and *Circulodinium*

hirtellum are large, 64–97 μm for the former and a breadth of 97 μm for the latter. In our

1802 experience, most specimens assigned to *Circulodinium distinctum* are notably smaller than the

1803 larger dimensions cited here.

Deflandre & Cookson (1955, p. 285–286) described *Circulodinium* (as *Cyclonephelium*) *distinctum* as having "numerous short, solid appendages … the apices of which are bluntly
pointed, capitate, enlarged or forked". Alberti (1961, p. 29) described *Circulodinium hirtellum* as
follows:

1808

1809Shell compressed, its outline irregularly rounded, somewhat longer than wide. With a1810short apical projection whose end is truncated. Two unequally large antapical1811protrusions. Epitheca somewhat smaller than hypotheca. Except for the central parts1812of the ventral and dorsal surfaces, the shell surface bears short, mostly pointed, thorn-1813like processes. [Translation]

1814

1815 Thus, the spines described by Alberti (1961) for *Circulodinium hirtellum* appear to be more

1816 similar to those of *Circulodinium distinctum* than the very short, blunt spines of *Tenua hystrix*.

1817 The process distribution also suggests a synonymy with *Circulodinium distinctum*.

1818 The same appears true for *Tenua hystricella*, a form that has previously been considered a 1819 taxonomic junior synonym of *Tenua hystrix*. Eisenack (1958, p. 411) stated that *Tenua*

1820 *hystricella* resembles *Tenua hystrix* but is smaller. He also remarked that the forking prongs of

1821 the spines in *Tenua hystricella* tend to coalesce, forming vermiculate lineations. If confirmed this

1822 might mean that *Tenua hystricella* would be better assigned to *Cyclonephelium*; but for now we

1823 consider it a taxonomic junior synonym of *Tenua distincta*.

Davey (1969, p. 170) described the wall of *Cyclonephelium paucispinum* as "... lightly to coarsely granular, bearing [a] small number of irregular processes confined to [the] peripheral region" He noted that the processes of *Cyclonephelium paucispinum* "... most closely resemble those of *C. distinctum* but are fewer in number". We consider this morphology to be

- 1828 within the range of variation for *Circulodinium distinctum*.
- 1829 Davey & Verdier (1974, p. 642) described the shape of the central body of their new

species, Aptea securigera, as "... rounded triangular in shape [i.e. ambitus]. The left side is 1830 strongly, but evenly, convex; the right epitractal and hypotractal sides are slightly convex to 1831 straight and meet at approximately right angles in the cingular region." This is a good description 1832 1833 for the paratype (their pl. 91, fig. 2), but does not at all fit the holotype (their pl. 91, fig. 3), which has a more or less circular ambitus, an apical horn, and a weakly developed antapical 1834 prominence offset, presumably, to the left. The paratype would be assignable to Pseudoceratium, 1835 1836 but the holotype is clearly an areoligeracean. In describing the ornament for Aptea securigera, Davey & Verdier (1974) noted that: 1837

1838

1839The cyst surface bears numerous short, flattened, solid processes which are1840concentrated in the circumferential region. A more or less circular area in the centre1841of the ventral and dorsal surfaces is devoid of, or possesses only rare, processes. The1842processes are of variable shape but are typically discrete, expanding both distally and1843proximally, and are flat-topped distally; their length is more than twice their medial1844width. The processes are longer and more variable at the cyst apices. Very rarely the1845cingulum and other tabulation is marked by narrow bands devoid of processes.

1846

The combined possession of dorsoventral areas devoid of processes, the lack of clear 1847 paratabulation, and the discrete processes indicate that *Circulodinium* is the best generic fit for 1848 1849 Aptea securigera (based on the morphology of its holotype). The processes are somewhat intermediate between those of Tenua hystrix and Circulodinium distinctum, but the presence of 1850 some longer processes and distinct dorsoventral areas devoid of processes inclines us to 1851 1852 synonymise this species with Circulodinium distinctum. Unfortunately, Pseudoceratium securigerum (based on the morphology of the paratype) has been used as an important marker 1853 for the early Aptian, particularly in the Middle East (Martin Pearce, personal communication 1854 2018). A resolution might be propose a new species based on the original paratype (Davey & 1855 Verdier 1974, pl. 91, fig. 2). 1856 Alberti (1961, p. 29) diagnosed Circulodinium deflandrei as follows: 1857

1858

1859

Shell compressed to flat, its outline almost rounded. The free end of the small apical

prominence is slightly truncated. At the antapex the hypotheca is weakly indented, thereby forming two antapical protrusions, of which one may be reduced. Shell 1861

1862

surface, with the exception of the central parts of the ventral and dorsal sides and the antapical indentation, bearing numerous short, solid bristles, [which are] in part distally broadened in paddle-fashion, seldom furcate. [Translation]

1864 1865

1863

Alberti (1961) further noted that some bristles, or processes, are joined proximally, sometimes 1866 arising from linear ridges; but these are not clearly evident on the illustrations of the type 1867 material. We thus consider Circulodinium deflandrei to be a taxonomic junior synonym of 1868 Circulodinium distinctum. 1869

The holotype, and only specimen that Iosifova (1992) illustrated, of Circulodinium 1870 1871 formosum has slightly longer than average processes for Circulodinium distinctum. But the overall morphology and the absence of processes on the dorsoventral areas of Circulodinium 1872 formosum indicate that Iosifova's species should be considered a taxonomic junior synonym of 1873 1874 Circulodinium distinctum. We also consider Cyclonephelium distinctum subsp. laevigatum to be a taxonomic junior synonym of Cyclonephelium distinctum. 1875

1876

Stratigraphical occurrence. Cyclonephelium distinctum was originally recorded from the 1877 Senonian of Western Australia. (Regarding "Senonian", see discussion under Aptea rotundata.) 1878 Eisenack (1958) recorded Tenua hystricella from the Aptian of northern Germany. 1879 Circulodinium hirtellum and Circulodinium deflandrei were first described from the 1880 Valanginian-Hauterivian and upper Barremian respectively of Germany. The holotype of 1881 1882 Cyclonephelium paucispinum is from the Cenomanian of France. The holotype of Aptea securigera is from the lower Aptian of southeastern France. Mehrotra & Sarjeant (1986) 1883 recovered Cyclonephelium distinctum subsp. laevigatum from the Valanginian of India. 1884 *Circulodinium formosum* was recovered originally from the Valanginian of Russia. 1885 1886 Circulodinium? hughesii (Clarke & Verdier 1967) comb nov. 1887 (Fig. 15 F) 1888

Cyclonephelium hughesii Clarke & Verdier, p. 21–22, pl. 2, fig. 6; text-fig. 8.

1891	Comments. Clarke & Verdier (1967, p. 22) diagnosed this species as a Cyclonephelium with
1892	broad, short processes, and differentiated it from Cyclonephelium (now Circulodinium)
1893	distinctum and Cyclonephelium densebarbatum in having much broader processes. In their
1894	description they elaborated on the ornament a little, referring to "short broad appendages, closely
1895	spaced and with the distal part slightly expanded and indented." Their single photograph and
1896	their sketch suggest that the broad processes may be septa similar to those of Cyclonephelium
1897	compactum. However, for now we consider the ornament to consist of broad isolated elements
1898	distributed peripherally (more evident on the line drawing than on the photo) and re-assign this
1899	species tentatively to Circulodinium.
1900	
1901	Stratigraphical occurrence. Clarke & Verdier (1967) recorded this species from the
1902	Cenomanian of southern England.
1903	
1904	Circulodinium vectense nom. nov. subst. pro Pseudoceratium distinctum Duxbury 2001
1905	(Fig. 15 G)
1906	2001 Pseudoceratium distinctum Duxbury, p. 111-112, fig. 11, nos 1-4.
1907	
1908	Derivation of name. From the Latin Vectis, Isle of Wight southern England, the type locality.
1909	
1910	Comments. Duxbury (2001, p. 111) described Pseudoceratium distinctum as:
1911	
1912	A fairly large, ceratiacean dinocyst species whose ambitus may vary from being
1913	pronouncedly asymmetrical to more rounded. Distinct apical, left antapical and right
1914	lateral projections are observed; poorly-developed right antapical and left laterals
1915	may also be present. Ornament consists of slender spines of varying length, with
1916	those at horn tips often coalescing and extending horns considerably. Some distal
1917	connection of individual spines may be observed, otherwise spines are distally
1918	furcate, irregularly and variably.
1919	

From the illustrations in the protologue, the autocyst is asymmetrical and bulges in the rightlateral area, but in contrast to the original diagnosis there appears to be no distinct projection; it seems that the ornament/periphragm produces a projection, as in *Aptea polymorpha*. In none of the four figured specimens was there any hint of a left lateral projection, and in some of the specimens the right lateral projection is barely discernible. Hence, we transfer this species to the genus *Circulodinium*, as *Circulodinium vectense*, as the name *Circulodinium distinctum* is preoccupied.

Duxbury (2001) noted that Pseudoceratium distinctum differs from Aptea polymorpha "... 1927 in being generally more asymmetrical in outline and in having thickened mid-dorsal and mid-1928 1929 ventral areas devoid of ornament." He noted also that the ornament of Pseudoceratium distinctum tends to consist of individual, slender elements, whereas Aptea polymorpha has "... 1930 1931 continuous, laterally connected, essentially reticulate ornament". Duxbury (2001) considered that Pseudoceratium distinctum differs from Cyclonephelium compactum "... in its asymmetrical 1932 ambitus and in having thickened areas devoid of ornament. We agree that Circulodinium 1933 1934 vectense lacks the reticulate ornament of Aptea polymorpha and Cyclonephelium compactum. 1935 However, in terms of the additional criteria that Duxbury (2001) cited, in our view, degree of asymmetry is not a useful feature to use for taxonomic distinction in this group of cysts, as it is 1936 intraspecifically variable; and Cyclonephelium compactum does have dorsoventral areas devoid 1937 of ornament. The thickening of the cyst wall in dorsoventral areas may be an important criterion 1938 1939 that has otherwise been overlooked.

1940

1941	Stratigraphical occurrence. Duxbury (2001) recovered this species from the uppermost lower
1942	to upper Aptian of the North Sea.

Circulodinium? wulaganense (He Chengquan 1991) He Chengquan et al. 2009

(Fig. 15 H)

- 1943
- 1944
- 1945

1946 1991 Canningia wulagenensis He Chengquan, p. 57; pl. 9, fig. 16.

1947 2009 Circulodinium wulagenensis (He Chengquan) He Chengquan et al., p. 272.

1948

1949 **Comments.** This species was originally described in Chinese and accompanied by a single

1950	illustration, which appears to show an areoligeracean with free-standing ornament, possible		
1951	secondary folds, and a central area with significantly reduced ornament, perhaps due to		
1952	corrosion. The archaeopyle, with operculum attached, appears to be located to the right in the		
1953	photograph (He Chengquan 1991, pl. 9, fig. 16). We questionably retain this species in		
1954	Circul	<i>bodinium</i> , but recommend that the name be restricted to the holotype, pending further study.	
1955			
1956	Strati	graphical occurrence. He Chengquan (1991) originally described this species from the	
1957	Upper Cretaceous of China.		
1958			
1959		Genus Cyclonephelium Deflandre & Cookson 1955 emend. nov.	
1960	1954	Cyclonephelium Deflandre & Cookson, p. 1237; not validly published — no description.	
1961	1955	Cyclonephelium Deflandre & Cookson, p. 285.	
1962	1962	Cyclonephelium Deflandre & Cookson; emend. Cookson & Eisenack, p. 493-494.	
1963	1966	Cyclonephelium Deflandre & Cookson; emend. Williams & Downie, p. 223.	
1964	1977	Cyclonephelium Deflandre & Cookson; emend. Ioannides et al., p. 450.	
1965	1978	Cyclonephelium Deflandre & Cookson; emend. Stover & Evitt, p. 35.	
1966	1978	Cyclonephelium Deflandre & Cookson; emend. Sarjeant & Stover, p. 51.	
1967	1980	Cyclonephelium Deflandre & Cookson; emend. Dörhöfer & Davies, p. 41.	
1968	1990	Cauveridinium Khowaja-Ateequzzaman & Jain, p. 172, 174.	
1969			
1970	Туре.	Deflandre & Cookson 1955, pl. 2, fig. 12, as Cyclonephelium compactum.	
1971			
1972	Emen	ded diagnosis. Areoligeracean cysts that are proximate to proximochorate, with ornament	
1973	height	less than 25% of maximum cyst width. Cyst dorsoventrally compressed, ambitus	
1974	subcircular to lenticular, with a rounded to more commonly asymmetrical antapex and an apex		
1975	that is	rounded or with a horn; lateral horns lacking. Acavate. Ornamentation marginate in	
1976	distribution, consisting of predominantly linear elements such as crests or ridges, or short to		
1977	moder	rately long free-standing elements that are in part fused or connected to adjacent elements.	
1978	Archa	eopyle apical, with formula A(1-4'), operculum free; parasulcal notch offset to the left.	
1979			

Comments. Deflandre & Cookson (1955, p. 285) provided the following description for *Cyclonephelium*:

1982

1983Shell spheroidal, flattened, with an equatorial ornamentation that extends for varying1984distances from the equator but never to the poles. The ornament is composed of1985processes that are either distinct or close and confluent and sometimes connected by1986more or less broad trabeculae. Shell often provided with a large ill-defined lateral1987opening. [Translation]

1988

The diagnosis of Cyclonephelium is emended here to restrict the genus to forms with 1989 ornament consisting of, at least in part, linear elements; the ornament is marginately arranged, 1990 1991 with cysts having mid-ventral and mid-dorsal areas devoid of, or with substantially reduced ornamentation. Circulodinium has ornamentation marginately arranged, but elements are 1992 1993 consistently free standing. Aptea has ornament that is predominantly linear, like Cyclonephelium, 1994 but its distribution is continuous and more or less uniform over the cyst, including ventral and 1995 dorsal surfaces. The emended diagnosis above also specifies that ornament height is less that 25% of the maximum cyst width. Thus we consider Cauveridinium, which has marginately 1996 distributed linear ornament, a taxonomic junior synonym of Cyclonephelium. 1997

We consider the emendation of Cookson & Eisenack (1962, p. 493–494) as useful in
moving toward the concept of *Cyclonephelium* expressed here, but not those by Williams &
Downie (1966), Ioannides et al. (1977), Sarjeant & Stover (1978), Stover & Evitt (1978) and
Dörhöfer & Davies (1980).

2002

2003 Accepted species.

2004

2005 Cyclonephelium? barbiferum Cookson & Eisenack 1982
2006 (Fig. 15 I)
2007 1982 Cyclonephelium? barbiferum Cookson & Eisenack, p. 42, pl. 7, figs 8–9.
2008 2004 Circulodinium barbiferum (Cookson & Eisenack) Fauconnier in Fauconnier & Masure, p.
2009 113.

2010		
2011	Comm	nents. Cookson & Eisenack (1982, p. 42) provided the following diagnosis for this species.
2012		
2013		Shape somewhat circular to weakly elliptical, with a short border with tuft-like
2014		processes, which are developed mainly in lateral areas and large central, apical and
2015		antapical areas [are] free [of processes], but there are no sharp borders. The processes
2016		are simple, branched, or variously expanded at the ends. They often form a small tuft.
2017		[Part, translation]
2018		
2019	From t	he illustrations, processes in the tufts appear to be connected distally, and the type has its
2020	?mid-v	rentral area largely devoid of processes. Hence, we retain this as a species of
2021	Cyclon	ephelium, albeit questionably because the nature of the archaeopyle is not clear.
2022		
2023	Stratig	graphical occurrence. The type material is from the Albian to Cenomanian of Australia.
2024		
2025		Cyclonephelium compactum Deflandre & Cookson 1955
2026		(Figs 7 A–J; 15 J)
2027	1955	Cyclonephelium compactum Deflandre & Cookson, p. 285, pl. 2, figs 11-13; text-figs
2028		44-46.
2029	1969	Cyclonephelium eisenackii Davey, p. 170, pl. 8, figs 3–4; pl. 9, fig. 4; text-figs 16a–b.
2030	1974	Aptea eisenackii (Davey) Davey & Verdier, p. 643.
2031	1986	Pseudoceratium eisenackii (Davey) Bint, p. 145.
2032		
2033	Emen	ded diagnosis. A species of Cyclonephelium with marginate ornament formed by
2034	relatively low lamella-like projections that are generally joined to form an irregular network.	
2035	Elemen	nts may be joined by short trabeculae.
2036		
2037	Comm	ents. This species has not been emended since the protologue was published; hence we
2038	propos	e an emended diagnosis here that accords with the current status of the species as a
2039	dinofla	gellate cyst. As the type of the genus Cyclonephelium, a clear understanding of the

2040 ornament is critical. Deflandre & Cookson (1955) commented that:

2041

2042The appendages forming the equatorial [i.e. peripheral or marginal in modern2043terminology] ornamentation are generally short and joined to one another, forming2044lamella-like projections arranged either parallel to the equator [i.e. periphery] of the2045shell or in the form of an irregular network. Sometimes a series of processes are2046joined by short trabeculae.

2047

From this description and the illustrations of the type material, it is clear that *Cyclonephelium compactum* is characterised by projections that are variously joined proximally and/or distally to produce irregular but predominantly linear elements; they are generally peripherally distributed, areas on the mid-ventral and mid-dorsal surfaces being devoid of, or with substantially reduced, ornament.

- We consider *Cyclonephelium* (al. *Pseudoceratium*) *eisenackii* to be a taxonomic junior synonym of *Cyclonephelium compactum*; given the morphological range of *Cyclonephelium compactum* (Fig. 7A–J herein), any distinction would be difficult. The type of *Cyclonephelium eisenackii* belongs in *Cyclonephelium* because it lacks lateral prominences. Davey (1969, p. 170) noted that the "Greater part of shell surface [is] ornamented by complex network of low crests and short, capitate processes. In centre of both dorsal and ventral sides there is a circular area devoid of ornamentation."
- Cookson & Eisenack (1974, p. 74) considered *Cyclonephelium eisenackii* to be a
 taxonomic junior synonym of *Aptea polymorpha*. However, *Aptea polymorpha* has
 ornamentation over the entire cyst surface. Indeed, this is the main difference between *Aptea polymorpha* and *Cyclonephelium compactum*.
- 2064

Stratigraphical occurrence. The type material of *Cyclonephelium compactum* is from the Albian to Santonian of Australia. Davey (1969) described *Cyclonephelium eisenackii* from the upper Albian of Saskatchewan, Canada. Duxbury (2001) considered the stratigraphical range of a form he termed *Cyclonephelium compactum* (extreme) and which has more pronounced ornament than the type to be uppermost lower Aptian to lowermost Albian.

2070		
2071		Cyclonephelium deconinckii Boltenhagen 1977
2072		(Figs 15 K–L)
2073	1977	Cyclonephelium deconinckii Boltenhagen, p. 52–53, pl. 4, figs 5a–b, 6.
2074		
2075	Comn	nents. Boltenhagen (1977, p. 52) diagnosed this species as follows: "Shell subcircular to
2076	polygo	onal, characterised by apical and antapical protuberances [i.e. horns], ornamented around
2077	the per	riphery by rows of appendages forming a perforate jagged margin; archaeopyle apical,
2078	operculum pointed [presumably because of the apical horn] [translation]. The morphology is not	
2079	clear from the original illustrations, and hence this species should be restricted to the type	
2080	material pending further study.	
2081		
2082	Strati	graphical occurrence. Boltenhagen (1977) recorded Cyclonephelium deconinckii from the
2083	Campanian of Gabon, Africa.	
2084		
2085		Cyclonephelium indicum (Khowaja-Ateequzzaman & Jain 1990) comb. nov.
2086		(Figs 15 M–Q)
2087	1990	Cauveridinium indicum Khowaja-Ateequzzaman & Jain, p. 174, 176; pl. 1, figs 1-6; pl.
2088		2, fig. 6; pl. 3, figs 5–6; text-figs 1 A–D.
2089	1990	Cauveridinium intermedium Khowaja-Ateequzzaman & Jain, p. 178, pl. 2, figs 1-5; text-
2090		figs 2 A–B.
2091	1990	Cauveridinium longispinosum Khowaja-Ateequzzaman & Jain, p. 178–179, pl. 3, figs 1–
2092		4; text-fig. 3.
2093		
2094	Comn	nents. Khowaja-Ateequzzaman & Jain (1990) described this species, in part, as follows:
2095	"proce	esses restricted to circumferential border zone, absent on central dorsal and central ventral
2096	areas .	proximally connected through thick ridges and a few mostly on dorsal surface also
2097	lateral	ly connected through septa" From illustrations in the protologue it appears that the
2098	ornam	ent height is less than 25% of the maximum cyst width: hence we consider this species to
2099	belong	g to Cyclonephelium and Cauveridinium (of which this species is type) to be a taxonomic

2100	junior synonym of Cyclonephelium. Khowaja-Ateequzzaman & Jain (1990) described two othe			
2101	species	species of Cauveridinium, but these appear to intergrade with the type and may be differentiate		
2102	only w	only with difficulty. Hence we consider Cauveridinium intermedium and Cauveridinium		
2103	longisį	longispinosum to be taxonomic junior synonyms of Cyclonephelium (al. Cauveridinium)		
2104	indicu	m.		
2105				
2106	Stratig	graphical occurrence. Khowaja-Ateequzzaman & Jain (1990) recorded this species		
2107	(incluc	ling synonyms) from the Turonian to Santonian of the Cauvery Basin, India.		
2108				
2109		Cyclonephelium intonsum Duxbury 1983		
2110		(Figs 7 K–L; 15 R)		
2111	1983	Cyclonephelium intonsum Duxbury, p. 33-34, pl. 2, fig. 7; pl. 10, fig. 12; text-figs 13-		
2112		14.		
2113				
2114	Comm	nents. Duxbury (1983, p. 33–34) described the ornament of this species as follows:		
2115				
2116		A dense, low ornament covers the ventral periphery and takes the form of irregular		
2117		granules or short coni which may coalesce laterally to produce a crude		
2118		microreticulum. Some interruption of ornament may be observed laterally in a		
2119		position corresponding to the paracingulum.		
2120				
2121	The m	arginate distribution of the ornament is very distinct. Cyclonephelium maugaad has a		
2122	similar	ornament, but it consists of hair-like processes and process bundles.		
2123				
2124	Stratig	graphical occurrence. This species was originally described from the upper Aptian to		
2125	lower .	Albian of England.		
2126				
2127		Cyclonephelium maugaad Below 1981		
2128		(Fig. 15 S)		
2129	1981	Cyclonephelium maugaad Below, p. 15, pl. 11, figs 2, 3a-b; pl. 15, fig. 20.		

2130		
2131	Comments. Below (1981, p. 15) gave the following diagnosis and description for	
2132	Cyclonephelium maugaad.	
2133		
2134	Diagnosis: proximate, nontabulate cyst, central body round to oval in outline,	
2135	dorsoventrally compressed. Archaeopyle apical (A). With the exception of the dorsal	
2136	and ventral areas, surface always covered with crispae [?]. No indications of	
2137	paracingulum, parasulcus or polar [apical?] process. Description: The cyst shows the	
2138	features characteristic of the genus, dorso-ventral compression and areas on the	
2139	central dorsal and ventral sides always without ornament. For me the conspicuous	
2140	feature that marks and differentiates this from all other species of the genus is the	
2141	markedly crispate (Lat. <i>crispus</i> = curly) form of the appendages. The appendages are	
2142	straight or curved, sinuous, [with] irregularly beaded thickenings, and bear in part	
2143	lateral sprays. They are isolated or, especially marginally, appear concentrated, in	
2144	which case they are joined basally. A variant of the species bears crispae only at the	
2145	antapex. The autophragm between processes is smooth. [Translation]	
2146		
2147	Stratigraphical occurrence. Below (1981) recorded Cyclonephelium maugaad from the	
2148	Hauterivian to Aptian of southwestern Morocco.	
2149		
2150	Cyclonephelium membraniphorum Cookson & Eisenack, 1962b	
2151	(Fig. 15 T)	
2152	1962b Cyclonephelium membraniphorum Cookson & Eisenack, p. 495, pl. 6, figs 8-14.	
2153	2004 Cauveridinium membraniphorum (Cookson & Eisenack) Masure in Fauconnier &	
2154	Masure, p. 97.	
2155		
2156	Comments. This species is characterised by marginate membranes that (according to Cookson &	
2157	Eisenack 1962b, p. 495) are:	
2158		
2159	supported by widely spaced, equidistant, radial fibres. These fibres arise from the	
2160		peripheral surfaces of the shell, and their bases are connected tangentially. They are
------	---------	---
2161		simple or capitate and relatively stout Occasionally a union between fibres
2162		[forms] wide funnel-like structures.
2163		
2164	Masure	e in Fauconnier & Masure (2004) transferred this species to Cauveridinium. But since we
2165	now co	onsider Cauveridinium to be a taxonomic junior synonym of Cyclonephelium, we retain
2166	this sp	ecies in the latter genus.
2167		
2168	Stratig	graphical occurrence. Cookson & Eisenack (1962b) recorded this species from the
2169	Albian	to Cenomanian of Australia.
2170		
2171		Cyclonephelium? operculatum Yu Jingxian 1982
2172		(Fig. 16 A)
2173	1982	Cyclonephelium operculatum Yu Jingxian, p. 252–253, pl. 7, figs 20–22.
2174	2004	Cyclonephelium? operculatum Yu Jingxian; Fauconnier & Londeix in Fauconnier &
2175		Masure, p. 147.
2176		
2177	Comm	ents. Fauconnier & Londeix in Fauconnier & Masure (2004) considered this a
2178	problem	matic species. We agree, and hence concur that its assignment to Cyclonephelium is
2179	questic	onable. We recommend that use of this name be restricted to the type material.
2180		
2181	Stratig	graphical occurrence. Yu Jingxian (1982) described this species from the Upper
2182	Jurassi	c–Lower Cretaceous of China.
2183		
2184		
2185		Genus Senoniasphaera Clarke & Verdier 1967 emend. nov.
2186	1967	Senoniasphaera Clarke & Verdier, p. 61.
2187		
2188	Туре.	Clarke and Verdier, 1967, pl. 14, fig.8, as Senoniasphaera protrusa.
2189		

Emended diagnosis. Areoligeracean cysts that are proximate, dorsoventrally compressed; 2190 central body lenticular, with asymmetrical to rounded antapex and a generally short apical 2191 prominence. Holocavate with generally wide pericoel; the connections between endophragm and 2192 2193 periphragm are absent or sparsely distributed and may be in linear (septa) or isolated elements (pillars). Periphragm generally continuous, but may be perforate, generally smooth or with 2194 ornamentation of low relief. Archaeopyle apical, with formula $A_{(1-4')}$, operculum free or attached; 2195 2196 parasulcal notch offset to the left. 2197 Comments. This genus has generally been used for cavate areoligeraceans without connections 2198 between wall layers, as implied in the original diagnosis by Clarke & Verdier (1967, p. 61), who 2199 2200 wrote: 2201 Inner body round or oval. Outer membrane is extended from the inner body to form 2202 one apical, two antapical and often two lateral horns. The inner body frequently 2203 2204 protrudes into the apical and antapical horns. Tabulation present. Girdle and longitudinal furrow present. Archaeopyle apical. 2205 2206 Clarke & Verdier (1967) did not mention connections between wall layers in the generic 2207 diagnosis. However, they described the type, Senoniasphaera protrusa, as having pillars 2208 connecting the two walls. Thus, separation of Senoniasphaera from Canningia, which is also a 2209 cavate areoligeracean with connections between wall layers, is somewhat problematic. The two 2210 genera have been used for broadly different morphologies, with Senoniasphaera tending to have 2211 2212 broad pericoels and sparse supports between walls, whereas Canningia generally encompasses forms with a much narrower pericoel and dense supports. In order to maintain the current usage 2213 we have emended the diagnosis of Senoniasphaera to reflect these broad differences while 2214 adding the possible presence of structures between wall layers. 2215 2216 Senoniasphaera? clavellii Bailey et al. 1997 2217 (Fig. 16 B) 2218 1997 Senoniasphaera clavellii Bailey et al., p. 236, 239, figs 4d-h. 2219

2220			
2221	Comments. This species does not clearly show the asymmetry characteristics of an		
2222	areoligeracean cyst. Because of this observation, we only questionably retain the species in		
2223	Senoniasphaera.		
2224			
2225	Stratigraphical occurrence. Bailey et al. (1997) recorded Senoniasphaera clavellii from the		
2226	upper Kimmeridgian of Dorset, England.		
2227			
2228	Senoniasphaera congrensa (Prince et al. 2008) stat. nov.		
2229	(Figs 16 C–D)		
2230	2008 Senoniasphaera protrusa subsp. congrensa Prince et al., p. 90, pl. 2, figs 1-3.		
2231			
2232	Comments. Prince et al. (2008, p. 90) defined this taxon as follows: "An elongate subspecies of		
2233	Senoniasphaera protrusa in which the inner body is oval with a slight antapical protuberance on		
2234	the centre line so that the inner body is vertically symmetrical." In their description, Prince et al.		
2235	(2008) referred to the presence of a "small number of pillars" between wall layers. Prince et al.		
2236	(2008) appeared to treat this taxon as a species rather than a subspecies, stating:		
2237			
2238	The two most similar species [sic.] are [Senoniasphaera] protrusa and		
2239	Senoniasphaera macroreticulata. Senoniasphaera protrusa has an inner body that		
2240	has two antapical horns of unequal size, giving the inner body an asymmetrical		
2241	shape. Senoniasphaera macroreticulata has distinctive pillars that are elongate,		
2242	slender or broad, perforate and fibrous. The cavities between these pillars have an		
2243	irregular shape.		
2244			
2245	By raising this subspecies to species rank, the autonym, Senoniasphaera protrusa subsp.		
2246	protrusa becomes redundant.		
2247			
2248	Stratigraphical occurrence. Prince et al. (2008) recorded this taxon from the uppermost		
2249	Santonian of southeastern England.		

2250	
2251	Senoniasphaera? edenensis Marshall 1990a
2252	(Figs 16 E–G)
2253	1990a Senoniasphaera edenensis Marshall, p. 18, figs 9A-E, 15L-W.
2254	
2255	Comments. Marshall (1990a, p. 18) noted that this species has "Scattered solid pillars [that]
2256	extend normally between wall layers around periphery of cyst" The presence of lateral
2257	prominences may indicate that Senoniasphaera edenensis is a ceratiacean rather than an
2258	areoligeracean, and thus we question its generic assignment. Marshall (1990a) provided
2259	additional information about the wall structure, noting that the pillars are:
2260	
2261	tapering towards [their?] midlength where they are usually up to 1 μ m thick.
2262	Additional finer pillars occur around the edges of the middorsal and midventral
2263	surfaces where wall layers are in close proximity. Endophragm smooth
2264	Periphragm bearing numerous perforations and circular, shallow pits
2265	Perforations close spaced and extremely fine where layers are appressed,
2266	becoming larger and [sparser] where separated.
2267	
2268	Stratigraphical occurrence. Marshall (1990a) recorded this species from the Campanian of
2269	southeastern Australia.
2270	
2271	Senoniasphaera filoreticulata (Slimani 1994) comb. nov.
2272	(Figs 16 I–L)
2273	1994 Canningia filoreticulata Slimani, p. 96–97, pl. 15, figs 1–6.
2274	1999 Cyclonephelium filoreticulatum (Slimani) Prince et al., p. 164.
2275	
2276	Comments. Slimani (1994, p. 96) diagnosed this species as follows:
2277	
2278	Cyst of Canningia, lenticular, with two antapical protrusions, of which the one on the
2279	left is often better developed. It is characterised by a reticulate ectophragm [i.e.

periphragm in our terminology] supported by processes and fibroreticulate septa, 2280 well-spaced and reaching a height of about 1/5th of the total diameter. Except for the 2281 archaeopyle, paratabulation is apparently absent. [Translation] 2282 2283 This species thus appears to have a periphragm supported by septa and possibly processes, 2284 although it is unclear to us whether the processes described by Slimani (1994) are true 2285 projections or junctions of the septa. In transferring the species from Canningia to 2286 Cyclonephelium, Prince et al. (1999, p. 164) cited the absence of processes or septa in 2287 dorsoventral areas, the most similar species being Cyclonephelium membraniphorum, "... which 2288 differs by having pillars that are simple or acuminate, not expanded and anchor-shaped as in C. 2289 filoreticulatum." Prince et al. (1999) also referred to the wide wall [layer] separation in 2290 2291 Cyclonephelium filoreticulatum, acknowledging the cavate nature of the species. Given its cavate nature of this species, the wide pericoels and relatively widely spaceds supporting structures, we 2292 reassign it to Senoniasphaera. 2293 2294 Stratigraphical occurrence. Slimani (1994) recorded this species from the Campanian of 2295 Belgium and southern Netherlands. 2296 2297 Senoniasphaera inornata (Drugg 1970) Stover & Evitt 1978 2298 (Fig. 16 H) 2299 Chiropteridium inornatum Drugg, p. 811–812, figs 3C–F. 2300 1970 1978 Senoniasphaera inornata (Drugg) Stover & Evitt, p. 80. 2301 2302 Comments. Drugg (1970, p. 811-812) described this species as a double-walled cavate cyst. He 2303 noted that the endocyst was spherical to somewhat flattened, with weak antapical lobes possibly 2304 present. The periphragm is smooth and appressed to the endophragm dorsoventrally, but with a 2305 pericoel ambitally. He noted that "Sparse and faint supporting processes are sometimes present 2306 in a lateral position. The species is very similar to, and possibly a taxonomic junior synonym of, 2307 Senoniasphaera lordii. 2308 2309

2310	Stratigraphical occurrence. Drugg (1970) recorded Senoniasphaera inornata (as		
2311	Chiropteridium inornatum) from the Danian of Alabama, USA. Powell (1992) indicated that the		
2312	FAD of the species is in the Cretaceous and that its LAD is within the Danian (NP4 Zone).		
2313	Willia	ms et al. (2004) placed its FAD immediately above the base of the Danian and its LAD in	
2314	the mi	ddle Danian in Northern Hemisphere mid-palaeolatitudes.	
2315			
2316		Senoniasphaera jurassica (Gitmez & Sarjeant 1972) Lentin & Williams 1976	
2317		(Figs 16 M–N)	
2318	1972	Hexagonifera jurassica Gitmez & Sarjeant, p. 240–241, pl. 14, figs 5, 8.	
2319	1976	Senoniasphaera jurassica (Gitmez & Sarjeant) Lentin & Williams, p. 85.	
2320	1979	Ambonosphaera jurassica (Gitmez & Sarjeant) Fensome, p. 51.	
2321	1992	Senoniasphaera jurassica (Gitmez & Sarjeant); emend. Poulsen & Riding, p. 28.	
2322			
2323	Comm	nents. This species was originally diagnosed in part by Gitmez & Sarjeant (1972, p. 240)	
2324	as bein	ng cavate, with a delicate, smooth or minutely granular periphragm and a thick, densely	
2325	granul	ar endophragm with occasional tubercles. The emendation of Poulson & Riding (1992, p.	
2326	28) stressed the circumcavate wall structure, the lenticular shape, the occasional presence of an		
2327	antapical claustrum, the partially developed paratabulation, and the markedly offset parasulcal		
2328	notch.		
2329			
2330	Strati	graphical occurrence. Gitmez & Sarjeant (1972) recovered Senoniasphaera (as	
2331	Hexag	conifera) jurassica from the middle Kimmeridgian of England. Riding & Thomas (1992)	
2332	placed the FAD of the species at the base of the Kimmeridgian and the LAD within the		
2333	Portlandian (Tithonian). Stover et al. (2004) plotted its range as earliest Kimmeridgian to middle		
2334	Portla	ndian (late Tithonian).	
2335			
2336		Senoniasphaera lordii (Cookson & Eisenack 1968) Lentin & Williams 1976	
2337		(Fig. 16 O)	
2338	1968	Ascodinium lordii Cookson & Eisenack, p. 112, figs 1I-K.	
2339	1976	Senoniasphaera lordii (Cookson & Eisenack) Lentin & Williams, p. 102.	

2341	Comments. Cookson & Eisenack (1968, p. 112) described the periphragm as "thin and more or
2342	less granular" and the endophragm as " somewhat thicker and smooth, except near the margins
2343	where, in most specimens, a more or less coarse, somewhat finely reticulate pattern is evident."
2344	The species is very similar to, and possibly a taxonomic senior synonym of, Senoniasphaera
2345	inornata.
2346	
2347	Stratigraphical occurrence. Cookson & Eisenack (1968) recovered this species from the
2348	Santonian to lower Campanian of Western Australia.
2349	
2350	Senioniasphaera macroreticulata Prince et al. 2008
2351	(Figs 16 Q–R)
2352	2008 Senoniasphaera macroreticulata Prince et al., p. 90, pl. 1, figs 7-10.
2353	
2354	Comments. Prince et al. (2008, p. 90) provided the following diagnosis for Senoniasphaera
2355	macroreticulata.
2356	
2357	A species of Senoniasphaera with a densely reticulate outer body connected to the
2358	inner body by fairly long fibrous pillars. The cavities between these pillars are
2359	rectangular to sub-rectangular in shape but never oval or rounded as in
2360	Senoniasphaera protrusa. Paratabulation may be indicated on the dorsal side by a
2361	concentration of ornamentation. However, this is often obscured by the densely
2362	reticulate outer body.
2363	
2364	Although the paratype (Prince et al. 2008, figs 9-10) shows relatively dense interconnections
2365	between wall layers, in the holotype (Prince et al. 2008, figs 7-8) these structures appear to be
2366	sparse. Moreover, the pericoel in this species is wide. Hence we retain it in Senoniasphaera.
2367	
2368	Stratigraphical occurrence. Prince et al. (2008) recorded this species from the upper Santonian
2369	to lower Campanian of England.

2370		
2371	Senoniasphaera microciliata (Jain 1977) comb. nov.	
2372	(Fig. 16 P)	
2373	1977 Canningia microciliata Jain, p. 178, pl. 3, fig. 25; pl. 6, fig. 78.	
2374	1987 Canningia? microciliata Jain; Helby, p. 324–325.	
2375		
2376	Comments. Jain (1977, p. 178) noted that the periphragm " is densely ornamented with fine	
2377	cilia having bulbous base" giving the cyst a " coarsely granulate appearance." This species	
2378	is clearly cavate, with no sign of connections between wall layers. Hence we transfer it to	
2379	Senoniasphaera.	
2380		
2381	Stratigraphical occurrence. Jain (1977) described this species from the lower Albian of	
2382	southern India.	
2383		
2384	Senoniasphaera microreticulata Brideaux & McIntyre 1975	
2385	(Figs 8 A–B, 17 A–C)	
2386	1975 Senoniasphaera microreticulata Brideaux & McIntyre, p. 35, pl. 11, figs 7–12; pl. 12,	
2387	figs 1–8.	
2388	1981 Canningia microreticulata (Brideaux & McIntyre) Below, p. 31.	
2389	1981 Senoniasphaera microreticulata Brideaux & McIntyre; Lentin & Williams, p. 33.	
2390		
2391	Comments. This very distinctive species is circumcavate, " the periphragm microreticulate	
2392	and generally closely appressed to the thicker microreticulate endophragm" (Brideaux &	
2393	McIntyre 1975, p. 35). It resembles forms of <i>Canningia</i> in having a narrow periocoel and a	
2394	microreticulate periphragm. However, as the wall layers lack connections, we follow Lentin &	
2395	Williams (1981) in retaining this species in Senoniasphaera.	
2396		
2397	Stratigraphical occurrence. Brideaux & McIntyre (1975) described Senoniasphaera	
2398	microreticulata from the lower to middle Albian of the Northwest Territories (former District of	
2399	Mackenzie), Canada.	

2400	
2401	Senoniasphaera palla Louwye 1997
2402	(Figs 16 S–T)
2403	1997 Senoniasphaera palla Louwye, p. 153, pl. 2, figs 3, 6.
2404	
2405	Comments. In his diagnosis for this species Louwye (1997, p. 153) reported that "The
2406	endophragm forms low, solid and pillarlike protrusions which support the periphragm and mark
2407	subcircular thickenings on the periphragm." However, connections between wall layers are
2408	sparse, so we retain this species in Senoniasphaera.
2409	
2410	Stratigraphical occurrence. Louwye (1997) described this species from the Turonian of
2411	Belgium.
2412	
2413	Senoniasphaera protrusa Clarke & Verdier 1967
2414	(Fig. 17 D)
2415	1967 Senoniasphaera protrusa Clarke & Verdier, p. 61–62, pl. 14, figs 7–9; text-fig. 24.
2416	1999 Senoniasphaera protrusa Clarke & Verdier; emend. Prince et al., p. 161.
2417	
2418	Comments. This species is the type of <i>Senoniasphaera</i> and was defined by Clarke & Verdier
2419	(1967, p. 61) as "A species of Senoniasphaera in which the inner body protrudes into the apical
2420	and antapical horns." They noted that "The outer membrane is attached to the inner body mostly
2421	on the dorsal and ventral sides by a series of perforated pillars which may be so short as to be
2422	hardly visible." Because of the lack of prominence of the interconnecting pillars and the broad
2423	pericoel, we retain this species.
2424	
2425	Stratigraphical occurrence. Clarke & Verdier recorded Senoniasphaera protrusa from the
2426	Santonian of southern England. Costa & Davey (1992) gave its stratigraphical range as late
2427	Santonian to latest Campanian. Stover et al. (1996) considered it to be of Santonian to earliest
2428	Maastrichtian age. Williams et al. (2004) placed its FAD in the basal Santonian and its LAD in
2429	the early Campanian.

2430	
2431	Senoniasphaera ptomatis Helby, May & Partridge in Helby 1987
2432	(Figs 17 E–H)
2433	1987 Senoniasphaera ptomatis Helby, May & Partridge in Helby, p. 319–321, figs 25A–S, 26.
2434	
2435	Comments. Helby, May & Partridge in Helby (1987, p. 319–320) noted that the cyst wall is "
2436	2-layered, circumcavate; outlines of endophragm and periphragm essentially similar.
2437	Endophragm smooth, scabrate or granulate. Periphragm smooth, perforate or granulate in most
2438	regions, occasionally with low granular to rugoreticulate pandasutural ridges." No mention is
2439	made of elements connecting the wall layers, and none are apparent from most of the figures,
2440	including the holotype. Thus this species is readily accommodated in Senoniasphaera.
2441	
2442	Stratigraphical occurrence. This species was described from the middle Berriasian of
2443	Australasia.
2444	
2445	Senoniasphaera? reticulata (Khanna & Singh 1981) Lentin & Williams 1993
2446	(Fig. 17 I)
2447	1981 Hexagonifera reticulata Khanna & Singh, p. 391, fig. 1, nos 4, 6; text-fig. 3.
2448	1993 Senoniasphaera? reticulata (Khanna & Singh) Lentin & Williams, p. 591.
2449	
2450	Comments. Khanna & Singh (1981, p. 391) made the following statement in the diagnosis of
2451	this species regarding the wall structure: " endophragm thick, broadly reticulate forming
2452	subcircular body; periphragm in the form of a thin, transparent membrane enclosing the body."
2453	They also remarked that "The periphragm is detachable and occasionally found separately
2454	in the form of a thin transparent sac. The lumina of the reticulum are narrow on the central part
2455	of the body whereas they widen out towards the periphery." As the wall layers are thus
2456	apparently unconnected, we retain this species in Senoniasphaera, although it closely resembles
2457	some reticulate species of Canningia. For that reason we follow Lentin & Williams (1993) in
2458	questioning the generic assignment.
2459	The name Hexagonifera reticulata was not validly published in Singh et al. (1979, p. 35-

2460	36), Khanna (1979, p. 216) and Khanna et al. (1981, p. 261) since no description was provided.
2461	This species is not synonymous with its invalid homonym Senoniasphaera? reticulata (see
2462	Wilson in Masure 1985, caption to fig.1b — p.202).
2463	
2464	Stratigraphical occurrence. Khanna & Singh (1981) recovered this species from the Lower to
2465	Middle Eocene of northern India.
2466	
2467	Senoniasphaera? turensis Vasilyeva in Andreeva-Grigorovich et al. 2011
2468	(Fig. 17 J)
2469	2011 Senoniasphaera turensis Vasilyeva in Andreeva-Grigorovich et al., p. 34, pl. 2, fig. 6.
2470	
2471	Comments. Vasilyeva in Andreeva-Grigorovich et al. (2011, p. 34) provided the following
2472	description for this species:
2473	
2474	Pericyst almost round, with barely noticeable antapical horns. Pericyst outline seems
2475	to be jagged, slightly wavy. Endocyst is round, coinciding in shape with pericyst.
2476	Pericoel is very narrow, slightly expanded antapically. Periphragm is quite dense,
2477	transparent and forms wrinkles over the whole surface and, typical for this species,
2478	has small folds over the whole pericyst outline, which look like a range of open
2479	perforations in the pericoel. Periphragm is occasionally perforated. Endophragm is
2480	quite dense, single-layered, smooth. Periarchaeopyle is apical (type tA). Operculum
2481	is attached or absent. Archaeopyle outline is uneven. Paratabulation is expressed by
2482	the archaeopyle; small wrinkles of the periphragm indicate the paracingulum.
2483	[Translation courtesy Alina Iakovleva, personal communucation]
2484	
2485	It is unclear whether connections exist between the wall layers, both from the description and
2486	illustration. For this reason, because the pericoel is narrower than is typical for Senoniasphaera,
2487	and because the single specimen illustrated shows no unequivocal features of areoligeracean
2488	affinity, we question the assignment of this species to Senoniasphaera.
2489	

2490	Stratigraphical occurrence. This species was originally described from the Danian of the		
2491	southern Ural Mountains, Russia.		
2492			
2493		Senoniasphaera turonica (Prössl 1990 ex Prössl 1992) Pearce et al. 2011	
2494		(Figs 17 K–L)	
2495	1990	Craspedodinium turonicum Prössl, p. 108-109, pl. 16, figs 1-2, 6-7 (name not validly	
2496		published; holotype not designated).	
2497	1992	Craspedodinium turonicum Prössl ex Prössl, p. 114.	
2498	2003	Senoniasphaera rotundata subsp alveolata Pearce et al., p. 301-302, pl. 2, figs 6-7.	
2499	2011	Senoniasphaera turonica (Prössl ex Prössl) Pearce et al., p. 92.	
2500			
2501	Comm	nents. In describing this species (as Craspedodinium turonicum), Prössl (1990) noted that	
2502	"A rou	igh to fine-mesh reticulum on the inside of the ectophragm [i.e. periphragm] is partially	
2503	conne	cted to the endophragm by round or elongate columns" (translation by Pearce et al. 2011,	
2504	p. 91).	Pearce et al. (2011) transferred this species to Senoniasphaera and considered	
2505	Senon	iasphaera rotundata subsp alveolata to be a taxonomic junior synonym.	
2506			
2507	Strati	graphical occurrence. Prössl (1990) recovered this species from the Turonian of	
2508	northv	vestern Germany. Pearce et al. (2003) recorded Senoniasphaera rotundata subsp alveolata	
2509	from the lower Turonian of England.		
2510			
2511			
2512		Genus Tenua Eisenack 1958 emend. nov.	
2513	1958	Tenua Eisenack, p. 410.	
2514	1966	Doidyx Sarjeant, p. 205–206.	
2515	1968	Tenua Eisenack; emend. Sarjeant, p. 230-231.	
2516	1972	Tenua Eisenack; emend. Pocock, p. 94.	
2517	1985	Tenua Eisenack; emend. Sarjeant, p. 94.	
2518	non 19	78 <i>Tenua</i> Davey, p. 894.	
2519			

2520 **Type.** Eisenack 1958, pl. 23, fig. 1, as *Tenua hystrix*.

2521

Emended diagnosis. Areoligeracean cysts that are proximate to proximochorate; central body 2522 2523 dorsoventrally compressed, with a subcircular, broadly subovoidal to asymmetrically lenticular ambitus, usually with an apical horn; posteriorly rounded to asymmetrical, with one or two weak 2524 to moderately developed antapical horns. Ornamentation absent or consists of free-standing 2525 elements, some of which may be aligned to reflect aspects of tabulation; however, processes are 2526 more or less uniformly distributed or present but may be substantially reduced in density in 2527 dorsoventral areas. Archaeopyle apical, type $A_{(1-4)}$, operculum free; parasulcal notch offset to the 2528 2529 left.

2530

2531 Comments. As we have noted, intergradation is a major problem in the Cyclonephelium group of genera. This problem is exacerbated when the type of a key genus has an unclear or 2532 "intermediate" morphology. Such is the case for the holotype of Tenua hystrix, the type of Tenua 2533 2534 Eisenack 1958. Tenua is one of the earliest generic names in the group, but its morphology, especially process distribution, has been much debated, despite the fact that several authors have 2535 published new photographs of the type. After reviewing these images (referenced in the 2536 introductory sections), we conclude that the dorsoventral areas of the type are not devoid of 2537 ornament (as is the case in *Circulodinium*), although it is not uniformly distributed or distributed 2538 2539 to clearly reflect tabulation (as in *Cerbia* and *Canningopsis*). Hence we propose the use *Tenua* for forms in which the ornament extends over the dorsovental areas, whether densely and 2540 uniformly or in a somewhat reduced and patchy manner, as in the type of Tenua hystrix. We 2541 2542 consider that this retains to some extent the early intent and usage of the genus and will cause fewer taxonomic problems than would alternative interpretations. We emend the generic 2543 diagnosis accordingly. 2544

2545

Sarjeant (1966, p. 205–206) provided the following original diagnosis for *Doidyx*.

2546

2547 Proximate dinoflagellate cysts with flattened biconical shell, pronouncedly
2548 asymmetrical. Epitract in form of high cone which may be drawn out into an apical
2549 horn, giving a mammillate appearance: hypotract in form of flattened cone, with or

2550		without antapical prominence. Shell bulging out to one side more than the other;
2551		lateral horns lacking. Greater part of shell covered with short spines, simple or
2552		bifurcate: arrangement is in general random, but sometimes in rows, suggesting
2553		traces of tabulation. Equatorial zone, corresponding to cingulum, lacking spines: not
2554		hollowed. No pattern of sutures visible, no clear indication of sulcus. Apical
2555		archaeopyle formed by schism of shell on angular line of breakage.
2556		
2557	This d	iagnosis largely parallels our concept of <i>Tenua</i> , and hence we treat <i>Doidyx</i> as a junior
2558	synon	ym of the former genus; but the type of <i>Doidyx</i> , the holotype of <i>Doidyx anaphrissa</i> , better
2559	fits ou	r concept of <i>Tenua</i> .
2560		Sarjeant & Stover (1978) and Bint (1986) considered <i>Doidyx</i> to be a taxonomic junior
2561	synon	ym of Aptea and Pseudoceratium respectively. However, Pseudoceratium has a distinct
2562	lateral	horn and Aptea has linear ornament. Although the type of Doidyx has a lateral bulge,
2563	Sarjea	nt (1966) stated unequivocally that the species lacks a lateral horn, as is apparent from the
2564	type.	
2565		
2566	Accep	oted species.
2567		
2568		Tenua anaphrissa (Sarjeant 1966) Benedek 1972
2569		(Figs 9 D–H; 17 M)
2570	1966	Doidyx anaphrissa Sarjeant, p. 206, pl. 22, fig. 8; pl. 23, fig. 6; text-fig. 55.
2571	1972	Tenua anaphrissa (Sarjeant) Benedek, p. 9-10.
2572	1978	Aptea anaphrissa (Sarjeant) Sarjeant & Stover, p. 51.
2573	1978	Cyclonephelium distinctum subsp. longispinatum Davey, p. 894, pl. 3, figs 7-8 [non fig.
2574		4].
2575	1986	Pseudoceratium anaphrissum (Sarjeant) Bint, p. 145.
2576	1989	Circulodinium distinctum subsp. longispinatum (Davey) Lentin & Williams, p. 63.
2577	1990	Pseudoceratium anaphrissum (Sarjeant); emend. Harding, p. 17-18.
2578	2004	Cyclonephelium longispinatum (Davey) Fauconnier in Fauconnier & Masure, p. 146.
2579		

2580 **Comments.** Sarjeant (1966, p. 207) erected *Doidyx anaphrissa* and noted that it has:

2581

2582 ... a dense cover of short spines, most often capitate, less frequently evexate, oblate,
2583 bifid or bifurcate: these sometimes suggest arrangement into lines, but no coherent
2584 pattern was determined. An equatorial belt ... corresponding to the cingulum, lacks
2585 spines.

2586

The equatorial belt that, according to Sarjeant (1966), is devoid of spines is more apparent on his interpretative drawing than on his photographs, and we do not consider this constitutes a dorsoventral area devoid of ornament. We retain this species in *Tenua* as we consider *Doidyx* to be a taxonomic junior synonym of *Tenua*. This species accommodates forms of *Tenua* with slender, sometimes hair-like processes typically 4–10 µm long. *Tenua hystrix* has shorter, generally stubbier processes. The ambital outline of both species, as conceived herein, is variable.

In proposing *Cyclonephelium distinctum* subsp. *longispinatum* (subsequently *Cyclonephelium longispinatum*), Davey (1978, p. 894) noted that it was "... a subspecies ... having a denser covering of long spines [presumably in comparison with the type subspecies?] which extend well on to the dorsal and ventral surfaces leaving only small areas devoid of processes". Because of its lack of dorsoventral areas clearly devoid of ornament and its hair-like processes, we consider this taxon to be a taxonomic junior synonym of from *Tenua anaphrissa*.

Stratigraphical occurrence. Sarjeant (1966) described *Doidyx anaphrissa* from the lower
Barremian of Yorkshire, England. Costa & Davey (1992) plotted the FAD of this species near
the base of the early Barremian and its LAD within the earliest late Barremian. The type material
of *Cyclonephelium distinctum subsp. longispinatum* is from the Turonian of offshore
southwestern Africa.

- 2607
 Tenua? apiculata (Jain & Garg in Jain et al. 1984) comb. nov.

 2608
 (Fig. 17 N)

 2609
 1984
 Canningia apiculata Jain & Garg in Jain et al., p. 71–72, pl. 2, figs 27–29.
- 87

2611	Comments. From the illustrations in Jain et al. (1984), this species appears to be an		
2612	areoligeracean despite its early age, with the type having an asymmetrical antapex. It has a single		
2613	wall layer and is thus not attributable to Canningia under the current concept of that genus. In the		
2614	diagnosis, Jain & Garg in Jain et al. (1982, p. 71) noted the following: "processes short, distally		
2615	truncate to bifid, distantly placed; crest well developed". In their remarks, the authors refer to		
2616	ornamentation "with curved ridges". Although the spines are evident on the illustrations and		
2617	appear to be more or less uniform in distribution, but the nature of the "crest" and "curved		
2618	ridges" are unclear, we tentatively transfer this species to Tenua and suggest that it be restricted		
2619	to the type material until its morphology can be clarified.		
2620			
2621	Stratigraphical occurrence. The type material of Tenua? apiculata is from the Kimmeridgian		
2622	to lower Tithonian of India.		
2623			
2624	Tenua? araneosa (Brideaux 1977) comb. nov.		
2625	(Figs 17 O–P)		
2626	1977 Cleistosphaeridium araneosum Brideaux, p. 22–23, pl. 9, figs 1–3.		
2627	1993 Heterosphaeridium araneosum (Brideaux) Islam, p. 84.		
2628	2004 Circulodinium? araneosum (Brideaux) Fauconnier in Fauconnier & Londeix in		
2629	Fauconnier & Masure, p. 115.		
2630			
2631	Comments. Although we have transferred this species to Tenua based on its overall, albeit		
2632	sparse, cover of ornament, we do so questionably because the species is not convincingly an		
2633	areoligeracean. It has a rounded ambitus and the archaeopyle, at least from the illustrations, is		
2634	not clearly apical.		
2635			
2636	Stratigraphical occurrence. Brideaux (1977) described this species from the Aptian and Albian		
2637	of the Northwest Territories, former District of Mackenzie, Canada.		
2638			
2639	Tenua? asymmetrica (Burger 1980) comb. nov.		

2640		(Fig. 17 Q)
2641	1980.	Cyclonephelium asymmetricum Burger, p. 270, figs 6c, 7a-c.
2642	2000	Circulodinium asymmetricum (Burger) He Chengquan & Sun Xuekun, p. 52.
2643		
2644	Comm	nents. Burger (1980) noted that:
2645		
2646		Tiny processes [i.e. spines] occur sparsely in equatorial region; mid-ventral and mid-
2647		dorsal areas largely free from ornament. Processes unevenly scattered and
2648		occasionally aligned, presumably along parasutures, usually more closely together
2649		and larger in antapical region.
2650		
2651	From	the illustrations of Burger (1980) of this species, the mid-dorsoventral areas devoid of
2652	spines	are not readily apparent, but the holotype appears to show significant alignment of spines.
2653	Although we have transferred this species to Tenua, we do so provisionally because the	
2654	distrib	ution of ornament is not clear. The loose but occasionally aligned ornament is reminiscent
2655	of that	of Canninginopsis? monile.
2656		
2657	Strati	graphical occurrence. The type material of this species is from the Neocomian of
2658	Queer	Island, Australia.
2659		
2660		Tenua? attadalica (Cookson & Eisenack 1962) comb. nov.
2661		(Fig. 17 R)
2662	1962	Cyclonephelium? attadalicum Cookson & Eisenack, p. 495, pl. 5, figs 12-15.
2663	1974	Aptea attadalica (Cookson & Eisenack) Davey & Verdier, p. 643.
2664	1978	Canningia attadalica (Cookson & Eisenack) Stover & Evitt, p. 24-25.
2665	1987	Circulodinium attadalicum (Cookson & Eisenack) Helby, p. 324-325.
2666		
2667	Comm	nents. Cookson & Eisenack (1962, p. 495) commented:
2668		
2669		Surface ornamented with small, stiff, frequently capitate appendages which tend to

2670		be grouped at intervals around the shell, especially in the antapical region. The
2671		central portions of both surfaces are relatively free from appendages except in the
2672		equatorial region of one surface, which is crossed by two rows of appendages that
2673		appear to delimit a girdle-like zone [i.e. the cingulum].
2674		
2675	In terr	ns of our generic criteria, this species is difficult to interpret, especially the holotype. As
2676	Cooks	on & Eisenack (1962) indicated, the spines seem to be clumped, and the dorsal and ventral
2677	surfac	es have relatively sparse ornamentation. However, the holotype appears to have a clump of
2678	proces	ses in the dorsoventral area. Given this uncertainty, we questionably transfer this species
2679	to Ten	ua.
2680		
2681	Strati	graphical occurrence. The type material of this species is from the Aptian and Albian of
2682	Austra	llia.
2683		
2684		Tenua chinensis (He Chengquan 1991) comb. nov.
2685		(Fig. 17 S)
2686	1991	Canningia chinensis He Chengquan, p. 54–55, pl. 9, figs 17–18.
2687	2009	Circulodinium chinense (He Chengquan) He Chengquan et al, p. 268.
2688		
2689	Comm	nents. We transfer this species to Tenua because it has an overall cover of isolated
2690	ornam	ent. It closely resembles Tenua hystrix, but the Middle Eocene age of the type material of
2691	Tenua	chinensis makes synonymy unlikely.
2692		
2693	Strati	graphical occurrence. He Chengquan (1991) recovered this species from the Middle
2694	Eocen	e of Xinjiang, China.
2695		
2696		Tenua colliveri (Cookson & Eisenack 1960) comb. nov.
2697		(Figs 9 A–C; 17 T)
2698	1960	Canningia colliveri Cookson & Eisenack, p. 251, pl. 38, figs 3-4.
2699	1987	Circulodinium colliveri (Cookson & Eisenack) Helby, p. 324–325.

2700	1988 Canninginopsis colliveri (Cookson & Eisenack) Backhouse, p. 77.
2701	
2702	Comments. Cookson & Eisenack (1960, p. 251) noted that the thin autophragm is " granular
2703	or closely to sparsely spinulate." The illustration of the holotype (Cookson & Eisenack 1960, pl.
2704	38, fig. 4) appears to show a relatively thick wall with predominantly and evenly granular
2705	ornamentation. The other illustrated specimen (pl. 38, fig. 3) appears to have a partially
2706	vermiculate ornamentation and may not be conspecific with the holotype. We transfer this
2707	species to Tenua because it has an overall cover of unit ornament.
2708	
2709	Stratigraphical occurrence. The type material is from the Aptian of Queensland, Australia.
2710	
2711	Tenua compta (Davey 1982) comb. nov.
2712	(Fig. 18 A)
2713	1982 Canningia compta Davey, p. 268, pl. 8, figs 3-6.
2714	1987 Circulodinium comptum (Davey) Helby, p. 324–325.
2715	
2716	Comments. We transfer this species to <i>Tenua</i> because of its overall foveolate and verrucate
2717	ornamentation. Davey (1982, p. 268) noted that the ornament is " less pronounced towards the
2718	centre of the dorsal postcingular paraplate and the parasulcal region." But from the illustrations
2719	of the type material, it is clear that the ornament continues across these areas, and there is no
2720	visibly defined area devoid of ornament.
2721	
2722	Stratigraphical occurrence. This species was originally described from the lower Portlandian
2723	(Tithonian) to lowermost Valanginian of subsurface Denmark.
2724	
2725	Tenua copei (Bailey et al. 1997) comb. nov.
2726	(Fig. 18 B)
2727	1997 Circulodinium copei Bailey et al. 1997, p. 235–236, figs 3a–f.
2728	
2729	Comments. We transfer this species to Tenua because it has an overall cover of non-linear

2730	ornament. Bailey et al. (1997, p. 235) commented that "The wall is thick (1–2 μ m) and variably	
2731	structured, appearing intraperforate to spongiose, sometimes with short spines." And that	
2732	"The surface of the wall may appear microreticulate." The authors noted that the paracingulum	
2733	and parasulcus may be indicated, but otherwise they saw no reflection of the tabulation. Bailey e	
2734	al. (1997, p. 235) listed "Chytroeisphaeridia mantellii Ioannides et al." as a synonym of this	
2735	species; however, this was presumably in reference only to specimens that Ioannides et al. (1977	
2736	had assigned to Chytroeisphaeridia mantellii Gitmez & Sarjeant 1972.	
2737		
2738	Stratigraphical occurrence. Bailey et al. (1997) recorded this species originally from the upper	
2739	Kimmeridgian of England.	
2740		
2741	Tenua densebarbata (Cookson & Eisenack 1960) comb. nov.	
2742	(Fig. 18 C)	
2743	1960 Cyclonephelium densebarbatum Cookson & Eisenack, p. 253, pl. 38, figs 9-10.	
2744	2004 Circulodinium densebarbatum (Cookson & Eisenack) Fauconnier in Fauconnier &	
2745	Masure, p. 114.	
2746		
2747	Comment. Cookson & Eisenack (1960, p. 253) described this species as having " a broad	
2748	peripheral zone ornamented with short, densely arranged, rod-shaped bristles ranging from c.	
2749	$2-12 \ \mu m$ in length, with simple, usually capitate or sometimes bifurcate ends, and inner areas	
2750	without bristles but with granular surfaces." They noted that Cyclonephelium (now Tenua)	
2751	densebarbatum differs from Cyclonephelium (now Circulodinium) distinctum in the stouter	
2752	nature of the shell and the much denser ornament; it is also significantly older. The two	
2753	specimens of Tenua densebarbata illustrated by Cookson & Eisenack (1960) appear to have a	
2754	thickened wall dorsoventrally.	
2755		
2756	Stratigraphical occurrence. Cookson & Eisenack (1960) described this species from the	
2757	Oxfordian to lower Kimmeridgian of Western Australia.	
2758		
2759	Tenua dubia Jain & Millepied 1975	

2760		(Fig. 18 D)
2761	1975	Tenua dubia Jain & Millepied, p. 152, pl. 5, figs 75–76.
2762	1978	Cyclonephelium dubium (Jain & Millepied) Stover & Evitt, p. 52.
2763	2004	Cyclonephelium? dubium (Jain & Millepied) Fauconnier & Londeix in Fauconnier &
2764		Masure, p. 147.
2765		
2766	Comm	nents. Jain & Millepied (1975, p. 152) described this species as being " covered with
2767	long, l	pifurcate processes. As the species lacks dorsoventral areas devoid of ornament and the
2768	ornam	ent is less that 25% of the maximum cyst width, we retain it in Tenua.
2769		
2770	Strati	graphical occurrence. Jain & Millepied (1975) recovered this species from the
2771	Camp	anian–Maastrichtian of western Africa.
2772		
2773		Tenua? elongata (He Chengquan 1991) comb nov.
2774		(Fig. 18 E)
2775	1991	Canningia elongata He Chengquan, p. 55, pl. 9, fig. 1.
2776	2009	Circulodinium elongatum (He Chengquan) He Chengquan et al., p. 270.
2777		
2778	Comm	nents. We transfer this species to Tenua as its ornament appears to consist of an even
2779	coveri	ng of free-standing elements. However, the morphology of the holotype is unclear, and so
2780	we qu	estion the generic assignment and recommend that the name be restricted to the holotype.
2781		
2782	Strati	graphical occurrence. He Chengquan (1991) recorded this species from the Turonian of
2783	Xinjia	ng, China.
2784		
2785		Tenua hystrix Eisenack 1958 emend. nov.
2786		(Fig. 9 I–L; 18 F)
2787	1958	Tenua hystrix Eisenack, p. 410, pl. 23, figs 1, 3-4 (non fig. 2); text-fig. 10.
2788	1962	Palaeohystrichophora brevispinosa Pocock, p. 81, pl. 14, figs 222-223.
2789	1969	Cyclonephelium distinctum var. brevispinatum Millioud, p. 427–428; pl. 1, figs 8–9.

- 2790 1973 Cyclonephelium distinctum subsp. brevispinatum (Millioud) Lentin & Williams, p. 36.
- 2791 1977 Tenua brevispinosa (Pocock): emend. Brideaux, p. 15.
- 2792 1978 Canningia? brevispinosa (Pocock): Stover & Evitt, p. 25.
- 2793 1981 Cyclonephelium brevispinosum (Pocock): Lentin & Williams, p. 63.
- 2794 1981 Cyclonephelium brevispinatum (Millioud) Below, p. 11.
- 2795 1981 Cyclonephelium brevispinatum (Millioud) Yun Hyesu, p. 51.
- 2796 1983 Canningia americana Pöthe de Baldis & Ramos, p. 432–433, pl. 1, figs 6, 9.
- 2797 1986 Circulodinium brevispinosum (Pocock): Jansonius, p. 15–16.
- 2798 1991 Canningia insignis He Chengquan, p. 55–56; pl. 9, figs 9–10.
- 2799 1992 Tenua americana (Pöthe de Baldis & Ramos) Prössl, p. 116.
- 2800 2004 Circulodinium brevispinatum (Millioud) Fauconnier in Fauconnier & Masure, p. 114.
- 2801 2009 Circulodinium insigne (He Chengquan) He Chengquan et al., p. 271.
- 2802

Emended description. A species of *Tenua* with very short isolated spines or projections, which are terminally acuminate to blunt or briefly bifid. The spines are present, but may be reduced in density and/or length, on the dorsal and ventral surfaces, and may show weak penitabular alignment. Cyst antapically rounded or asymmetrical with rounded protuberances.

2807

2808 Comments. Eisenack (1958, p. 410) gave the following diagnosis for *Tenua hystrix*.

2809

2810A species of *Tenua* 75–105 μ long and some 65–95 μ m wide. In a single specimen,2811the spines are mostly of rather similar length, varying however from about 2–10 μ in2812length; they are either only slightly knobbed distally or weakly divided, only rarely2813do the short, thick prongs have secondary branches [Translation]

2814

2815 The species description is here emended to mention the possibility of weakly developed

- 2816 penitabular distribution of the spines. See under the genus *Tenua* and earlier sections of this
- 2817 paper for further discussion.
- 2818 Pocock (1962, p. 81) provided the following description for *Palaeohystrichophora*2819 *brevispinosa*:

Theca more or less isodiametric, covered by short spines; transverse furrow equatorial, broad, marked by two rows of short spines; epitheca conical, terminated by a tuft of slightly longer spines than those covering the rest of the theca; epitheca terminated by two short blunt processes, one slightly longer and sharper than the other; the theca commonly encloses a spherical cyst about half the diameter of the theca; yellow green spherical organic bodies are also frequently preseut.

2827

The inner body ("cyst") described by Pocock (1962) is probably a misinterpretation of folds on the cyst wall, as the cyst is clearly an areoligeracean with a single wall layer and low ornamentation, as confirmed in a re-examination by Jansonius (1986). Isolated spines are the dominant form of ornament on the holotype, although, as Jansonius (1986) noted, occasional processes are connected. The line drawing of the holotype of *Circulodinium brevispinosum* by Jansonius (1986) appears to show a reduction of ornament mid-ventrally, but this is not evident in the re-illustration of the holotype by Fauconnier & Masure (2004, pl. 14, figs 7–8).

We consider *Canningia americana* to be indistinguishable from *Tenua hystrix*, as is *Circulodinium brevispinatum*, which was described as a subspecies of *Cyclonephelium distinctum* by Millioud (1969). Millioud (1969, p. 427) provided no details of the spines other
than that they are less than 2 µm long.

This species accommodates forms of *Tenua* with short, usually blunt projections typically <4 µm long. *Tenua anaphrissa* has longer, generally hair-like processes. The ambital outline of both species, as conceived herein, is variable.

2842

2843 Stratigraphical occurrence. Eisenack (1958) described *Tenua hystrix* from the Aptian of

2844 northern Germany. Costa & Davey (1992) placed the LAD if this species in the latest

2845 Maastrichtian. He Chengquan (1991) recorded *Canningia insignis* from the Cenomanian of

2846 China. Tenua (as Palaeohystrichophora) brevispinosa was first described from the upper

2847 Barremian and Aptian of western Canada. Pöthe de Baldis & Ramos (1983) described the

- 2848 species *Canningia americana* from the lower Aptian of Argentina. The type material of
- 2849 *Cyclonephelium distinctum* var. *brevispinatum* is from the Berriasian to lower Aptian of France.

2850		
2851		Tenua kukebaiensis (Mao Shaozhi & Norris 1988) comb. nov.
2852		(Fig. 18 G)
2853	1980	Cyclonephelium distinctum var. psilatum Yu Jingxian & Zhang Wangping, p. 115, pl. 6,
2854		figs 1–2.
2855	1985	Cyclonephelium distinctum subsp. psilatum (Yu Jingxian & Zhang Wangping 1980)
2856		Lentin & Williams, p. 86.
2857	1988	Canningia kukebaiensis Mao Shaozhi & Norris, p. 31, pl. 1, figs 6-8.
2858	1989	Circulodinium distinctum subsp. psilatum (Yu Jingxian & Zhang Wangping) Lentin &
2859		Williams, p. 63.
2860	2009	Circulodinium kukebaiense (Mao Shaozhi & Norris) He Chengquan et al., p. 271.
2861		
2862	Comn	nents. Cysts of this species are broadly ellipsoidal with an antapex that is rounded or with
2863	two "b	lunt lobations" (Mao Shaozi & Norris 1988, p. 31); the autophragm is granulate, with
2864	short,	nontabular, isolated, acuminate spines, $1-5 \ \mu m$ long. This species thus conforms in
2865	morph	ology with Tenua, and so we re-assign it to that genus. The taxon described by Yu
2866	Jingxia	an & Zhang Wangping (1980) as Cyclonephelium distinctum var. psilatum appears to be
2867	conspe	ecific with Tenua kukebaiensis and hence we propose the synonymy; kukebaiense is the
2868	senior	epithet at specific rank. Tenua kukebaiense differs from Tenua attadalica primarily in its
2869	shape,	the former having a rounded bowl-shaped central body, the latter having a more angular
2870	central	body.
2871		
2872	Stratig	graphical occurrence. The type materials for both Tenua (as Canningia) kukebaiensis and
2873	Cyclor	nephelium distinctum subsp. psilatum are from the Turonian–Santonian of China.
2874		
2875		Tenua magna (Duxbury 2001) comb. nov.
2876		(Fig. 18 H)
2877	2001	Cerbia magna Duxbury, p. 101–102, fig. 4, nos 1–4.
2878		
2879	Comn	nents. In erecting this species, Duxbury (2001, p. 101) stated:

2880	
2881	Low apical, lateral and antapical projections are present, and short spines are
2882	distributed over the surface of the cyst. These spines are variable in their distribution
2883	often essentially penitabular, but sometimes more densely arranged.
2884	
2885	Thus, penitabular features are not clearcut and ornament covers most or all of the surface: hence
2886	we transfer this species to Tenua.
2887	
2888	Stratigraphical occurrence. Duxbury (2001) described this species from the upper Barremian
2889	of the North Sea.
2890	
2891	Tenua? micibaculata (Jiabo 1978) comb. nov.
2892	(Fig. 18 I)
2893	1978 Canningia micibaculata Jiabo, p. 54, pl. 7, figs 1-2.
2894	1987 Canningia? micibaculata (Jiabo); Helby, p. 324–325.
2895	2009 Circulodinium? micibaculatum (Jiabo) He Chengquan et al., p. 271.
2896	
2897	Comments. Tenua? micibaculata may be synonymous with Tenua hystrix. However, we refrain
2898	from proposing this synonymy because the morphology of Tenua? micibaculata is not clear, and
2899	hence the questionable assignment. We propose that this species be restricted to the holotype.
2900	
2901	Stratigraphical occurrence. Jiabo (1978) recovered this species from the Lower Palaeogene of
2902	China.
2903	
2904	Tenua? pentagona (He Chengquan 1991) comb. nov.
2905	(Fig. 18 J)
2906	1991 Canningia pentagona He Chengquan, p. 56, pl. 9, figs 13-14.
2907	2009 Circulodinium pentagonum (He Chengquan) He Chengquan et al., p. 272.
2908	
2909	Comments. Although the morphology of this species seems to fit Tenua better than Canningia

2910	or Circulodinium, we question the new attribution because the morphology of the holotype is not
2911	clear.
2912	
2913	Stratigraphical occurrence. He Chengquan (1991) recorded this species from the Upper
2914	Cretaceous of Xinjiang, China.
2915	
2916	Tenua reducta (Châteauneuf 1980) Courtinat in Fauconnier & Masure 2004
2917	(Fig. 18 K)
2918	1980 Cyclonephelium reductum Châteauneuf, p. 136, pl. 21, fig. 10.
2919	2004 Tenua reducta (Châteauneuf) Courtinat in Fauconnier & Masure, p.557.
2920	
2921	Comments. Châteauneuf (1980, p. 136) provided the following diagnosis for this species:
2922	
2923	[Cyst] lenticular and antapical protuberances bisymmetrical. Apical margin
2924	truncated, dorso-ventral flattening and median constriction of the cyst. Cyst surface
2925	composed of one thin layer or autophragm. Sutural features not discernible. In this
2926	type [species?] there is no cingular alignment of processes. Tabulation is expressed
2927	only by the truncated zigzag margin of the archaeopyle. Archaeopyle apical, with
2928	free operculum. Ornamentation dense, composed uniquely of spines of very variable
2929	length, with more or less expanded bases, with no ordered arrangement over the cyst
2930	surface. Ornamentation reduced in median dorso-ventral zones. The autophragm is
2931	ornamented between spines [Translation]
2932	
2933	The features of this species are not clearly shown on the single illustration that Châteauneuf
2934	(1980) provided. However they are clearer in the re-illustrations of the holotype in Fauconnier
2935	and Masure (2004, pl. 18, figs 11-15). These show the presence of short spines; the ventral
2936	surface may be devoid of spines in its centralmost area, but across the dorsal surface are sparse
2937	spines in a penitabular and nontabular arrangement. Châteauneuf (1980) did not mention the
2938	nature of the distal process endings and they are unclear in the original illustration; from the re-
2939	illustrations they appear to me mostly acuminate or slightly bulbous. This is an unusual

2940	morphology for Eocene areoligeraceans.	
2941		
2942	Stratigraphical occurrence. Châteauneuf (1980) recovered this species from the Up	per Eocene
2943	of France.	
2944		
2945	Tenua scabrosa (Cookson & Eisenack 1970) comb nov.	
2946	(Figs 10 A–P; 18 L)	
2947	1970 Canningia scabrosa Cookson & Eisenack, p. 146, pl. 13, figs 6–7.	
2948	1971 Canningia aspera Singh, p. 322, pl. 50, fig. 1.	
2949	1978 Canningia? aspera Singh; Stover & Evitt, p. 25.	
2950	1980 Epelidosphaeridia aspera (Singh) Morgan, p. 23.	
2951	1981 Cyclonephelium asperum (Singh) Below, p. 10.	
2952	1987 Circulodinium asperum (Singh) Helby, p. 324–325.	
2953	1999 Circulodinium cingulatum He Chengquan et al., p. 193, pl. 2, figs 1–3.	
2954		
2955	Comments. Cookson & Eisenack (1970, p. 146) described the ornamentation of Can	ningia
2956	scabrosa (misspelled in the protologue as "scabrose") as consisting of " densely an	ranged,
2957	irregularly outlined thickenings, some of which narrow to [form] short, hair-like appe	ndages".
2958	As the wall structure is clearly not holocavate and the ornamentation is apparently free	e-standing
2959	and covers the entire cyst surface, we transfer this species to Tenua. The ornament is	so similar
2960	to that of Canningia? aspera that we consider the two species to be synonymous.	
2961	Canningia? aspera was erected by Singh (1971, p. 322) for large (average 97 x	100 µm)
2962	areoligeracean cysts. According to Singh, the 2.5 μm -thick wall is ornamented by "	. thick,
2963	irregular-shaped elevations surmounted by 2-4-micron long, conical spines."	
2964	Specimens attributable to Tenua scabrosa are common in upper Lower Cretace	ous material
2965	from Axel Heiberg Island, arctic Canada. In the arctic material, the wall is not as thic	k as Singh
2966	reported from Alberta, and the spines range from $2-8 \ \mu m$ in length. The dorsoventral	area is
2967	darker than other parts of the cyst on some specimens, suggesting a wall thickening in	n that
2968	region.	
2969	He Chengquan et al. (1999) diagnosed Circulodinium cingulatum in part as foll	ows:
		99

2970	"Autophragm surface ornamented with rarely free processes of varying length and size, most
2971	of them shorter, vertucous to bluntly denticulate, $0.5 - 1.0 \ \mu m$ long, fewer processes shortly
2972	baculate (up to $3.5 \ \mu m$ long) with blunt unwidened tips." From the protologue illustrations, the
2973	processes appear to be short, isolated and broad based, as is the case for Tenua scabrosa. He
2974	Chengquan et al. (1999) differentiated Circulodinium cingulatum from Tenua (then
2975	Circulodinium) attadalica on the basis of the presence of paracingular ridges on the former.
2976	However, we consider the species of He Chengquan et al. (1999) to be akin to Tenua scabrosa
2977	rather than Tenua attadalica, and the presence or absence of a defined paracingulum to be an
2978	intraspecific variation.
2979	
2980	Stratigraphical occurrence. Cookson & Eisenack (1970) recorded Tenua (as Canningia)
2981	scabrosa from the Albian to Cenomanian of Australia. Singh (1971) described Tenua (as
2982	Canningia) aspera from the Albian of Alberta, Canada. The type material of Circulodinium
2983	cingulatum is from the upper Hauterivian to Barremian of China.
2984	
2985	
2986	Genus Trimuridinium gen. nov.
2987	
2988	Type. Prince et al. 2008, pl. 1, figs 11-12, as Senoniasphaera whitenessensis.
2989	
2990	Derivation of name. The name is derived from the Latin prefix "tri" for three, the Latin "murus"
2991	for wall, and "dinium", the common suffix for dinoflagellates. Trimurodinium is thus the "three-
2992	walled dinoflagellate cyst".
2993	
2994	Diagnosis. Areoligeraceans in which the wall is constructed of three layers, the inner two of
2995	which are typically interconnected.
2996	
2997	Comments. This genus is distinctive in having three wall layers. The presence of three wall
2998	layers is extremely unusual among dinoflagellate cysts, and, to our knowledge, previously
2999	unknown among areoligeraceans, even among gonyaulacineans. The best-known dinoflagellate

3000	cysts with three wall layers are perhaps the forms described by Evitt et al. (1998) and assigned to
3001	Palaeoperidinium. Evitt et al. (1998) referred to the outermost layer as the exophragm, a term
3002	that we favour here, retaining the terms endophragm and periphragm for the innermost and
3003	middle layers respectively. The two inner, interconnected, layers in Trimuridinium are clearly
3004	homologous with the endophragm and periphragm of Canningia. For Palaeoperidinium, Evitt et
3005	al. (1998) reasoned that the exophragm was formed outside the theca, and it would be of interest
3006	to examine Trimuridinium white cliffense using the scanning electron microscope to see if any
3007	clues regarding the origin of the exophragm in this species might be revealed.
3008	Trimuridinium differs from Canningia in the presence of a third wall layer. Duxbury
3009	(1983) erected the genus Cepadinium, which has four wall layers. However, Cepadinium is an
3010	ovoidinioidean peridinioid dinoflagellate cyst.
3011	
3012	Accepted species.
3013	
3014	Trimuridinium whitenessense (Prince et al. 2008) comb. nov.
3015	(Figs 18 M–N)
3016	2008 Senoniasphaera whitenessii Prince et al., p. 91, pl. 1, figs 11-12.
3017	
3018	Comments. Prince et al. (2008, p. 91) diagnosed Trimuridinium whitenessense as "A globular
3019	Senoniasphaera with three wall layers, showing slight indications of both lateral and antapical
3020	horns on all wall layers. Rounded to rectangular cavities are located between the endo- and
3021	mesophragm." Prince et al. (2008) referred to indications of lateral horns, these appear to be no
3022	more than bulges on the ectophragm in the single specimen illustrated. As the specific epithet
3023	was avowedly named after a place and not a person, Williams et al. (2017) revised the spelling to
3024	whitenessensis.
3025	
3026	Stratigraphical occurrence. Prince et al. (2008) recovered this species from the upper
3027	Santonian of England.
3028	
3029	

3030	Family Ceratiaceae Willey & Hickson 1909
3031	Genus Pseudoceratium Gocht 1957 emend. nov.
3032	1957 Pseudoceratium Gocht, p. 166.
3033	1962 Eopseudoceratium Neale & Sarjeant, p. 446.
3034	1980 Pseudoceratium Gocht; emend. Dörhöfer & Davies, p. 39.
3035	1986 Pseudoceratium Gocht; emend. Bint, p. 144.
3036	1987 Pseudoceratium Gocht; emend. Helby, p. 313-315.
3037	
3038	Type: Gocht 1957, pl. 18, fig. 1, as Pseudoceratium pelliferum.
3039	
3040	Emended diagnosis. Dorsoventrally compressed ceratiacean cysts with single apical, lateral
3041	(postcingular) and antapical horns or distinct prominences; the lateral horn or prominence is
3042	formed from the autophragm (or endophragm in cavate forms), not by the ornament alone.
3043	Proximate, wall formed of one or two layers. If two-layered, there are supports between the
3044	between the endophragm and periphragm. Paratabulation often indicated by ornamentation if
3045	present. Ornamentation may be granular or consist of short processes, which may be joined by
3046	trabecula or support a more extensive ectophragm. Archaeopyle apical, with formula $A_{(1-4')}$,
3047	operculum generally free; parasulcal notch offset to the left.
3048	
3049	Comments. We emend <i>Pseudoceratium</i> to restrict it to forms in which the lateral horn or distinct
3050	prominence is formed by the autophragm or endophragm. Forms in which the lateral prominence
3051	is constructed solely from the ornament are referable to an areoligeracean genus, most commonly
3052	Aptea.
3053	Gocht (1957, p. 166) provided the following original diagnosis for Pseudoceratium:
3054	
3055	Shell of organic material, of peridinioid shape (produced through several more or
3056	less long-drawn-out horns), untabulated, without girdle system, annular sutures [?] or
3057	ridge structures. Shell smooth or covered with short processes. Apical part
3058	commonly truncated by an irregular rupture line. [Translation]
3059	

3060		We consider the emendation of Bint (1986) as useful in attaining the current concept of		
3061	Pseudoceratium, but not those by Dörhöfer & Davies (1980) or Helby (1987). Areoligeracean			
3062	genera	genera lack a lateral projection. Endoceratium is circumcavate rather than holocavate, with no		
3063	structi	structures joining the two wall layers. Muderongia, Nyktericysta and Vesperopsis have more than		
3064	three l	norns. Odontochitina has a distinct endocyst well separated from the pericyst.		
3065				
3066	Accep	oted species.		
3067				
3068		Pseudoceratium aulaeum Harding 1990 ex Harding in Williams et al. 1998		
3069		(Fig. 18 O)		
3070	1990	Pseudoceratium aulaeum Harding, p. 18, pl. 1, figs 1-6; name not validly published.		
3071	1998	Pseudoceratium aulaeum Harding ex Harding in Williams et al. 1998, p. 512.		
3072				
3073	Comr	nents. This species is difficult to compare with other species of <i>Pseudoceratium</i> because		
3074	the type material is illustrated by scanning electron micrographs (SEMs). Paratabulation is			
3075	evider	nt on the SEMs. Harding (1990, p. 18) noted that the "Intratabular sculptural elements		
3076	consis	t of irregularly distributed processes supporting an ectophragmal trabecular reticulum."		
3077				
3078	Strati	graphical occurrence. Harding (1990, 1998) recorded this species from "presumed low-		
3079	salinity" upper Barremian assemblages of England.			
3080				
3081	Ps	eudoceratium australiense Fensome & Williams 2004 nom. subst. pro Pseudoceratium		
3082		robustum Riding & Helby 2001		
3083		(Figs 18 Q–R)		
3084	2001	Riding & Helby, p. 208, 210, 212, figs 15 A-L (illegitimate junior homonym of		
3085		Pseudoceratium robustum Michael 1964).		
3086	2004	Pseudoceratium australiense Fensome & Williams, p. 554 (nom. subst. pro		
3087		Pseudoceratium robustum Riding & Helby).		
3088				
3089	Comr	nents. Riding & Helby (2001, p. 210) noted that their new species Pseudoceratium		

3090	robusi	tum (now Pseudoceratium australiense) " is distinguished by its relatively large size		
3091	[overall length 97–136 μ m], the thick, robust autophragm and the distinctive processes which			
3092	suppo	rt a vacuolate ectophragm."		
3093				
3094	Strati	graphical occurrence. Riding & Helby (2001) recorded Pseudoceratium australiense (as		
3095	Pseud	oceratium robustum) from the Tithonian of northwestern Australia.		
3096				
3097		Pseudoceratium? brevicornutum Herngreen et al. 2000		
3098		(Fig. 18 P)		
3099	1994	Pseudoceratium eopelliferum Herngreen et al., p. 386 (name not validly published;		
3100		synonym of <i>Pseudoceratium brevicornutum</i> according to Herngreen et al. 2000, p. 50).		
3101	2000	Pseudoceratium brevicornutum Herngreen et al., p. 50, pl. 9, figs 6-7.		
3102				
3103	Comm	nents. This species differs from Pseudoceratium pelliferum in having distinctly shorter		
3104	horns.	In fact, the lateral horn on the holotype (Herngreen et al. 2000, pl. 9, fig. 6) is not clearly		
3105	developed and so we questionably retain this species in Pseudoceratium. The other illustrated			
3106	specin	nen (Herngreen et al. 2000, pl. 9, fig. 7) might be conspecific with Pseudoceratium		
3107	pellife	rum, albeit with a shorter than average horn.		
3108				
3109	Strati	graphical occurrence. Herngreen et al. (2000) recorded the range of this species from the		
3110	North	Sea and The Netherlands as upper Ryazanian (middle Berriasian) to lower Hauterivian.		
3111				
3112		Pseudoceratium expolitum Brideaux 1971		
3113		(Fig. 18 S)		
3114	1971	Pseudoceratium expolitum Brideaux, p. 102-103, pl. 30, figs 105-106, 108.		
3115	1971	Pseudoceratium regium Singh, p. 375-376, pl. 66, figs 2-4; pl. 67, figs 1-2.		
3116				
3117	Comm	nents. Brideaux (1971, p. 102) noted that the "Wall appears thick and is smooth or		
3118	occasi	onally scabrate to microreticulate, the latter probably due to corrosion." The material		
3119	illustra	illustrated by Singh (1971) for his new species, Pseudoceratium regium, considered a taxonomi		

3120	junior synonym of Pseudoceratium expolitum by Harker & Sarjeant (1975), is much better		
3121	preserved than the material of Brideaux (1971). Singh (1971) described the cyst surface as		
3122	"finely granulate and ornamented by a small-meshed network formed by faint, narrow, low		
3123	muri."		
3124			
3125	Stratigraphical occurrence. Both Brideaux (1971) and Singh (1971) recorded their material		
3126	from the middle to upper Albian of Alberta, Canada.		
3127			
3128	Pseudoceratium gochtii Neale & Sarjeant 1962		
3129	(Fig. 18 T)		
3130	1962 Pseudoceratium (Eopseudoceratium) gochtii Neale & Sarjeant, p. 446–448, pl. 20, figs		
3131	3-4; text-figs 5a-c (non Pseudoceratium gochtii Pocock).		
3132	1973 Eopseudoceratium gochtii (Neale & Sarjeant) Lentin & Williams, p. 54.		
3133			
3134	Comments. Lentin & Williams (1985, p. 297) retained this species in Pseudoceratium. It differ	S	
3135	from Pseudoceratium pelliferum in that the arrangement of the ornament distinctly reflects the		
3136	tabulation. Neale & Sarjeant (1962, p. 446) noted that "On its margins and on the boundaries of		
3137	plates arise rows of spines, simple, bifurcate, or knobbed, sometimes rising from low ridges on		
3138	the shell surface; elsewhere the shell has an irregular cover of very short spines of similar		
3139	character." The interpretation of extra paraplates by Neale & Sarjeant (1962, fig. 5b-c) probably	у	
3140	results from the fact that the ornament reflects penitabular rather than parasutural lines, and		
3141	hence leaves areas been paraplate "boundaries".		
3142			
3143	Stratigraphical occurrence. Neale & Sarjeant (1962) recorded Pseudoceratium gochtii, as		
3144	Pseudoceratium (Eopseudoceratium) gochtii, from the upper Hauterivian to middle Barremian of		
3145	England.		
3146			
3147	Pseudoceratium? iehiense Helby & May in Helby 1987		
3148	(Figs 19 A–B)		
3149	1987 Pseudoceratium iehiense Helby & May in Helby, p. 315–316, figs 16A–K, 17.		

2	1	50
.)	т	50

3151	Comments. Helby (1987, p. 315) noted that this distinctive species has a wall with closely		
3152	spaced projections and short, discontinuous ridges between the endophragm and periphragm.		
3153	The ectophragm is essentially continuous, with a coarsely reticulate, granulate or smooth surface.		
3154	The ornament within the ectocoel is more closely packed and commonly higher in pandasutural		
3155	regions. Helby (1987) stated that <i>Pseudoceratium weymouthensis</i> is larger and has "substantially		
3156	longer horns".		
3157			
3158	Stratigraphical occurrence. Helby (1987) described Pseudoceratium iehiense from the upper		
3159	Tithonian to lower Berriasian of subsurface Papua New Guinea.		
3160			
3161	Pseudoceratium interiorense Bint 1986		
3162	(Figs 19 C–D)		
3163	1986 Pseudoceratium interiorense Bint, p. 146, 148, pl. 3, figs 3-4, 9-15; pl. 7, figs 9-10.		
3164			
3165	Comments. Bint (1986, p. 146) described the wall structure for <i>Pseudoceratium interiorense</i> as		
3166	follows:		
3167			
3168	Cyst wall two-layered; ectophragm linked to autophragm by connecting structures		
3169	over the cyst body, except at the horn tips where cornucavation develops.		
3170	Autophragm extending almost to tips of hypocystal horns, but not as far into the		
3171	apical so that the apical ectocoel is largest and quite obvious, whereas the hypocystal		
3172	ectocoels are much smaller and usually difficult to discern. Autophragm smooth or		
3173	scabrate, very finely perforate (0.5–1 μ m) with occasional larger perforations.		
3174	Perforations diminish in density towards the ends of horns and are rare in the		
3175	terminal cavate portion. Structures linking autophragm and ectophragm appear to		
3176	consist of the muri of an irregular, sometimes incomplete, reticulum with lumina		
3177	about $3-8 \ \mu m$ across. This reticulation appears more closely connected with the		
3178	ectophragm than the autophragm because remnants of it are preserved in at least part		
3179	of the cavate portion of the apical horn.		

3181	The wall structure of Pseudoceratium interiorense closely resembles that of species of		
3182	Nyktericysta, but the latter consistently have more than three horns. Bint (1986) recorded this		
3183	species from the lowermost upper Albian of the US Western Interior, and thus its range overlaps		
3184	that of species of Nyktericysta.		
3185			
3186	Stratigraphical occurrence. The type material is from the upper Albian of the USA.		
3187			
3188	Pseudoceratium iveri Nøhr-Hansen 1993		
3189	(Fig. 19 E)		
3190	1993 Pseudoceratium iveri Nøhr-Hansen, p. 100–102, pl. 19, figs 1–8; text-figs 13–15.		
3191			
3192	Comments. Nøhr-Hansen (1993, p.100) noted that Pseudoceratium iveri:		
3193			
3194	has two wall layers. The ectophragm consists of a complicated network, supported by		
3195	processes. The network extends the horn terminations and is concentrated on the		
3196	paraplates, leaving the pandasutural areas free of ornamentation.		
3197			
3198	Stratigraphical occurrence. Nøhr-Hansen (1993) recorded this species from the uppermost		
3199	Barremian of eastern Greenland.		
3200			
3201	Pseudoceratium notiale (Quattrocchio & Sarjeant 1992) comb. nov.		
3202	(Fig. 19 F)		
3203	1992 Aptea notialis Quattrocchio & Sarjeant, p. 83 (al. p. 2-235), pl. 5, figs 1–4; pl. 7, figs 7–8.		
3204			
3205	Comments. We transfer this species to <i>Pseudoceratium</i> as it clearly has lateral prominences.		
3206	Quattrocchio & Sarjeant (1992, p. 83) noted that:		
3207			
3208	The ornament elements generally vary in height between 2 and 5 μ m, but they are		
3209	taller on the apical and antapical horns (9–20 μ m). These elements are bifurcate,		

3210		typically coalescing distally to support a delicate ectophragm. The pattern of the	
3211		ornamentation forms an incomplete and irregular network, especially conspicuous on	
3212	the three horns; the ornament is best developed around the cyst's periphery.		
3213			
3214	Strati	graphical occurrence. The type material is from the middle to upper Tithonian of	
3215	Argen	tina.	
3216			
3217		Pseudoceratium? parvum Michael 1964	
3218		(Fig. 19 G)	
3219	1964	Pseudoceratium parvum Michael 1964, p. 28, pl. 2, fig. 1.	
3220	1986	Pseudoceratium? parvum Michael: Bint, p. 145.	
3221			
3222	Comments. We concur with Bint (1986) that, from the original illustration, the morphology of		
3223	this sp	ecies is problematic, and hence its attribution to <i>Pseudoceratium</i> is questionable. We	
3224	recom	mend that use of the name be restricted to the type material.	
3225			
3226	Strati	graphical occurrence. Michael (1964) recovered this species from the early Barremian of	
3227	northv	vestern Germany.	
3228			
3229		Pseudoceratium pelliferum Gocht 1957	
3230		(Figs 11 A–D; 19 I–K)	
3231	1957	Pseudoceratium pelliferum Gocht, p. 166–168, pl. 18, figs 1a-c, 2; text-figs 1–3.	
3232	1980	Pseudoceratium pelliferum Gocht; emend. Dörhöfer & Davies, p. 39.	
3233			
3234	Comn	nents. Gocht (1957, p. 166) gave the following diagnosis for this species, which is the type	
3235	of the	genus.	
3236			
3237		Shell compressed, asymmetrically triangular in outline, longer than wide, with a	
3238		strong apical horn and two shorter antapical horns of unequal length. [The cyst] is	
3239		more or less densely covered with short, roundly truncated bristle-like processes,	
3240	which stand isolated or joined to one another at the bases. [Translation]		
------	--		
3241			
3242	From the illustrations of Gocht (1957) of the type material, it appears that the spines (Gocht's		
3243	"bristle-like processes") may also occasionally be connected distally.		
3244			
3245	Stratigraphical occurrence. Gocht (1957) recorded Pseudoceratium pelliferum from the upper		
3246	Hauterivian of northwestern Germany. Costa & Davey (1992) plotted the FAD of this species		
3247	within the early late Ryazanian (middle Berriasian), and the LAD in the latest Barremian. Stover		
3248	et al. (1996) recorded its range as late Ryazanian (middle Berriasian) to late early Aptian for		
3249	northern Europe, and Valanginian–Barremian for southern France.		
3250			
3251	Pseudoceratium retusum Brideaux 1977		
3252	(Figs 19 M–O)		
3253	1977 Pseudoceratium retusum Brideaux 1977, p. 14-15, pl. 4, figs 10-12; pl. 5, figs 1-2, 5-10.		
3254			
3255	Comments. Brideaux (1977, p. 14) described the wall structure of Pseudoceratium retusum as		
3256	follows:		
3257			
3258	[Periphragm] produced to form variously shaped sculpture elements which are		
3259	discrete or linked basally and/or distally, which are nonparatabular or occasionally		
3260	distinctly parasutural in position, the basal linkages persistent enough to form what		
3261	may be termed parasutures; intertabular sculpture commonly linked basally to form		
3262	an anastomosing network, or passing into a reticulate pattern; where the reticulum is		
3263	reduced in the interior of the paraplate, commonly assuming a penesutural position;		
3264	individual sculpture elements are generally bifid or bifurcate, but may be spatulate,		
3265	fan-shaped or acicular; distal linkage of elements at the apices of the horns in places		
3266	forming a canopy-like structure; reduction of the sculpture elements may occur		
3267	ventrally and dorsally on the central parts of the hypotract; sculpture element length		
3268	typically $3-5 \mu$ but up to 8μ at the apices.		
3269			

3270	From	the illustrations of Brideaux (1977), the reflection of the tabulation appears a stronger
3271	feature than expressed in his text; and the dorsal and ventral areas devoid of ornament are	
3272	strongly developed in most specimens and extend onto the epicyst as well as the hypocyst.	
3273		
3274	Strati	graphical occurrence. Brideaux (1977) recorded Pseudoceratium retusum from the
3275	Barrer	nian–Aptian of the Northwest Territories, former District of Mackenzie, Canada.
3276		
3277		Pseudoceratium? robustum (Michael 1964) Bint 1986
3278		(Fig. 19 H)
3279	1964	Pseudoceratium robustum Michael, p. 29, pl. 2, fig. 2. (non Pseudoceratium robustum
3280		Riding & Helby).
3281	1986	Pseudoceratium? robustum Michael: Bint, p. 145.
3282		
3283	Comments. We concur with Bint (1986) that from the original illustration the morphology of	
3284	this sp	ecies is problematic, and hence its attribution to <i>Pseudoceratium</i> is questionable.
3285	Accor	dingly, we recommend that use of the name be restricted to the type material.
3286		
3287	Strati	graphical occurrence. Michael (1964) recovered this species from the upper Barremian of
3288	northv	vestern Germany.
3289		
3290		Pseudoceratium solocispinum (Davey 1974) Harding 1990
3291		(Fig. 19 L)
3292	1974	Pseudoceratium pelliferum var. solocispinum Davey, p. 68, pl. 9, fig. 6.
3293	1975	Pseudoceratium pelliferum subsp. solocispinum (Davey) Lentin & Williams, p. 2154.
3294	1990	Pseudoceratium solocispinum (Davey); emend. Harding, p. 19.
3295		
3296	Comn	nents. This species was originally described as a variety of <i>Pseudoceratium pelliferum</i> .
3297	Davey	(1974) did not clearly say how the variety differed from <i>Pseudoceratium pelliferum</i> var.
3298	pellife	rum (and thus how Pseudoceratium solicispinum differs from Pseudoceratium pelliferum),
3299	but the	e epithet that he chose is partly based on the Latin <i>solox</i> , for coarse or rough. Certainly, the

3300	spines of Pseudoceratium solicispinum are longer than those of Pseudoceratium pelliferum.
3301	Harding (1990) raised this taxon to specific rank and provided an emended diagnosis, although
3302	he did not specifically state what his revised concept entailed. He provided some interesting
3303	SEMs, purportedly of <i>Pseudoceratium pelliferum</i> (his pl. 1, figs 7–8) and <i>Pseudoceratium</i>
3304	solocispinum (his pl. 1, figs 9-11) showing crispate ("curly") elements, somewhat more
3305	pronounced in the latter species. It is not easy to relate the SEMs of Harding (1990) with the
3306	original light micrograph of the holotype of Pseudoceratium solocispinum.
3307	
3308	Stratigraphical occurrence. The type material is from the middle and upper Barremian of
3309	northeastern England. However, Costa & Davey (1992) reported that this species is confined to
3310	the late Barremian.
3311	
3312	Pseudoceratium spitiens Jain & Garg in Jain et al. 1984
3313	(Fig. 19 P)
3314	1984 Pseudoceratium spitiense Jain & Garg in Jain et al., p. 72, pl. 3, figs 41-42.
3315	
3316	Comments. The two specimens illustrated in the protologue appear to have an irregulary
3317	reticulate ornament, although this may reflect corrosion rather than original morphology.
3318	
3319	Stratigraphical occurrence. Jain & Garg in Jain et al. (1984) described Pseudoceratium
3320	spitiense from the Kimmeridgian to lower Tithonian of the Malla Johar area, India.
3321	
3322	Pseudoceratium toveae Nøhr-Hansen 1993
3323	(Fig. 19 Q)
3324	1993 Pseudoceratium toveae Nøhr-Hansen, p. 108, 110, pl. 21, fig. 11; pl. 22, figs 1-7.
3325	
3326	Comments. In comparing Pseudoceratium toveae with Pseudoceratium weymouthense, Nøhr-
3327	Hansen (1993, p. 108, 110) noted that the latter species differs from <i>Pseudoceratium toveae</i> :
3328	
3329	by its weak paratabulation, indicated by larger processes in the pandasutural areas

3330	which, according to Helby are apparently covered by a continuous ectophragm, and by	
3331	its rather pronounced extension of the cingulum onto the anterior part of the post-cingular	
3332	horn.	
3333		
3334	Although the differences seem subtle, the apparent damage to some of the type material of both	
3335	species makes detailed comparison difficult. Hence, although the two species are very similar,	
3336	we retain both pending further study.	
3337		
3338	Stratigraphical occurrence. Nøhr-Hansen (1993) recovered Pseudoceratium toveae from the	
3339	upper Barremian to ?lowermost Aptian of eastern Greenland.	
3340		
3341	Pseudoceratium turneri Cookson & Eisenack 1958	
3342	(Fig. 19 R)	
3343	1958 Pseudoceratium turneri Cookson & Eisenack, p. 55, pl. 5, figs 2-6.	
3344	1978 Endoceratium turneri (Cookson & Eisenack) Stover & Evitt, p. 45.	
3345		
3346	Comments. In their original description of this species, Cookson & Eisenack (1958, p. 55) noted	
3347	that:	
3348		
3349	The ornament usually takes the form of narrow lamella-like membranes with	
3350	irregular, frequently curved outlines of variable lengths formed by the distal	
3351	coalescence of short bifurcate processes, the lamellae either remaining free or uniting	
3352	to form a more or less complete superficial network.	
3353		
3354	Although not easy to follow, this description and the accompanying illustrations, strongly	
3355	indicate that this species has a complete or incomplete outer wall layer ("lamella-like	
3356	membranes", "superficial network") and processes connecting it to the autophragm. We thus	
3357	retain it in Pseudoceratium.	
3358		
3359	Stratigraphical occurrence. The holotype of Pseudoceratium turneri is from the Albian of	

3360	Western Australia. Costa & Davey (1992) placed the FAD of this species at the base of the late		
3361	Aptian, and the LAD at the Albian–Cenomanian boundary.		
3362			
3363	Pseudoceratium weymouthense Helby 1987		
3364	(Figs 19 S–T)		
3365	1987 Pseudoceratium weymouthense Helby, p. 316–317, figs 19A–C, 20A–D.		
3366			
3367	Comments. This species is clearly distinguished by long apical, lateral, and antapical horns and		
3368	an irregular "bubbly" reticulum, apparently formed by the periphragm. Helby (1987, p. 316)		
3369	noted that the cyst wall is two-layered and composed of:		
3370			
3371	autophragm and ectophragm [i.e. endophragm and periphragm in our terminology],		
3372	although in some areas ectocoel not apparent Ectophragm apparently continuous [,		
3373	its] surface reticulate. Processes between wall layers irregularly distributed		
3374	although slightly longer and more closely packed in pandasutural regions.		
3375			
3376	From the illustrations of Helby (1987), the pericoel is barely discernable and the wall surface		
3377	resembles that typical of Nyktericysta, albeit with coarser ornament. See also comments under		
3378	Pseudoceratium toveae.		
3379			
3380	Stratigraphical occurrence. Helby (1987) recorded Pseudoceratium weymouthense from the		
3381	upper Tithonian to lower Berriasian of Queensland, Australia.		
3382			
3383	Other taxa.		
3384	The genera included in this section are not part of the Cyclonephelium group, but are included		
3385	here because some forms previously included in genera within the Cyclonephelium group are		
3386	reassigned to them, either as synonyms or new combinations. A re-evaluation of the content of		
3387	each of the genera in this section is beyond the scope of the present work and we therefore		
3388	include only selected species.		
3389			

3390	Other	taxa
3391		
3392		Division Dinoflagellata (Bütschli 1885) Fensome et al. 1993
3393		Subdivision Dinokaryota Fensome et al. 1993
3394		Class Dinophyceae Pascher 1914
3395		Subclass Peridiniphycidae Fensome et al. 1993
3396		Order Gonyaulacales Taylor 1980
3397		Suborder Gonyaulacineae (autonym)
3398		Family Areoligeraceae Evitt 1963b
3399		
3400		Genus Cleistosphaeridium Davey et al. 1966
3401	1966	Cleistosphaeridium Davey et al., p. 166.
3402	2001	Cleistosphaeridium Davey et al.; emend. Eaton et al., p. 176.
3403		
3404	Synop	sis. Areoligeracean cysts that are proximochorate to chorate, with a subspheroidal to
3405	lateral	ly subovoidal central body, sometimes with weak antapical asymmetry. Acavate. Solid,
3406	nontab	ular to penitabular processes or process complexes distributed over the central body,
3407	includ	ing the dorsoventral areas; some processes have process endings that are dolabrate (sickle-
3408	shaped	l) to incipiently licrate (sickle-shaped with a saw-toothed edge). Archeopyle apical, with
3409	formu	a A _(1-4') , operculum free.
3410		
3411	Select	ed species
3412		
3413		Cleistosphaeridium diversispinosum Davey et al. 1966
3414		(Fig. 20 A)
3415	1966	Cleistosphaeridium diversispinosum Davey et al., p. 167, pl. 10, fig. 7.
3416	1987	Cyclonephelium indicum Mehrotra & Sarjeant, p. 163, pl. 2, fig. 2; pl. 7, fig. 1; name
3417		illegitimate.
3418	1989	Circulodinium indicum Mehrotra & Sarjeant ex Lentin & Williams, p. 63.
3419	1993	Systematophora diversispinosa (Davey et al.); Islam, p. 88.

Cleistosphaeridium diversispinosum (Cookson & Eisenack); emend. Eaton et al., p. 177, 3420 2001 180, 183, 185, 187–188. 3421 2004 Circulodinium? indicum Mehrotra & Sarjeant ex Lentin & Williams; Fauconnier & 3422 3423 Londeix in Fauconnier & Masure, p. 116. 3424 Comments. Circulodinium? indicum has slender processes, some of which appear to have 3425 3426 dolabrate endings. As such, it is indistinguishable from Cleistosphaeridium diversispinosum, and hence we consider it a taxonomic junior synonym of that species. 3427 The name Cyclonephelium indicum was illegitimate in Mehrotra & Sarjeant (1987) 3428 because it was a junior homonym of Cyclonephelium indicum Khanna & Singh 1981. By 3429 "transferring" the species to Circulodinium, Lentin & Williams (1989, p. 63) effectively created 3430 3431 a new name. According to Mehrotra & Sarjeant (1987, p. 163), the autophragm is "covered with numerous (usually exceeding 100)" spines 6–10 µm long, which cover the cyst uniformly. 3432 3433 3434 Stratigraphical occurrence. Davey et al. (1966) described Cleistosphaeridium diversispinosum from the Lower Eocene of southern England. Fensome et al. (2008) gave the LAD of this species 3435 as early Messinian (latest Miocene). Mehrotra & Sarjeant (1987) recovered Cyclonephelium 3436 indicum from the Paleocene of southern India. 3437 3438 Cleistosphaeridium latoaculeum (Yun Hyesu 1981) comb. nov. 3439 (Fig. 20 B) 3440 Cleistosphaeridium multifurcatum subsp. latoaculeum Yun Hyesu, p. 42-43; pl. 11, figs 3441 1981 3442 17-19. 1993 Heterosphaeridium latoaculeum (Yun Hyesu) Islam, p. 84. 3443 1999 Circulodinium latoaculeum (Yun Hyesu) Prince et al., p. 160. 3444 3445 Comments. Yun Hyesu (1981, p. 43) provided the following for this species: 3446 3447 Diagnosis: a subspecies of [Cleistosphaeridium] multifurcatum with broad, 3448 compressed spines, which are proximally and distally broadened. Description: The 3449

3450	cyst has in places a granular layer, from which the solid spines are constructed. They
3451	are distally broadened and truncated, the distal margin [is] sometimes notched and
3452	split. In contrast to the relatively constant length of the spines, the width varies
3453	considerably. Wide spines can thus appear together with narrow ones. The narrow
3454	ones are narrowest at their distal ends, whereas wide spines are broadest medially [?].
3455	Relatively larger or longer spines are developed at the poles. [Translation; paragraphs
3456	joined]
3457	
3458	The relatively long spines of this species and the dolabrate endings of some spines (observed on
3459	the illustrations of Yun Hyesu (1981), although not specifically described by him) suggest that
3460	this species accords better with Cleistosphaeridium than with Circulodinium or Tenua.
3461	
3462	Stratigraphical occurrence. Yun Hyesu (1981) described this taxon from the Santonian of
3463	Germany. Prince et al. (1999) recorded it from the lower Santonian of the Isle of Wight,
3464	England.
3465	
3466	Cleistosphaeridium? longispinosum (He Chengquan 1991) comb. nov.
3467	(Fig. 20 C)
3468	1991 Cyclonephelium longispinosum He Chengquan, p. 136, pl. 9, fig. 19; pl. 60, fig. 5.
3469	
3470	Comments. The process endings appear to be dolabrate. For this reason, we questionably
3471	transfer this species to Cleistosphaeridium. We recommend that the name be restricted to the
3472	holotype.
3473	
3474	Stratigraphical occurrence. He Chengquan (1991) recorded this species from the Middle
3475	Eocene of China.
3476	
3477	Family Gonyaulacaceae Lindemann 1928
3478	Subfamily Gonyaulacoideae (autonym)
3479	

3480		Genus Spiniferites Mantell 1850	
3481	1850	Spiniferites Mantell, p. 191.	
3482	1933	Hystrichosphaera Wetzel, p. 33 (name not validly published).	
3483	1937	Hystrichosphaera Wetzel ex Deflandre, p. 61.	
3484	1953	Hystrichokibotium Klumpp, p. 387.	
3485	1970	Spiniferites Mantell; emend. Sarjeant, p. 75.	
3486	2002	Pseudospiniferites Lund, p. 87.	
3487			
3488	Synoj	osis. Gonyaulacacean (gonyaulacoidean) cysts that are proximochorate to chorate, with a	
3489	subsp	heroidal to subovoidal central body. Acavate. Surface paratabular, processes generally	
3490	solid	out can be hollow and open; parasutural and gonal in position, distally bifid and trifid	
3491	respec	ctively. Archeopyle precingular, with formula P _{3"} , operculum free.	
3492			
3493	Select	Selected species.	
3494			
3495		Spiniferites? ambiguus (He Chengquan 1991) comb. nov.	
3496		(Fig. 20 D)	
3497	1991	Cyclonephelium? ambiguum He Chengquan, p. 135, pl. 28, figs 7-8.	
3498	1991	Cyclonephelium? tarimense He Chengquan, p. 136-137, pl. 28, fig. 9.	
3499			
3500	Com	nents. Although the morphologies of Cyclonephelium? ambiguum and Cyclonephelium?	
3501	tarim	ense are unclear, they appear to us to be similar and questionably assignable to Spiniferites.	
3502	We re	commend that both names be restricted to their respective holotypes.	
3503			
3504	Strati	graphical occurrence. The type materials of both Spiniferites? ambiguus (as	
3505	Cyclo	nephelium ambiguum) and Cyclonephelium? tarimense are from the Paleocene of China.	
3506			
3507		Subfamily Cribroperidinioideae Fensome et al. 1993	
3508		Genus <i>Turbiosphaera</i> Archangelsky 1969	
3509	1969	Turbiosphaera Archangelsky, p. 408.	

3511	Synopsis. Gonyaulacacean (cribroperidinioid) cysts that are chorate, with subspheroidal to		
3512	subovoidal central body. Acavate. One process per paraplate, processes hollow, open or closed,		
3513	more or less cylindrical, and generally uniform in size, except that paracingular processes are		
3514	taeniate — strongly elongate transversely. Wall fibrous, especially that of processes.		
3515	Archaeopyle precingular, with formula P _{3"} , operculum free.		
3516			
3517	Selected species		
3518			
3519	Turbiosphaera? sarrisii (Archangelsky 1969) comb. nov.		
3520	(Figs 20 E–F)		
3521	1969 Polystephanephorus? sarrisii Archangelsky, p. 411, pl. 2, figs 5-7.		
3522	1978 Senoniasphaera? sarrisii (Archangelsky) Stover & Evitt, p. 80.		
3523			
3524	Comments. Archangelsky (1969) considered that this species has an apical archaeopyle.		
3525	However, G. R. Guerstein (personal communication 2017) noted that a restudy of the type		
3526	material confirmed that this species has a precingular archaeopyle. Following suggestions by		
3527	Archangelsky (1969), Gonzalez Estebenet et al. (2015, 2016) considered Senoniasphaera sarrisii		
3528	to be an extreme member of the Turbiosphaera filosa complex (their morphotype 1). These		
3529	authors considered the morphological variation within the Turbiosphaera filosa complex to		
3530	parallel the variation described by Benedek & Gocht (1981 and references therein) and Pross		
3531	(2001) for Thalassiphora pelagica. However, Gonzalez Estebenet et al. (2015, 2016) made no		
3532	formal taxonomic proposals, so for now we questionably transfer Senoniasphaera? sarrisii to		
3533	Turbiosphaera.		
3534			
3535	Stratigraphical occurrence. The type material is from the Eocene of Argentina.		
3536			
3537			
3538	Subfamily Uncertain		
3539	Genus <i>Batiacasphaera</i> Drugg 1970		

3540	1970 Batiacasphaera Drugg, p. 813.	
3541	2016 Batiacasphaera Drugg; emend. Wood et al., p. 62.	
3542		
3543	Synopsis. Proximate, acavate gonyaulacalean dinoflagellate cysts with subspherical to ovoidal	
3544	central body in dorso-ventral view. The autophragm bears nontabular ornament that is rugulate	to to
3545	reticulate or isolated elements that align. The archaeopyle is apical, with a free operculum (see	
3546	the emended diagnosis of Wood et al. 2016, p. 62).	
3547		
3548	Selected species.	
3549		
3550	Batiacasphaera? bulbosa (Smith & Harding 2004) comb. nov.	
3551	(Figs 20 I–K)	
3552	2004 Cyclonephelium? bulbosum Smith & Harding, p. 375–376, pl. 4, figs 6–10; pl. 5, figs 4	_
3553	6; text-fig. 7.	
3554		
3555	Comments. Smith & Harding (2004, p. 375–376) described the archaeopyle of this species as	
3556	complex, involving " all of the apical plate homologues as a simple operculum which	
3557	remains adnate via plates 6", as, and 1', and also plate 3" which remains adnate via its boundary	y
3558	with the cingulum." No known areoligeracean has any archaeopyle type other than apical, and	its
3559	shape, involving a flat antapex with somewhat angular corners and a dome-shaped apex, would	ł
3560	also be highly unusual for an areoligeracean. Although Smith & Harding (2004) acknowledged	1
3561	the problematic nature of the generic assignment, they were influenced by the marginate	
3562	distribution of the ornament, which they noted consisted of " short solid rod-like projections	
3563	with expanded terminations, which may be discrete or branching/anastomosing/fused, and are	
3564	concentrated in marginal and apical regions." As this species is clearly not an areoligeracean, v	ve
3565	transfer it provisionally to the gonyaulacacean genus Batiacasphaera.	
3566		
3567	Stratigraphical occurrence. The type material is from the middle Volgian (upper Tithonian) of	əf
3568	the Volga Basin, western Russia.	
3569		

Genus Trichodinium Eisenack & Cookson 1960. Trichodinium Eisenack & Cookson, p. 5. Trichodinium Eisenack & Cookson; emend. Clarke & Verdier, p. 18-19. Synopsis. Gonyaulacacean cysts that are proximate to proximochorate, subspheroidal, usually surmounted by an apical horn or an apical tuft of longer spines. Acavate. Autophragm atabular to weakly paratabular, moderately to densely covered with short spines or short bifid to capitate processes that may show alignment. Archaeopyle precingular, with formula P_{3"}, operculum free. Selected species. Trichodinium? granulatum (Horowitz 1975) comb. nov. (Fig. 20 G) Doidyx granulata Horowitz, p. 25, pl. 1, fig. 4. Cyclonephelium? granulatum (Horowitz) Stover & Evitt, p. 36. Comments. This species is clearly a gonyaulacacean with a precingular archaeopyle, and it possesses short spines (referred to in the original description and contrasting with the granulation suggested by the epithet), and thus seems to fit the circumscription of Trichodinium. Hence, we tentatively assign it to that genus. Although the holotype was recorded from supposedly Triassic strata, it was most probably caved from younger horizons (Conway & Cousminer 1983, p. 35). Given the questions surrounding its generic assignment and its problematic provenance, we recommend that the name be restricted to the holotype. Stratigraphical occurrence. Horowitz (1975) considered this species to be from the Upper Triassic of Israel. However, the specimens are from uncased wells and so probably represent material caved fron higher in the section.

3600	Suborder Goniodomineae Fensome et al. 1993
3601	Family Goniodomaceae Lindemann 1928
3602	Subfamily Pyrodinioideae Fensome et al. 1993
3603	Genus Polysphaeridium Davey & Williams 1966
3604	1966 Polysphaeridium Davey & Williams, p. 91–92.
3605	1967 Hemicystodinium Wall, p. 110.
3606	1980 Polysphaeridium Davey & Williams; emend. Bujak et al., p. 32, 34.
3607	
3608	Synopsis. Goniodomacean (pyrodinioid) cysts that are proximochorate to (typically) chorate
3609	with a subspheroidal central body. Acavate. Processes usually hollow and open, numerous,
3610	arranged in paraplate-related groups or (typically) apparently nontabular. Archaeopyle epicystal,
3611	with formula (A1-4' P1-6"); operculum simple.
3612	
3613	Selected species.
3614	
3615	Polysphaeridium? combibaculum (Song Zhichen in Song Zhichen et al. 1985) comb nov.
3616	(Fig. 20 H)
3617	1985 Cyclonephelium combibaculum Song Zhichen in Song Zhichen et al., p. 29–30, pl. 6, figs
3618	10–11.
3619	
3620	Comments. This species appears to have the morphology of Polysphaeridium rather than
3621	Cyclonephelium, and its Pleistocene age supports that observation. We thus tentatively transfer
3622	the species to Polysphaeridium.
3623	
3624	Stratigraphical occurrence. The type material is from the Pleistocene of the East China Sea.
3625	
3626	
3627	Order Peridiniales Haeckel 1894
3628	Suborder Peridiniineae Autonym
3629	Family Peridiniaceae Ehrenberg 1831

3630		Subfamily Deflandreoideae Bujak & Davies 1983
3631		Genus <i>Deflandrea</i> Eisenack 1938
3632	1938	Deflandrea Eisenack, p. 187.
3633	1966	Deflandrea Eisenack; emend. Williams & Downie, p. 231.
3634	1974	Deflandrea Eisenack; emend. Stover, p. 169–170 (as a revised description).
3635	1976	Deflandrea Eisenack; emend. Lentin & Williams, p. 35-36.
3636		
3637	Synop	sis. Peridiniacean (deflandreoid) cysts that are proximate, peridinioid in shape, and more
3638	or less	symmetrical antapically. Circumcavate to bicavate. Archeopyle intercalary, with formula
3639	I _{2a} , op	erculum free, occasionally attached; paraplate 2a is latideltaform hexa.
3640		
3641	Select	ed species.
3642		
3643		Deflandrea? stagonoides (Benedek 1972) Lentin & Williams 1976
3644		(Fig. 20 L)
3645	1972	Ascodinium stagonoides Benedek, p. 10, pl. 2, fig. 12; text-fig. 5.
3646	1976	Deflandrea stagonoides (Benedek) Lentin & Williams, p. 44.
3647	1981	Ascodinium stagonoides Benedek; emend. Benedek & Sarjeant, p. 324.
3648	1983	Senoniasphaera stagonoides (Benedek) Helenes, p. 262.
3649		
3650	Comr	nents. On the basis that its archaeopyle may be latideltaform, we retain this species
3651	questi	onably in <i>Deflandrea</i> .
3652		
3653	Strati	graphical occurrence. The type material is from the Upper Oligocene of Germany.
3654		
3655		
3656		Subfamily Ovoidinioideae (Norris 1978) Bujak & Davies 1983
3657		Genus <i>Epelidosphaeridia</i> Davey 1969
3658	1969	Epelidosphaeridia Davey, p. 142.
3659		

3660 Synopsis. Peridiniacean (ovoidinioid) cysts that are proximate to proximochorate; central body

- 3661 subspheroidal to subovoidal with offset antapical prominence and/or spine. Acavate.
- 3662 Archaeopyle combination apical-intercalary, with formula $(A_{1'-4'} + I_{1a-3a})$, operculum simple and
- 3663

free.

3664

Comments. In his original description of this genus, Davey (1969) described the archaeopyle 3665 simply as apical, and in their overview of dinoflagellate cyst genera, Stover & Evitt (1978, p. 46) 3666 accepted this interpretation, writing "archeopyle apical, type uncertain". No formal revisions of 3667 the genus have been made subsequently, but in a conference abstract, Costa (1985, unnumbered 3668 page) stated "Epelidosphaeridia is represented (in material from offshore arctic Norway) by E. 3669 spinosa and three new species. Their morphology demonstrates that this genus is a [p]eridinioid 3670 3671 dinoflagellate with a tAtI archeopyle." Fensome et al. (1993) concurred with this interpretation and assigned *Epelidosphaeridia* to the subfamily Ovoidinioideae. It differs from *Ovoidinium* in 3672 being acavate. Arcticacysta Sangiorgi et al. 2009 may be a taxonomic junior synonym of 3673 3674 *Epelidosphaeridia*, having a combination apical-intercalary archaeopyle and being acavate. 3675 3676 Selected species.

3677

3678 3679 *Epelidosphaeridia? turrita* (Brideaux 1977) comb. nov.

(Figs 20 M–O)

3680 1977 Canningia? turrita Brideaux, p. 13, pl. 4, figs 1-9.

- 3681 1981 Ovoidinium? turritum (Brideaux) Below, p. 125.
- 3682

3683 **Comments.** In his original description for this species, Brideaux (1977, p. 13) noted that "the

two [wall] layers [are] closely appressed ... without pericoel development" It seems that

3685 Brideaux (1977) assumed that two layers were present based on comparison with similar species,

3686 but probably saw no actual evidence for separate layers. On proposing a new genus,

3687 Arcticacysta, from the Miocene of the Arctic, Sangiorgi et al. (2009, p. 252) stated:

3688

3689

The only other dinosporin cyst having a 3A(?)3I archeopyle is 'Canningia' turrita

3690	Brideaux 1977 The assignment to the genus 'Canningia' by Brideaux (1977) was
3691	provisional, since the archeopyle of Canningia sensu stricto is formed by the loss
3692	of four apical plates only. The description of 'Canningia' turrita seems to closely
3693	resemble that of Arcticacysta, except for the mentioning of a pericyst and an
3694	endocyst, which have never been observed in Arcticacysta.
3695	
3696	Sangiorgi et al. (2009) did not consider Epelidosphaeridia for their new material, probably
3697	because Epelidosphaeridia has never been formally emended. As mentioned above, Arcticacysta
3698	might be a taxonomic junior synonym of Epelidosphaeridia, although the age difference
3699	mitigates against a close relationship. One of several putatively (non-marine?) ovoidinioidean
3700	genera from the Palaeogene of China might also prove senior to Arcticacysta (see Fensome et al.
3701	1993, p. 136), but further investigation of this possibility is beyond the scope of the present
3702	work.
3703	Here we agree with Below (1981) that this species appears more like an ovoidinioidean
3704	than an areoligeracean, but provisionally assign it to the acavate genus Epelidosphaeridia rather
3705	than follow him in including it in the cavate genus Ovoidinium.
3706	
3707	Stratigraphical occurrence. Brideaux (1977) recorded Epelidosphaeridia? (as Canningia)
3708	turrita from a sidewall core in the Barremian of the Northwest Territories, former District of
3709	Mackenzie, Canada.
3710	
3711	
3712	Subfamily Wetzelielloideae (Vozzhennikova 1961) Bujak & Davies 1983
3713	Genus <i>Petalodinium</i> Williams et al. 2015
3714	2015 Petalodinium Williams et al., p. 307.
3715	
3716	Synopsis. Wetzelielloidean cysts with a latiepeliform archaeopyle and a pericyst that is smooth
3717	or ornamented with features of low relief.
3718	
3719	Selected species.

3720		
3721		Petalodinium? granulatum (Morgenroth 1966) comb. nov.
3722		(Fig. 20 P)
3723	1966	Canningia granulata Morgenroth, p. 12, pl. 2, fig. 10.
3724	1978	Canningia? granulata Morgenroth; Stover & Evitt, p. 25.
3725		
3726	Comr	nents. Morgenroth (1966, p. 12) provided the following diagnosis and description.
3727		
3728		Diagnosis: A species of the genus Canningia with a thick-walled, strongly granulate
3729		shell. Description: The dorsoventrally compressed, thick, dark brown shell has a
3730		rounded-pentagonal outline. The apical pole is distinguished by a very short, more or
3731		less truncated horn. The two short, broad antapical horns are of unequal length. The
3732		whole shell has a strong granulation. The girdle furrow [paracingulum] is not present.
3733		The holotype has a broad ellipse-like pylome [archaeopyle] below the apical horn.
3734		[Translation; paragraphs joined]
3735		
3736	Althou	ugh the detailed morphology of the holotype is unclear from the single image of
3737	Morge	enroth (1966), the shape and probable intercalary nature of the archaeopyle (as Morgenroth
3738	noted,	it is "below the apical horn") and the suggestion of an endophragm in one of the antapical
3739	horns	suggest that it is a wetzelielloidean. If wetzelielloidean affinity is confirmed, the
3740	archae	copyle would be lati-epeliform, and hence we provisionally transfer this species to
3741	Petalo	odinium. We recommend that the name be restricted to the holotype.
3742		
3743	Strati	graphical occurrence. Morgenroth (1966) recovered this species from the Lower Eocene
3744	of nor	thern Germany.
3745		
3746		
3747		Family Protoperidiniaceae Balech 1988
3748		Genus Selenopemphix Benedek 1972 nom. cons.
3749	1965	Margosphaera Nagy: p. 208.

3750	1972	Selenopemphix Benedek: p. 47.
3751	1975	Multispinula Bradford: p. 3067.
3752	1975	Omanodinium Bradford: p. 3070.
3753	1980	Selenopemphix Benedek; emend. Bujak in Bujak et al., p. 82.
3754	1972	Protoperidinium subgenus Protoperidinium section Selenopemphix (Benedek) Harland:
3755		p. 396 (combination not validly published).
3756	1993	Selenopemphix Benedek; emend. Head: p. 32.
3757	2016a	Selenopemphix Benedek nom. cons. prop; Fensome et al., p. 636.
3758	2016a	Margosphaera Nagy nom. rej. prop.; Fensome et al. p. 636.
3759		
3760	Synop	sis. Protoperidiniacean cysts that are proximate to chorate, antero-posteriorly compressed,
3761	with lo	w crests, spines or processes marking the paracingulum. Acavate. Archeopyle intercalary,
3762	with fo	ormula I _{2a} , commonly offset from a mid-ventral position.
3763		
3764	Select	ed species.
3765		
3766	,	Selenopemphix? baculatum (Song Zhichen in Song Zhichen et al. 1985) comb. nov.
3767		(Fig. 20 Q–R)
3768	1985	Cyclonephelium baculatum Song Zhichen in Song Zhichen et al., p. 30, pl. 6, figs 1–3.
3769		
3770	Comn	nents. The morphology of this species, consisting of apparently antero-poteriorly flattened
3771	central	body with a rim of processes discontinuous at what may be the parasulcus, suggests an
3772	attribu	tion to the protoperidiniacean genus Selenopemphix; hence we questionably transfer the
3773	specie	s to that genus. The age of this species conforms with its assignment to a
3774	protop	eridiniacean genus rather than a Cyclonephelium group genus.
3775		
3776	Stratig	graphical occurrence. The age of the type material is early? Pleistocene.
3777		
3778	(Pleas	e insert Figures 4–20 [in order], throughout the previous section - #6)
3779		

3781

7. Palaeoecology and palaeogeography

3782

3783 In our studies of Cretaceous dinoflagellate cysts, we have found that the most species-rich assemblages are neritic, but marginal marine or open ocean occurrences are known. (By "open 3784 ocean", we mean a setting beyond the shelf edge and thus, by implication, deeper water.) In the 3785 3786 Late Cretaceous and Cenozoic, non-Cyclonephelium group areoligeraceans — such as Areoligera, Glaphyrocysta and Cleistosphaeridium — proliferated and tended to prefer inner 3787 neritic settings (Nøhr-Hansen et al. 2017, table 1). However, we have insufficient data on 3788 3789 Cyclonephelium group taxa to determine if they follow a similar trend, especially during the Early Cretaceous when these taxa were at their most diverse and abundant. 3790 3791 Generally, palaeoecological studies of fossil dinoflagellate cysts have primarily focused on Cenozoic taxa. But several authors — including Lister & Batten (1988), Cornu & Monteil in 3792 Monteil (1990), Harker et al. (1990), Kirsch (1991), Marheinecke (1992), Masure & Vrielynck 3793 3794 (2009), Masure et al. (2013) and Pearce et al. (2003) - have published on Mesozoic palaeoenvironments and palaeogeography. Based on R-mode cluster analysis, Harker et al. 3795 (1990) recognised 14 species groups and several subgroups of organic-walled microplankton that 3796 defined specific palaeoenvironments in the Campanian of Canada, Wyoming and Texas. Their 3797 subgroup B1, which included *Circulodinium* (as *Cyclonephelium*) distinctum, was considered to 3798 characterise a marine environment with varying degrees of reduced salinity. Senoniasphaera 3799 protrusa was included in group F, which they considered indicative of relatively normal marine 3800 conditions. Our conclusions from the above is that subgroup B1 and group F are probably 3801 3802 indicative of inner neritic palaeoenvironments. Harker et al. (1990) also used Q-mode analysis to define 14 groups and several subgroups, of which subgroup 9B contained Circulodinium (as 3803 *Cyclonephelium*) *distinctum*. The subgroup was considered representative of an offshore setting, 3804 which was supported by lithology (McLean 1971). The Q-mode analysis is thus at variance with 3805 the conclusion drawn from the R-mode analysis. The other possibility, which would explain the 3806 discrepancy, is that the assemblage primarily represents taxa redeposited in deeper water. 3807 Pearce et al. (2003) recognised two dinoflagellate cyst assmblages based on species 3808

3809 numbers and taxonomic compositions that are characteristic of the Turonian–Coniacian in the

North Sea, southern England and northern France. The Spiniferites–Palaeohystrichophora (S–P) 3810 3811 assemblage was considered to represent more open-marine paleoenvironments. In contrast, the *Circulodinium–Heterosphaeridium* (C–H) assemblage, of low-diversity and dominated by 3812 3813 species of the two genera after which it was named, was indicative of shallower-water settings. Samples from an uppermost Cenomanian to upper Coniacian succession of the Chalk Group in 3814 the Banterwick Barn borehole in Berkshire, England, analysed by these authors, were dominated 3815 by taxa of the C-H assemblage. Although not believed to be geographically close to a shoreline 3816 during the Turonian-Coniacian, Banterwick Barn was situated in a relatively high topographical 3817 position with water depths only of decametres. The above findings provide convincing evidence 3818 3819 that at least some Cretaceous areoligeraceans were indicators of shallower-water

3820 palaeoenvironments.

3821 Major advances in our knowledge of the palaeogeography of Cretaceous dinoflagellate cysts resulted from Masure & Vrielynck (2009) and Masure et al. (2013). In a study of 3822 worldwide distribution patterns of late Albian dinoflagellate cysts, Masure & Vrielynck (2009) 3823 3824 considered two species - Cyclonephelium chabaca (which we treat as a taxonomic junior synonym of Canningia reticulata) and Cyclonephelium (now Aptea) vannophorum, to be 3825 indicative of warmer waters. The assemblages in which these two species occurred were 3826 predominantly restricted to a palaeolatitudinal belt extending from 25° north to 40° south, 3827 representing "a tropical-subtropical oceanic-neritic species group". Masure & Vrielynck (2009, 3828 p.131) designated the two species as specialised tropical-subtropical taxa that "should be more 3829 tolerant to temperature variations". They considered the occurrence of the two species at higher 3830 southern palaeolatitudes than northern palaeolatitudes to reflect warmer sea-surface temperatures 3831 3832 in the Southern Hemisphere.

Masure et al. (2013) found that one of the marker species in the Aptian was *Cerbia tabulata*, which they recorded as extending from palaeolatitudes 5° to 60° north; the species did not occur in the Southern Hemisphere. The palaeoclimatic zones spanned by the assemblages were northern mid-low to southern mid-high palaeolatitudinal belts. Although the extent of the interval within the Aptian was not specified, we assume that the records of species occurrences span all of that stage. In the Albian, Masure et al. (2013) noted that *Canningia reticulata* (as *Cyclonephelium chabaca*) and *Cyclonephelium vannophorum* (now *Aptea? vannophora*) were 3840 thermophilic species and restricted to south of 30° in the Northern Hemisphere. In the Southern

- 3841 Hemisphere these two species occurred as high as 70° south and formed part of their Tethyan
- assemblage. Late Albian dinoflagellate cysts defined a northern low-palaeolatitude belt between
- ³⁸⁴³ 10° and 30° north and a southern low-palaeolatitude belt, extending to 35° south. Masure et al.
- 3844 (2013) postulated that the assemblages, including *Canningia reticulata* (as *Cyclonephelium*
- 3845 *chabaca*) and *Cyclonephelium* (now *Aptea*) *vannophorum*, were restricted to regions where sea-
- 3846 surface temperatures were warmer than $22-24^{\circ}$ C. The results of the studies by Masure et al.
- 3847 (2013) and Masure & Vrielynck (2009) demonstrate the potential, as well as the problems
- 3848 (including stability of taxonomy) of dinoflagellate cysts in evaluating Cretaceous palaeoclimates.
- 3849 3850

8. Evolution

It is clear that the gonyaulacalean families Areoligeraceae and Ceratiaceae are closely related, as 3852 witnessed by the striking similarity of some of their morphological features. Most notably, both 3853 3854 have sexiform gonyaulacalean paratabulation, a usually asymmetrical outline in ambital view with usually a more pronounced left side, a parasulcus (and parasulcal notch) offset to the left, 3855 and invariably an apical archaeopyle. The difference between the two families, as stressed 3856 herein, is the presence of one or two distinct lateral horns in the Ceratiaceae and their absence in 3857 the Areoligeraceae. This difference unequivocally places most genera in one or other of the two 3858 families, and there is generally no doubt that the two are morphologically and phylogenetically 3859 separable. But, especially in the Early Cretaceous, there is a gradation of morphologies between 3860 certain genera that makes any means of separation somewhat arbitrary. The presence of lateral 3861 3862 prominences formed solely by ornamention also demonstrates the sometimes gradational interface between the two families. For example, the holotype of Aptea polymorpha has a lateral 3863 prominence produced solely by ornament, whereas most other specimens of the type material of 3864 that species show no such prominence. 3865

The earliest confirmed occurrence of an areoligeracean, *Senoniasphaera jurassica*, is in the early Kimmeridgian (~156 Ma), and that of ceratiaceans (*Muderongia* spp.) is in the middle Tithonian (~150 Ma; e.g., Woollam & Riding 1983; Riding & Thomas 1992). The fossil evidence alone, therefore, suggests that areoligeraceans appeared first and gave rise to the Ceratiaceae. However, these two dates are so close that this is a tentative conclusion, especially given the cyst-based nature of the fossil record. Nonetheless, that the Ceratiaceae evolved from the Areoligeraceae is a logical conclusion if the long horns of most ceratiaceans are considered

- 3873 to reflect a specialised morphology, in contrast to the more conservative shapes of
- 3874 areoligeraceans.

During the Late Cretaceous and Cenozoic, the distinction between the two families is more 3875 consistently clearcut, with ceratiaceans from this interval showing clear development of horns, 3876 and areoligeraceans tending less to have incipient lateral prominences formed from the 3877 ornamentation. Cyclonephelium group genera are rare in the Cenozoic. However, areoligeraceans 3878 3879 are well represented during the Palaeogene by commonly abundant species of genera such as Areoligera, Cleistosphaeridium and Glaphyrocysta. The Ceratiaceae virtually disappear from the 3880 3881 fossil record in the Cenozoic, with only one genus, Taurodinium, known (Fensome et al. 2016). Oddly, ceratiaceans are well represented among living dinoflagellates, but areoligeraceans 3882 (including Cyclonephelium and its allies) are unknown, the family apparently becoming extinct 3883 3884 during the Late Miocene.

- 3885
- 3886 3887

9. Conclusions

Following decades of confusion (the 1960s through early 2000s) and an interval of relative 3888 quiescence in taxonomic work on the Cyclonephelium group of areoligeracean cysts, the time is 3889 opportune to attempt to reduce the taxonomic problems that continue to hamper the applicability 3890 of this group. How to distinguish some Cyclonephelium group genera from the ceratiacean genus 3891 3892 Pseudoceratium also remained a problem, given the morphological gradation involving "intermediate" genera such as Aptea and Doidyx. Indeed, intergradation of morphological 3893 features such as ambital shape and ornament distribution has plagued the taxonomy of the 3894 Cyclonephelium group genera. The fact that, whatever generic definitions are agreed upon, some 3895 apparent natural continuities will be broken is probably an unresolvable problem in this group. 3896

The best resolution in any taxonomic imbroglio generally involves deciding on a hierarchy of morphological criteria. Among dinoflagellate cysts, tabulation is generally the most important consideration, with archaeopyle type also commonly very important. However among areoligeraceans and ceratiaceans, tabulation and archeopyle type cannot be used because these
features are effectively the same across the two families (at least among fossils). In developing a
"best-fit" hierarchy of morphological criteria for the *Cyclonephelium* group internally, and its
separation from ceratiacean cysts, we considered the history of concepts (Appendix 1),
morphological variation in our own material, and illustrations in the literature, especially of
types.

The first issue to resolve was how to distinguish the family Areoligeraceae from the family 3906 Ceratiaceae. Although few if any dinoflagellate cyst researchers would doubt that there are two 3907 distinct high taxonomic level entities, first clearly expressed by Evitt (1985) as his Gv and Gc 3908 3909 cysts, intergradational forms exist. Whatever criterion is used to separate the two families, selecting the diagnostic features within the intergrading taxa will inevitably be somewhat 3910 3911 arbitrary. Possession of one or more lateral horns is a consistent feature among ceratiaceans, and lateral horns are generally absent among areoligeraceans. But when does a prominence become a 3912 horn? And how should we treat forms in which a prominence, even a "horn", is a product of the 3913 3914 ornament, whereas the central/main body of the cyst lacks a horn or prominence? From consideration of the options, we have concluded that the most pragmatic and consistent route is 3915 to define ceratiaceans on the presence of a lateral horn on the central body 3916 (endophragm/autophragm) of the cyst. Conversely, areoligerations by this definition lack a 3917 lateral horn on the central body/inner wall layer. We acknowledge that this is somewhat 3918 3919 arbitrary, but no better option is in our view available. Within the Areoligeraceae, aside from the lack of a lateral horn, shape seems to be a low-3920 level, usually intraspecific, variable. All factors considered, including our own experience and 3921 3922 the desire to keep the taxonomy as stable as possible, we have determined the following hierarchy of features: 3923 wall structure — whether a cyst is acavate, holocavate or circumcavate. 3924 1)

3925 2) whether the ornament is linear or free standing.

- whether the ornament is distributed all over the cyst (albeit sometimes somewhat reduced
 dorsoventrally) or whether the dorsoventral areas are devoid of ornament.
- 3928 5) whether the ornament is non-aligned or shows alignment
- 3929 Other features, such as ambital shape, degree of asymmetry, and finer details of the ornament

are, in our view, not useful taxonomically or are used to define taxa at the species level.

Within the Cyclonephelium group, cavate forms are placed in Canningia (if densely 3931 holocavate and with a narrow perocoel) or Senoniasphaera (with complete wall-layer separation 3932 3933 or sparse supporting structures, plus usually a broad periocoel). Trimuridinium gen. nov. contains species with three wall layers. Forms with linear ornament are assigned to Aptea (if over all the 3934 cyst surface, albeit possibly somewhat reduced dorsoventrally; including *Cassidium* as a 3935 3936 taxonomic junior synonym) or Cyclonephelium (if dorsoventral areas devoid of ornament are present; including Cauveridinium as a taxonomic junior synonym). Forms with free-standing 3937 ornament are assigned to Tenua (if dorsoventral areas have ornament, albeit sometimes reduced 3938 3939 or sparse; including *Doidyx* as a taxonomic junior synonym) or *Circulodinium* (if dorsoventral areas are devoid of ornament). Two special cases of acavate genera are Canninginopsis, which 3940 3941 has parasutural ornament, and Cerbia, which has penitabular ornament. Forms with horns or distinct prominences formed by the endophragm or autophragm, such as *Pseudoceratium* are 3942 assigned to the Ceratiaceae. We consider that our refinement of the taxonomy of the 3943 3944 Cyclonephelium group of areoligeracean dinoflagellate cysts will lead to their significantly improved use in biostratigraphical and palaeoenvironmental analyses. 3945

3946 3947

3948 Acknowledgements

We are greatly indebted to Ian Harding and Martin Pearce for their detailed and insightful 3949 reviews of this paper, which led to significant improvements; and also Peta Mudie for her review 3950 on behalf of the Geological Survey of Canada, which led to important refinements. Bill 3951 3952 MacMillan assisted with drafting. Susanne Feist-Burkhardt, Uli Heimhofer and an unnamed librarian at Hannover University, Germany provided literature. Jennifer Galloway, Thomas 3953 Hadlari and Andrew MacRae provided graphics on which some of the diagrams in the 3954 Supplemental data are based. Thomas Hadlari, Danielle Thomson and Claudia Schröder-Adams 3955 collected samples from the Hume River section, Thomas Hadlari collected samples from the 3956 Imperial River section, and Jennifer Galloway collected samples from the Glacier Fiord section. 3957 We are grateful to all these individuals. The publication of this paper was entirely financed by 3958 the British Geological Survey and the Geological Survey of Canada (Natural Resources Canada). 3959

- 3960 SELW and JBR publish with the permission of the Executive Director, British Geological
- 3961 Survey (NERC). This is NRCan Contribution number 20180002.
- 3962

3963 Disclosure statement

- 3964 No potential conflict of interest was reported by the authors.
- 3965

3966 Notes on contributors

3967

ROBERT A. FENSOME works for the Geological Survey of Canada (GSC) in their Atlantic
Division at the Bedford Institute of Oceanography, Dartmouth, Nova Scotia. During his 31-year
tenure at the GSC, Rob has focussed mainly on the Mesozoic and Cenozoic dinoflagellate cysts
from off Canada's east coast, but is now venturing into projects involving assemblages from
northwestern and Arctic Canada. While biostratigraphical and paleoenvironmental studies justify
his paycheck, he also has a strong interest in dinoflagellate evolution.

3974

GRAHAM L. WILLIAMS's main field of interest is the Mesozoic-Cenozoic palynostratigraphy of
offshore eastern Canada, including the arctic. His long-standing interest in dinoflagellate cysts
has led to studies of these palynomorphs in both hemispheres, including the deep ocean basins.
After seven years at Pan American Petroleum Corporation (for anyone who remembers that far
back), Graham joined the Geological Survey of Canada in 1971. He has spent the last 43 years at
the Bedford Institute of Oceanography in Nova Scotia, where he has the good fortune to work
with some outstanding colleagues.

3982

JAMES B. RIDING is a geologist/palynologist with the British Geological Survey (BGS) in Nottingham, UK. He undertook the MSc in palynology at the University of Sheffield and, several years later, Jim was awarded a PhD by the same institution. During 2004, Jim gained a DSc from the University of Leicester, where he did his Bachelor's degree in geology. His interests include the Mesozoic–Cenozoic palynology of the world, palaeoenvironmental palynology, palynomorph floral provinces, forensic palynology, preparation techniques, the history of palynology, and the morphology, systematics and taxonomy of dinoflagellate cysts.

3990	Jim is a past President of AASP – The Palynological Society, and became Managing Editor in
3991	2004.
3992	
3993	
3994	References
3995	
3996	Alberti G. 1961. Zur Kenntnis mesozoischer und alttertiärer Dinoflagellaten und
3997	Hystrichosphaerideen von Nord- und Mitteldeutschland sowie einigen anderen europäischen
3998	Gebieten. Palaeontographica Abteilung A 116:1–58.
3999	
4000	Andreeva-Grigorovich AS, Zaporozhetz NI, Shevchenko TV, Aleksandrova GN, Vasilyeva ON,
4001	Iakovleva AI, Stotland AB, Savitskaya NA. 2011. Atlas of Paleogene dinocysts of Ukraine,
4002	Russia and adjacent countries. Kiev: Naukoma Dumka, 224 p.
4003	
4004	Archangelsky S. 1969. Sobre el paleomicroplancton del Terciario inferior de Río Turbio,
4005	Provincia de Santa Cruz. Ameghiniana 5:406–416.
4006	
4007	Backhouse J. 1988. Late Jurassic and Early Cretaceous palynology of the Perth Basin, Western
4008	Australia. Geological Survey of Western Australia Bulletin No. 135, 233 p.
4009	
4010	Bailey DA, Milner P, Varney T. 1997. Some dinoflagellate cysts from the Kimmeridge Clay
4011	Formation in North Yorkshire and Dorset, U.K. Proceedings of the Yorkshire Geological Society
4012	51:235–243.
4013	
4014	Balech E. 1988. Los dinoflagelados del Atlantico sudoccidental. Publicaciones Especiales
4015	Instituto Español de Oceanografia No. 1, 310 p.
4016	
4017	Below R. 1981. Dinoflagellaten-Zysten aus dem oberen Hauterive bis unteren Cenoman Süd-
4018	West-Marokkos. Palaeontographica Abteilung B 176:1–145.
4019	

4020	Below R. 1984. Aptian to Cenomanian dinoflagellate cysts from the Mazagan Plateau, northwest
4021	Africa (Sites 545 and 547, Deep Sea Drilling Project Leg 79). Initial Reports of the Deep Sea
4022	Drilling Project 79:621–649.
4023	
4024	Benedek PN. 1972. Phytoplanktonten aus dem Mittel- und Oberoligozän von Tönisberg
4025	(Niederrheingebiet). Palaeontographica Abteilung B 137:1-71.
4026	
4027	Benedek PN, Gocht H. 1981. Thalassiphora pelagica (Dinoflagellata, Tertiär):
4028	electronenmikroskopische Untersuchung und Gedanken zur Paläobiologie. Palaeontographica
4029	Abteilung B 180: 39–64.
4030	
4031	Benedek PN, Sarjeant WAS. 1981. Dinoflagellate cysts from the Middle and Upper Oligocene of
4032	Tönisberg (Niederrheingebiet): a morphological and taxonomic restudy. Nova Hedwigia 35:313-
4033	356.
4034	
4035	Bint AN. 1986. Fossil Ceratiaceae: a restudy and new taxa from the mid-Cretaceous of the
4036	Western Interior, U.S.A. Palynology 10:135-180.
4037	
4038	Boltenhagen E. 1977. Microplancton du Crétacé supérieur du Gabon. Cahiers de paléontologie,
4039	1977, unnumbered, 150 p.
4040	
4041	Brideaux WW. 1971. Palynology of the Lower Colorado Group, central Alberta, Canada. I.
4042	Introductory remarks. Geology and microplankton studies. Palaeontographica Abteilung B
4043	135:53–114.
4044	
4045	Brideaux WW. 1977. Taxonomy of Upper Jurassic-Lower Cretaceous microplankton from the
4046	Richardson Mountains, District of Mackenzie, Canada. Geological Survey of Canada Bulletin
4047	No. 281, 89 p.
4048	
4049	Brideaux WW, McIntyre DJ. 1975. Miospores and microplankton from Aptian-Albian rocks

4050	along Horton River, District of Mackenzie. Geological Survey of Canada Bulletin No. 252, 85 p.
4051	
4052	Bujak JP. 1984. Cenozoic dinoflagellate cysts and acritarchs from the Bering Sea and northern
4053	North Pacific, D.S.D.P. Leg 19. Micropaleontology 30:180-212.
4054	
4055	Bujak JP, Davies EH. 1983. Modern and fossil Peridiniineae. American Association of
4056	Stratigraphic Palynologists Contributions Series No.13, 203 p.
4057	
4058	Bujak JP, Downie C, Eaton GL, Williams GL. 1980. Dinoflagellate cysts and acritarchs from the
4059	Eocene of southern England. Special Papers in Palaeontology No. 24, 100 p.
4060	
4061	Burger D. 1980. Early Cretaceous (Neocomian) microplankton from the Carpentaria Basin,
4062	northern Queensland. Alcheringa 4:263–279.
4063	
4064	Bütschli O. 1885. Erster Band. Protozoa. In: Dr. H.G. Bronn's Klassen und Ordnungen des
4065	Thier-Reichs, wissenschaftlich dargestellt in Wort und Bild, C.F. Winter'sche
4066	Verlagsbuchhandlung, Leipzig and Heidelberg, Germany, 865–1088.
4067	
4068	Châteauneuf J-J. 1980. Palynostratigraphie et paléoclimatologie de l'Eocène supérieur et de
4069	l'Oligocène du Bassin de Paris. Mémoires du Bureau de recherches géologiques et minières No.
4070	116, 360 p.
4071	
4072	Chen Y-Y, Harland R, Stover LE, Williams GL. 1988. Fossil dinoflagellate taxa by Chinese
4073	authors, 1978–1984. Canadian Technical Report of Hydrography and Ocean Sciences No,103,
4074	40 p.
4075	
4076	Cheng Jinhui, He Chengquan. 2006. Middle-Late Jurassic marine dinoflagellate cysts from the
4077	eastern Qiangtang Basin in the Qinghai-Tibet Plateau, China. Progress in Natural Science
4078	16:274–283.
4079	

4080	Clarke RFA, Verdier J-P. 1967. An investigation of microplankton assemblages from the Chalk
4081	of the Isle of Wight, England. Verhandelingen der Koninklijke Nederlandse Akademie van
4082	Wetenschappen, Afdeeling Natuurkunde, Eerste Reeks No. 24, 96 p.
4083	
4084	Conway BH, Cousminer HL. 1983. Transfer of Sarjeantia triassica (Dinophyceae) to
4085	Aratrisporites fimbriatus (Sporites, Monoletes). Grana 22:35-38.
4086	
4087	Cookson IC, Eisenack A. 1958. Microplankton from Australian and New Guinea Upper
4088	Mesozoic sediments. Proceedings of the Royal Society of Victoria 70:19–79.
4089	
4090	Cookson IC, Eisenack A. 1960. Upper Mesozoic microplankton from Australia and New Guinea.
4091	Palaeontology 2:243–261.
4092	
4093	Cookson IC, Eisenack A. 1961. Upper Cretaceous microplankton from the Belfast No. 4 Bore,
4094	south-western Victoria. Proceedings of the Royal Society of Victoria 74:69–76.
4095	
4096	Cookson IC, Eisenack A. 1962. Additional microplankton from Australian Cretaceous
4097	sediments. Micropaleontology 8:485–507.
4098	
4099	Cookson IC, Eisenack A. 1968. Microplankton from two samples from Gingin Brook No. 4
4100	Borehole, Western Australia. Journal of the Royal Society of Western Australia 51:110-122.
4101	
4102	Cookson IC, Eisenack A. 1970. Cretaceous microplankton from the Eucla Basin, Western
4103	Australia. Proceedings of the Royal Society of Victoria 83:137–157.
4104	
4105	Cookson IC, Eisenack A. 1974. Mikroplankton aus australischen mesozoischen und tertiären
4106	Sedimenten. Palaeontographica Abteilung B 148:44–93.
4107	
4108	Cookson IC, Eisenack A. 1982. Mikrofossilien aus australischen mesozoischen und tertiären
4109	Sedimenten. Zweiter Teil. Palaeontographica Abteilung B 184:23-63.

4111	Costa LI. 1985. The Ascodinium plexus in the latest Albian to earliest Cenomanian offshore
4112	Arctic Norway. Unnumbered page in Abstracts, Third International Conference on Modern and
4113	Fossil Dinoflagellates, Egham, Surrey, UK, August, 1985.
4114	
4115	Costa LI, Davey RJ. 1992. Dinoflagellate cysts of the Cretaceous System. In: Powell AJ editor.
4116	A stratigraphic index of dinoflagellate cysts, British Micropalaeontological Society Publication
4117	Series. Chapman and Hall Limited, London, U.K., 99–154.
4118	
4119	Davey RJ. 1969. Non-calcareous microplankton from the Cenomanian of England, northern
4120	France and North America, part I. British Museum (Natural History) Geology Bulletin 17:103-
4121	180.
4122	
4123	Davey RJ. 1970. Non-calcareous microplankton from the Cenomanian of England, northern
4124	France and North America, part II. British Museum (Natural History) Geology Bulletin 18: 333-
4125	397.
4126	
4127	Davey RJ. 1974. Dinoflagellate cysts from the Barremian of the Speeton Clay, England.
4128	Symposium on Stratigraphic Palynology, Birbal Sahni Institute of Palaeobotany, Special
4129	Publication No. 3:41–75.
4130	
4131	Davey RJ. 1978. Marine Cretaceous palynology of Site 361, D.S.D.P. Leg 40, off southwestern
4132	Africa. Initial Reports of the Deep Sea Drilling Project 40:883–913.
4133	
4134	Davey RJ. 1979. The stratigraphic distribution of dinocysts in the Portlandian (latest Jurassic) to
4135	Barremian (Early Cretaceous) of northwest Europe. American Association of Stratigraphic
4136	Palynologists Contributions Series No. 5B:48-81.
4137	
4138	Davey RJ. 1982. Dinocyst stratigraphy of the latest Jurassic to Early Cretaceous of the Haldager
4139	No. 1 borehole, Denmark. Danmarks Geologiske Undersøgelse Series B No. 6, 57 p.

Davey RJ, Verdier J-P. 1973. An investigation of microplankton assemblages from latest Albian 4141 (Vraconian) sediments. Revista española de micropaleontologia 5:173-212. 4142 4143 Davey RJ, Verdier J-P. 1974. Dinoflagellate cysts from the Aptian type sections at Gargas and 4144 La Bédoule, France. Palaeontology 17:623-653. 4145 4146 Davey RJ, Williams GL. 1966. V. The genus Hystrichosphaeridium and its allies. In: Davey RJ, 4147 Downie C, Sarjeant WAS, Williams GL. Studies on Mesozoic and Cainozoic dinoflagellate 4148 4149 cysts. British Museum (Natural History) Geology Bulletin Supplement 3:53-106. 4150 4151 Davey RJ, Downie C, Sarjeant WAS, Williams GL. 1966. VII. Fossil dinoflagellate cysts attributed to Baltisphaeridium. In: Davey RJ, Downie C, Sarjeant WAS, Williams GL. Studies 4152 on Mesozoic and Cainozoic dinoflagellate cysts. British Museum (Natural History) Geology 4153 4154 Bulletin Supplement 3:157–175. 4155 de Verteuil L, Norris G. 1992. Miocene protoperidiniacean dinoflagellate cysts from the 4156 Maryland and Virginia coastal plain. In: Head MJ, Wrenn JH editors. Neogene and Quaternary 4157 dinoflagellate cysts and acritarchs. American Association of Stratigraphic Palynologists 4158 4159 Foundation, Dallas, U.S.A., 391–430. 4160 Deflandre G. 1937. Microfossiles des silex crétacés. Deuxième partie. Flagellés incertae sedis. 4161 4162 Hystrichosphaeridés. Sarcodinés. Organismes divers. Annales de paléontologie 26:51-103. 4163 Deflandre G, Cookson IC. 1954. Sur le microplancton fossile conservé dans diverses roches 4164 sédimentaires australiennes s'étageant du Crétacé inférieur au Miocène supérieur. Comptes 4165 rendus hebdomadaires des séances de l'Académie des sciences 239:1235-1238. 4166 4167 Deflandre G, Cookson IC. 1955. Fossil microplankton from Australian late Mesozoic and 4168 Tertiary sediments. Australian Journal of Marine and Freshwater Research 6:242–313. 4169

Dörhöfer G, Davies EH. 1980. Evolution of archeopyle and tabulation in rhaetogonyaulacinean 4171 dinoflagellate cysts. Miscellaneous Publication, Royal Ontario Museum, Life Sciences Division, 4172 4173 Toronto, Canada, 91 p. 4174 Drugg WS. 1967. Palynology of the Upper Moreno Formation (Late Cretaceous-Paleocene) 4175 4176 Escarpado Canyon, California. Palaeontographica Abteilung B 120:1-71. 4177 Drugg WS. 1970. Some new genera, species, and combinations of phytoplankton from the lower 4178 Tertiary of the Gulf Coast, U.S.A. Proceedings of the North American Paleontological 4179 Convention, Chicago, September 1969, part G:809-843. 4180 4181 Duxbury S. 1977. A palynostratigraphy of the Berriasian to Barremian of the Speeton Clay of 4182 4183 Speeton, England. Palaeontographica Abteilung B 160:17-67. 4184 Duxbury S. 1983. A study of dinoflagellate cysts and acritarchs from the Lower Greensand 4185 (Aptian to lower Albian) of the Isle of Wight, southern England. Palaeontographica Abteilung B 4186 186:18-80. 4187 4188 4189 Duxbury S. 2001. A palynological zonation scheme for the Lower Cretaceous — United Kingdom sector, central North Sea. Neues Jahrbuch für Geologie und Paläontologie 4190 Abhandlungen 219:97-137. 4191 4192 Duxbury S. 2002. Two new Early Cretaceous dinocyst species from the Central North Sea Basin. 4193 Journal of Micropalaeontology 21:75-80. 4194 4195 Eaton GL, Fensome RA, Riding JB, Williams GL. 2001. Re-evaluation of the status of the 4196 dinoflagellate cyst genus Cleistosphaeridium. Neues Jahrbuch für Geologie und Paläontologie 4197 Abhandlungen 219:171–205. 4198 4199

4200	Ehrenberg CG. 1831. Animalia evertebrata. In: Hemprich PC, Ehrenberg CG. Symbolae
4201	physicae pars zoological, 10 pl. (See reference list in Fensome et al. 1993 for further details.)
4202	
4203	Eisenack A. 1938. Die Phosphoritknollen der Bernsteinformation als Überlieferer tertiären
4204	Planktons. Schriften der Physikalisch-Ökonomischen Gesellschaft zu Königsberg 70:181–188.
4205	
4206	Eisenack A. 1958. Mikroplankton aus dem norddeutschen Apt, nebst einigen Bemerkungen über
4207	fossile Dinoflagellaten. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 106:383-
4208	422.
4209	
4210	Eisenack A. 1964. Erörterungen über einige Gattungen fossiler Dinoflagellaten und über die
4211	Einordnung der Gattungen in das System. Neues Jahrbuch für Geologie und Paläontologie
4212	Monatshefte 1964:321–336.
4213	
4214	Eisenack A, Cookson IC. 1960. Microplankton from Australian Lower Cretaceous sediments.
4215	Proceedings of the Royal Society of Victoria 72:1–11.
4216	
4217	Evitt WR. 1961. Observations on the morphology of fossil dinoflagellates. Micropaleontology
4218	7:385–420.
4219	
4220	Evitt WR. 1963a. A discussion and proposals concerning fossil dinoflagellates, hystrichospheres,
4221	and acritarchs, I. National Academy of Sciences, Washington Proceedings 49:158-164.
4222	
4223	Evitt WR. 1963b A discussion and proposals concerning fossil dinoflagellates, hystrichospheres,
4224	and acritarchs, II. National Academy of Sciences, Washington, Proceedings 49:298-302.
4225	
4226	Evitt WR. 1985. Sporopollenin dinoflagellate cysts: their morphology and interpretation.
4227	American Association of Stratigraphic Palynologists, Dallas, Texas, U.S.A., 333 p.
4228	
4229	Evitt WR, Damassa SP, Albert NR. 1998. A tiger by the tail: the exophragm of the Cretaceous-

4230	Paleocene dinoflagellate Palaeoperidinium and its implications. Palynology 22:1–55.
4231	
4232	Fauconnier D, Masure E (co-ordinators). 2004. Les dinoflagellés fossile. Guide pratique de
4233	détermination. Les genres à processus et à archéopyle apical. BRGM Editions, 602 p.
4234	
4235	Fensome RA. 1979. Dinoflagellate cysts and acritarchs from the Middle and Upper Jurassic of
4236	Jameson Land, East Greenland. Grønlands Geologiske Undersøgelse Bulletin No. 132, 98 p.
4237	
4238	Fensome RA. 2016. A palynological analysis of middle Cretaceous strata in the Hume River
4239	section, Northwest Territories, Canada. Geological Survey of Canada Open File Report No.
4240	8073, 132 p., doi:10.4095/299115 (unpublished).
4241	
4242	Fensome RA, Williams GL. 2004. The Lentin and Williams Index of fossil dinoflagellates, 2004
4243	edition. American Association of Stratigraphic Palynologists Contributions Series No. 42, 909 p.
4244	
4245	Fensome RA, Taylor FJR, Norris G, Sarjeant WAS, Wharton DI, Williams GL. 1993. A
4246	classification of fossil and living dinoflagellates. Micropaleontology Press Special Paper No. 7,
4247	351 p.
4248	
4249	Fensome RA, Crux JA, Gard IG, MacRae RA, Williams GL, Thomas FC, Fiorini F, Wach G.
4250	2008. The last 100 million years on the Scotian Margin, offshore eastern Canada: an event-
4251	stratigraphic scheme emphasizing biostratigraphic data. Atlantic Geology 44:93-126.
4252	
4253	Fensome RA, Williams GL, MacRae RA. 2009. Late Cretaceous and Cenozoic fossil
4254	dinoflagellates and other palynomorphs from the Scotian Margin, offshore eastern Canada.
4255	Journal of Systematic Palaeontology 7:1–79.
4256	
4257	Gitmez GU. 1970. Dinoflagellate cysts and acritarchs from the basal Kimmeridgian (Upper
4258	Jurassic) of England, Scotland and France. British Museum (Natural History) Geology Bulletin
4259	18:231–331.

Gitmez GU, Sarjeant WAS. 1972. Dinoflagellate cysts and acritarchs from the Kimmeridgian 4261 (Upper Jurassic) of England, Scotland and France. British Museum (Natural History) Geology 4262 4263 Bulletin 21:171–257. 4264 Gocht H. 1957. Mikroplankton aus dem nordwestdeutschen Neokom (Teil I). Paläontologische 4265 Zeitschrift 31:163–185. 4266 4267 González Estebenet MS, Guerstein GR, Casadio SA. 2015. Estudio bioestratigráfico y 4268 paleoambiental de la Fm. Río Turbio (Eoceno medio a superior) en el sudoeste de Patagonia 4269 (Argentina) basado en quistes de dinoflagelados. Revista Brasileira de Paleontologia 18:429-4270 4271 442. 4272 González Estebenet MS, Guerstein GR, Rodriguez Raising ME, Ponce JJ, Alperíni MI. 2016. 4273 4274 Dinoflagellate cyst zonation for the Middle to Upper Eocene in the Austral Basin, southwestern Atlantic Ocean: implications for regional and global correlation. Geological Magazine 4275 154:1022-1036. 4276 4277 Haeckel E. 1894. Systematische Phylogenie. Entwurf eines natürlichen Systems der Organismen 4278 auf Grund ihrer Stammegeschichte, I. Systematische Phylogenie der Protisten und Pflanzen. 4279 Reimer, Berlin, Germany, 400 p. 4280 4281 4282 Harding IC. 1990. A dinocyst calibration of the European Boreal Barremian. Palaeontographica Abteilung B 218:1–76. 4283 4284 Harker SD, Sarjeant WAS. 1975. The stratigraphic distribution of organic-walled dinoflagellate 4285 cysts in the Cretaceous and Tertiary. Review of Palaeobotany and Palynology 20:217-315. 4286 4287 Harker SD, Sarjeant WAS, Caldwell WGE. 1990. Late Cretaceous (Campanian) organic-walled 4288 microplankton from the interior plains of Canada, Wyoming and Texas: biostratigraphy, 4289

palaeontology and palaeoenvironmental interpretation. Palaeontographica Abteilung B 219:1–
243.

4292

Harland R. 1977. Recent and Late Quaternary (Flandrian and Devensian) dinoflagellate cysts
from marine continental shelf sediments around the British Isles. Palaeontographica Abteilung B
164:87–126.

4296

Harland R. 1982. A review of Recent and Quaternary organic-walled dinoflagellate cysts of the
genus *Protoperidinium*. Palaeontology 25:369–397.

4299

Harris WK. 1965. Basal Tertiary microfloras from the Princetown Area, Victoria, Australia.
Palaeontographica Abteilung B 115:75–106.

4302

He Chengquan. 1991. Late Cretaceous-early Tertiary microphytoplankton from the western
Tarim Basin in southern Xinjiang, China. Nanjing Institute of Geology and Palaeontology
Academia Sinica, 235 p. (in Chinese with an English summary).

4306

He Chengquan, Sun Xuekun. 2000. Late Hauterivian dinoflagellates from the lower part of the
Chengzihe Formation in Jixi Basin, eastern Heilongjiang, NE China. Acta Palaeontologica Sinica
39:46–62.

4310

4311 He Chengquan, Wan Chuanbiao, Yang Mingjie. 1999. Hauterivian-Barremian dinoflagellates

- 4312 from the Longzhaogou Group of the H87-3 well in Hulin Basin, eastern Heilongjiang, NE China.
- 4313 Acta Palaeontologica Sinica 38:183–202 (in Chinese with an English summary).
- 4314

4315 He Chengquan, Song Zhichen, Zhu Youhua. 2009. Fossil dinoflagellates of China. Nanjing

4316 Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, 737 p.

- 4318 Hedlund RW, Norris G. 1986. Dinoflagellate cyst assemblage from Middle Albian strata of
- 4319 Marshall County, Oklahoma, U.S.A. Review of Palaeobotany and Palynology 46:293–309.
| 4321 | Helby R. 1987. <i>Muderongia</i> and related dinoflagellates of the latest Jurassic to Early Cretaceous |
|------|---|
| 4322 | of Australasia. Memoir of the Association of Australasian Palaeontologists 4:297-336. |
| 4323 | |
| 4324 | Helenes J. 1983. Evaluation of Jurassic-Cretaceous dinoflagellates in the Ascodinium- |
| 4325 | Ovoidinium complex. Micropaleontology 29:255–266. |
| 4326 | |
| 4327 | Herngreen GFW, Hartkopf-Fröder C, Ruegg GHJ. 1994. Age and depositional environment of |
| 4328 | the Kuhfeld Beds (Lower Cretaceous) in the Alstätte Embayment (W. Germany, E. Netherlands). |
| 4329 | Geologie en Mijnbouw 72:375–391. |
| 4330 | |
| 4331 | Herngreen GFW, Kerstholt SJ, Munsterman DK. 2000. Callovian-Ryazanian ('Upper Jurassic') |
| 4332 | palynostratigraphy of the Central North Sea Graben and Vlieland Basin, The Netherlands. |
| 4333 | Mededelingen Nederlands Instituut voor Toegepaste Geowetenshappen TNO No. 63, 99 p. |
| 4334 | |
| 4335 | Horowitz A. 1975. Kystes de dinoflagellés du Trias du sud d'Israël. Revue de micropaléontologie |
| 4336 | 18:23–27. |
| 4337 | |
| 4338 | Ilyina VI, Kulkova IA, Lebedeva NK. 1994. Mikrofitofossilii i detalnaya stratigrafiya morskogo |
| 4339 | i kainozoya Sibiri. [Microphytofossils and detail (sic.) stratigraphy of marine Mesozoic and |
| 4340 | Cenozoic of Siberia]. Russian Academy of Sciences, Siberian Branch, United Institute of |
| 4341 | Geology, Geophysics and Mineralogy Transactions No. 818, 192 p. (in Russian with an English |
| 4342 | abstract). |
| 4343 | |
| 4344 | Ioannides NS, Stavrinos GN, Downie C. 1977. Kimmeridgian microplankton from Clavell's |
| 4345 | Hard, Dorset, England. Micropaleontology 22:443-478. (cover date 1976, issue date 1977, |
| 4346 | according to Ioannides 1986, p. 46). |
| 4347 | |
| 4348 | Iosifova EK. 1992. Novye taxony dinotzyst iz Neokoma Moscovskoy Sineklizy. |
| 4349 | Paleontologicheskii Zhurnal 4:58-64. |

4352

4353 Jain KP. 1977. Additional dinoflagellates and acritarchs from Grey Shale Member of 4354 Dalmiapuram Formation, south India. The Palaeobotanist 24:170–194. 4355 4356 Jain KP, Millepied P. 1975. Cretaceous microplankton from Senegal Basin, W. Africa, pt. II. 4357 Systematics and biostratigraphy. Geophytology 5:126–171. 4358 4359 Jain KP, Kumar P, Maheshwari HK. 1982. Dinoflagellate cysts from "non-marine" sediments of 4360 4361 Jabalpur Group at Morghat, Madhya Pradesh. The Palaeobotanist 30:22–27. 4362

Islam MA. 1993. Review of the fossil dinoflagellate Cleistosphaeridium. Revista española de

- Jain KP, Garg R, Kumar S, Singh IB. 1984. Upper Jurassic dinoflagellate biostratigraphy of Spiti
 Shale (Formation), Malla Johar area, Tethys Himalaya, India. Journal of the Palaeontological
 Society of India 29:67–83.
- 4366
- 4367 Jan du Chêne R, Adediran SA. 1985. Late Paleocene to Early Eocene dinoflagellates from
- 4368 Nigeria. Cahiers de micropaléontologie, Centre nationale de la recherche scientifique 1984–3:5–
- 4369 38 (cover date 1984, issue date 1985 according to p. 2 of publication).
- 4370
- Jansonius J. 1986. Re-examination of Mesozoic Canadian dinoflagellate cysts published by S. A.
 J. Pocock (1962, 1972). Palynology 10:201–223.
- 4373
- 4374 Jiabo 1978. On the Paleogene dinoflagellates and acritarchs from the Coastal Region of Bohai.
- 4375 Nanjing Institute of Geology and Palaeontology, Academia Sinica, Nanjing, China, 190 p. (in
- 4376 Chinese with an English summary).

micropaleontología 25:81-94.

- 4378 Khanna AK. 1979. Subathus stratigraphic status and nomenclature. Himalayan Geology
- 4379 8:209–223 (cover date 1978, issue date 1979).

4381	Khanna AK, Singh HP. 1981. Some new dinoflagellates, spores and pollen grains from the
4382	Subathu Formation (Upper Palaeocene-Eocene) of Simla Hills, India. Himalayan Geology
4383	9:385–419 (cover date 1979, issue date 1981).
4384	
4385	Khanna AK, Singh HP, Sah SCD. 1981. Palynostratigraphic correlation of the Subathu
4386	Formation, Simla Hills. Himalayan Geology 9:255–272.
4387	
4388	Kirsch K-H. 1991. Dinoflagellatenzysten aus der Oberkreide des Helvetikums und
4389	Nordultrahelvetikums von Oberbayern. Münchner Geowissenschaftliche Abhandlungen Reihe A
4390	Geologie und Paläontologie 22:1–306.
4391	
4392	Klumpp B. 1953. Beitrag zur Kenntnis der Mikrofossilien des mittleren und oberen Eozän.
4393	Palaeontographica Abteilung A 103:377–406.
4394	
4395	Lentin JK, Williams GL. 1973. Fossil dinoflagellates: index to genera and species. Geological
4396	Survey of Canada Paper No. 73–42, 176 p.
4397	
4398	Lentin JK, Williams GL. 1975. Fossil dinoflagellates: index to genera and species. Supplement
4399	1. Canadian Journal of Botany 53:2147–2157.
4400	
4401	Lentin JK, Williams GL. 1976. A monograph of fossil peridinioid dinoflagellate cysts. Bedford
4402	Institute of Oceanography Report Series No. BI-R-75-16, 237 p. (cover date 1975, issue date
4403	1976).
4404	
4405	Lentin JK, Williams GL. 1981. Fossil dinoflagellates: index to genera and species, 1981 edition.
4406	Bedford Institute of Oceanography Report Series No. BI-R-81-12, 345 p.
4407	
4408	Lentin JK, Williams GL. 1985. Fossil dinoflagellates: index to genera and species, 1985 edition.
4409	Canadian Technical Report of Hydrography and Ocean Sciences No. 60, 451 p.

4411	Lentin JK, Williams GL. 1989. Fossil dinoflagellates: index to genera and species, 1989 edition.
4412	American Association of Stratigraphic Palynologists Contributions Series No. 20, 473 p.
4413	
4414	Lentin JK, Williams GL. 1993. Fossil dinoflagellates: index to genera and species, 1993 edition.
4415	American Association of Stratigraphic Palynologists Contributions Series No. 28, 856 p.
4416	
4417	Lindemann E. 1928. Abteilung Peridineae (Dinoflagellatae). In: Engler A, Prantl K editors. Die
4418	Natürlichen Pflanzenfamilien nebst ihren Gattungen und wichtigeren Arten insbesondere den
4419	Nutzpflanzen. Zweite stark vermehrte und verbesserte Auflage herausgegeben von A. Engler. 2
4420	Band. Leipzig, Wilhelm Engelmann, 3–104.
4421	
4422	Lister JK, Batten DJ. 1988. Stratigraphic and palaeoenvironmental distribution of Early
4423	Cretaceous dinoflagellate cysts in the Hurlands Farm Borehole, West Sussex, England.
4424	Palaeontographica Abteilung B 210:9–89.
4425	
4426	Louwye S. 1997. New dinoflagellate cyst species from the Upper Cretaceous subsurface deposits
4427	of western Belgium. Annales de la Société géologique de Belgique 118:147-159 (cover date
4428	1995, issue date 1997).
4429	
4430	Lund JJ. 2002. A Lower Oligocene Norwegian Sea dinoflagellate cyst found in the North Sea
4431	and in the Rupelian type area in Belgium. In: North European Cenozoic Stratigraphy;
4432	Proceedings of the 8th Biannual Meeting of the Regional Committee on Northern Neogene
4433	Stratigraphy/Regional Committee on Northern Paleogene Stratigraphy, Flintbek, Germany, 83-
4434	89.
4435	
4436	Mantell GA. 1850. A Pictorial Atlas of Fossil Remains Consisting of Coloured Illustrations
4437	Selected from Parkinson's "Organic Remains of a Former World", and Artis's "Antediluvian
4438	Phytology". Henry G. Bohn, London, U.K, 207 p.
4439	

4440	Mao Shaozhi, Norris G. 1988. Late Cretaceous — early Tertiary dinoflagellates and acritarchs
4441	from the Kashi area, Tarim Basin, Xinjiang Province, China. Royal Ontario Museum Life
4442	Sciences Division Contributions No. 150, 93 p.
4443	
4444	Marheinecke U. 1992. Monographie der Dinozysten, Acritarcha und Chlorophyta des
4445	Maastrichtium von Hemmoor (Niedersachsen). Palaeontographica Abteilung B 227:1-173.
4446	
4447	Marshall NG. 1990a. Campanian dinoflagellates from southeastern Australia. Alcheringa 14:1–
4448	38.
4449	
4450	Marshall NG. 1990b. The dinoflagellate Canninginopsis Cookson and Eisenack 1962 from the
4451	Cretaceous of the Perth and Gippsland Basins, Australia. Alcheringa 14:77-87.
4452	
4453	Masure E. 1985. Les kystes de dinoflagellés de l'autoroute A10. Cretaceous Research 6:199-206.
4454	
4455	Masure E, Vrielynck B. 2009. Late Albian dinoflagellate cyst paleobiology as indicator of
4456	asymmetric sea surface temperature gradient on both hemispheres with southern high latitudes
4457	warmer than northern ones. Marine Micropaleontology 70:120-133.
4458	
4459	Masure E, Aumar A-M, Vrielynck B. 2013. Worldwide palaeogeography of Aptian and late
4460	Albian dinoflagellate cysts: implications for sea-surface temperature gradients and
4461	palaeoclimate. In: Lewis JM, Marret F, Bradley L editors. Biological and geological perspectives
4462	of dinoflagellates. The Micropaleontological Society Special Publications. Geological Society,
4463	London, 97–125.
4464	
4465	McLean JR. 1971. Stratigraphy of the Upper Judith River Formation in the Canadian Great
4466	Plains. Report of the Saskatchewan Research Council Geological Division No. 11, 96 p.
4467	
4468	Mehrotra NC, Sarjeant WAS. 1984. Dingodinium, a dinoflagellate cyst genus exhibiting
4469	variation in archeopyle character. Micropaleontology 30:292–305.

4471	Mehrotra NC, Sarjeant WAS. 1986. Early to middle Cretaceous dinoflagellate cysts from the
4472	Periyavadavadi Shallow Well-1, Cauvery Basin, India. Geobios 19:705–753.
4473	
4474	Mehrotra NC, Sarjeant WAS. 1987. Late Cretaceous to early Tertiary dinoflagellate cysts from
4475	Narasapur Well-1, Godavari-Krishna Basin, south India. Geobios 20:149–191.
4476	
4477	Michael E. 1964. Mikroplankton und Sporomorphe aus dem nordwestdeutschen Barrême.
4478	Hannover Technische Universität Mitteilungen Geologisches Institut 2:22-48.
4479	
4480	Millioud ME. 1969. Dinoflagellates and acritarchs from some western European Lower
4481	Cretaceous type localities. In: Brönnimann P, Renz HH editors. 1st International Conference on
4482	Planktonic Microfossils, Geneva, 1967, Proceedings 2:420-434. E.J. Brill, Leiden, The
4483	Netherlands.
4484	
4485	Monteil E. 1990. Interêt des dinokystes dans le Crétacé inférieur: morphologie, systématique,
4486	bio- et paléoécologie. Unpublished PhD thesis, University of Geneva, Switzerland, 224 p.
4487	
4488	Morgan R. 1980. Palynostratigraphy of the Australian Early and middle Cretaceous. Geological
4489	Survey of New South Wales Palaeontology Memoir No. 18, 153 p.
4490	
4491	Morgenroth P. 1966. Mikrofossilien und Konkretionen des nordwesteuropäischen Untereozäns.
4492	Palaeontographica Abteilung B 119:1–53.
4493	
4494	Neale JW, Sarjeant WAS. 1962. Microplankton from the Speeton Clay of Yorkshire. Geological
4495	Magazine 99:439–458.
4496	
4497	Nøhr-Hansen H. 1993. Dinoflagellate cyst stratigraphy of the Barremian to Albian, Lower
4498	Cretaceous, north-east Greenland. Grønlands Geologiske Undersøgelse Bulletin No. 166, 171 p.
4499	

Nøhr-Hansen H, Williams GL, Fensome RA. 2017. Biostratigraphic correlation of the western 4500 and eastern margins of the Labrador-Baffin Seaway and implications for the regional geology. 4501 Geological Survey of Greenland and Denmark Bulletin No. 37, 74 p. 4502 4503 Norris G. 1978. Phylogeny and a revised supra-generic classification for Triassic–Quaternary 4504 organic-walled dinoflagellate cysts (Pyrrhophyta). Part I. Cyst terminology and assessment of 4505 4506 previous classifications. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 155:300-317. 4507 4508 4509 Norvick MS. 1976. Mid-Cretaceous microplankton from Bathurst Island. In: Norvick MS, Burger D. Palynology of the Cenomanian of Bathurst Island, Northern Territory, Australia; 4510 4511 Bureau of Mineral Resources, Geology and Geophysics Bulletin 151:21–113. 4512 Pascher A. 1914. Über Flagellaten und Algen. Deutsche Botanische Gesellschaft Berichte 4513 4514 32:136-160. 4515 Pearce MA, Jarvis I, Swan ARH, Murphy AM, Tocher BA, Edmunds M. 2003. Integrating 4516 palynological and geochemical data in a new approach to palaeoecological studies: Upper 4517 Cretaceous of Banterwick Barn Chalk borehole, Berkshire, UK. Marine Micropalaeontology 4518 4519 47:271-306. 4520 Pearce MA, Lignum JS, Jarvis I. 2011. Senoniasphaera turonica (Prössl, 1990 ex Prössl, 1992) 4521 4522 comb. nov., senior synonym of Senoniasphaera rotundata alveolata Pearce et al., 2003: an important dinocyst marker for the Lower Turonian chalk of NW Europe. Journal of 4523 Micropalaeontology 30:91–93. 4524 4525 Pocock SAJ. 1962. Microfloral analysis and age determination of strata at the Jurassic-4526 Cretaceous boundary in the western Canada plains. Palaeontographica Abteilung B 111:1-95. 4527 4528 Pocock SAJ. 1972. Palynology of the Jurassic sediments of western Canada. Part 2. Marine 4529

- 4530 species. Palaeontographica Abteilung B 137:85–153.
- 4531
- 4532 Pöthe de Baldis ED, Ramos V. 1983. Dinoflagelados del Aptiano inferior de Río Fósiles, Lago
- 4533 San Martin, Provincia de Santa Cruz, Argentina. Revista española de micropaleontología
- 4534 15:427–446.
- 4535
- 4536 Poulsen NE, Riding JB. 1992. A revision of the Late Jurassic dinoflagellate cysts
- 4537 Ambonosphaera? staffinensis (Gitmez 1970) comb. nov. and Senoniasphaera jurassica (Gitmez
- 4538 and Sarjeant 1972) Lentin and Williams, 1976. Palynology 16:25–34.
- 4539
- 4540 Powell AJ. 1992. Dinoflagellate cysts of the Tertiary System. In: Powell AJ editor. A
- 4541 stratigraphic index of dinoflagellate cysts. British Micropaleontological Society Publication
- 4542 Series. Chapman and Hall Limited, London, U.K., 155–229.
- 4543
- 4544 Prince IM, Jarvis I, Tocher BA. 1999. High-resolution dinoflagellate cyst biostratigraphy of the
- 4545 Santonian-basal Campanian (Upper Cretaceous): new data from Whitecliff, Isle of Wight,
- England. Review of Palaeobotany and Palynology 105:143–169.
- 4547
- 4548 Prince IM, Jarvis I, Pearce MA, Tocher BA. 2008. Dinoflagellate cyst biostratigraphy of the
- 4549 Coniacian-Santonian (Upper Cretaceous): new data from the English Chalk. Review of
- 4550 Palaeobotany and Palynology 150:59–96.
- 4551
- 4552 Pross J. 2001. Paleo-oxygenation in Tertiary epeiric seas: evidence from dinoflagellate cysts.
 4553 Palaeogeography, Palaeoclimatology, Palaeoecology 166:369–381.
- 4554
- 4555 Prössl KF. 1990. Dinoflagellaten der Kreide Unter-Hauterive bis Ober-Turon im
- 4556 niedersächsischen Becken. Stratigraphie und Fazies in der Kernbohrung Konrad 101 sowie
- 4557 einiger anderer Bohrungen in Nordwestdeutschland. Palaeontographica Abteilung B 218:93–191.
- 4558
- 4559 Prössl KF. 1992. Eine Dinoflagellatenpopulation aus dem Eozän von Garoe (Somalia, Ost-

4560 Afrika). Giessener Geologische Schriften No. 48:101–123.

4561

Ouattrocchio ME, Sarjeant WAS. 1992. Dinoflagellate cysts and acritarchs from the Middle and 4562 4563 Upper Jurassic of the Neuquén Basin, Argentina. Revista española de micropaleontología 24:67-118. 4564 4565 Reid PC. 1977. Peridiniacean and glenodiniacean dinoflagellate cysts from the British Isles. 4566 Nova Hedwigia 29:429-463. 4567 4568 Riding JB, Helby R. 2001. Marine microplankton from the Late Jurassic (Tithonian) of the 4569 north-west Australian region. Memoir of the Association of Australasian Palaeontologists No. 4570 4571 24:177-220. 4572 Riding JB, Thomas JE. 1992. Dinoflagellate cysts of the Jurassic System. In: Powell AJ editor. A 4573 4574 stratigraphic index of dinoflagellate cysts. British Micropaleontological Society Publication Series. Chapman and Hall Limited, London, U.K., 7-97. 4575 4576 Sangiorgi F, Brinkhuis H, Damassa SP. 2009. Arcticacysta: a new organic-walled dinoflagellate 4577 cyst genus from the Early Miocene? of the central Arctic Ocean. Micropaleontology 55:249–258. 4578 4579 Sarjeant WAS. 1966. Further dinoflagellate cysts from the Speeton Clay. In: Davey RJ, Downie 4580 C, Sarjeant WAS, Williams GL. Studies on Mesozoic and Cainozoic dinoflagellate cysts. British 4581 4582 Museum (Natural History) Geology Bulletin Supplement 3:199-214. 4583 Sarjeant WAS. 1968. Microplankton from the Upper Callovian and Lower Oxfordian of 4584 Normandy. Revue de micropaléontologie 10:221-242. 4585 4586 Sarjeant WAS. 1970. The genus Spiniferites Mantell, 1850 (Dinophyceae). Grana 10:74-78. 4587 4588 Sarjeant WAS. 1985. The German Aptian dinoflagellate cysts of Eisenack (1958): a restudy. 4589

4590	Review	of Palaeo	botany	and Paly	ynology	45:47–106.
			-			

- 4591
- 4592 Sarjeant WAS. 1992. *Tenua* Eisenack and *Cerbia* Below: Cretaceous dinoflagellate synonyms.
- 4593 Neues Jahrbuch für Geologie und Paläontologie Monatshefte 1992:675–682.
- 4594
- 4595 Sarjeant WAS, Stover LE. 1978. *Cyclonephelium* and *Tenua*: a problem in dinoflagellate cyst
 4596 taxonomy. Grana 17:47–54.
- 4597
- 4598 Schröder-Adams CJ, Herrle JO, Embry AF, Haggart JW, Galloway JM, Pugh AT, Harwood DM.
- 4599 2014. Aptian to Santonian foraminiferal biostratigraphy and paleoenvironmental change in the
- 4600 Sverdrup Basin as revealed at Glacier Fiord, Axel Heiberg Island, Canadian Arctic Archipelago.
- 4601 Palaeogeography, Palaeoclimatology, Palaeoecology 413:81–100.
- 4602
- 4603 Singh C. 1971. Lower Cretaceous microfloras of the Peace River area, northwestern Alberta.
- 4604 Research Council of Alberta Bulletin No. 28:301–542.
- 4605
- Singh HP, Khanna AK, Sah SCD. 1979. Palynological zonation of the Subathu Formation in the
 Kalka-Simla area of Himachal Pradesh. Himalayan Geology 8:33–46.
- 4608
- 4609 Slimani H. 1994. Les dinokystes des craies du Campanien au Danien à Halembaye, Turnhout
- 4610 (Belgique) et à Beutenaken (Pays-Bas). Mémoires pour servir à l'explication des cartes
- 4611 géologiques et minières de la Belgique No. 37, 173 p.
- 4612
- 4613 Smith GA, Harding IC. 2004. New dinoflagellate cyst species from Upper Jurassic to Lower
- 4614 Cretaceous sediments of the Volgian tectostratotype sections at Gorodische and Kashpir, Volga
- 4615 Basin, Russia. Review of Palaeobotany and Palynology 128:355–379.
- 4616
- 4617 Smith SW. 1992. Microplankton from the Cape Lamb Member, López de Bertodano Formation
 4618 (Upper Cretaceous), Cape Lamb, Vega Island. Antarctic Science 4:337–353.
- 4619

- 4620 Song Zhichen, Guan Xueting, Li Zengrui, Zheng Yahui, Wang Weiming, Hu Zhongheng. 1985.
- 4621 A research on Cenozoic palynology of the Longjing structural area in the Shelf Basin of the East
- 4622 China Sea (Donghai) region. Cenozoic-Mesozoic Palaeontology and Stratigraphy of East China
- 4623 Series 1, 209 p. Anhui Science and Technology Publishing House, China. (in Chinese with an
- 4624 English summary).
- 4625
- 4626 Stover LE. 1974. Palaeocene and Eocene species of *Deflandrea* (Dinophyceae) in Victorian
 4627 coastal and offshore basins, Australia. Geological Society of Australia Special Publication No.
 4628 4:167–188 (cover date 1973, issue date 1974).
- 4629
- 4630 Stover LE, Evitt WR. 1978. Analyses of pre-Pleistocene organic-walled dinoflagellates. Stanford
 4631 University Publications Geological Sciences No. 15, 300 p.
- 4632
- 4633 Stover LE, Helby R. 1987a. Early Cretaceous dinoflagellates from the Vinck-1 well, offshore
 4634 Western Australia. Memoir of the Association of Australasian Palaeontologists 4:227–260.
- 4635
- 4636 Stover LE, Helby R. 1987b. Some Early Cretaceous dinoflagellates from the Houtman-1 well,
- Western Australia. Memoir of the Association of Australasian Palaeontologists 4:261–295.
- 4639 Stover LE, Williams GL. 1987. Analyses of Mesozoic and Cenozoic organic-walled
- dinoflagellates 1977–1985. American Association of Stratigraphic Palynologists Contributions
 Series No. 18, 243 p.
- 4642
- 4643 Stover LE, Brinkhuis H, Damassa SP, de Verteuil L, Helby RJ, Monteil E, Partridge AD, Powell
- 4644 AJ, Riding JB, Smelror M, Williams GL. 1996. Mesozoic–Tertiary dinoflagellates, acritarchs
- and prasinophytes. In: Jansonious J, McGregor DC (editors). Palynology: Principles and
- 4646 Applications 2:641–750. American Association of Stratigraphic Palynologists Foundation,
- 4647 Dallas, U.S.A.

4649 Taylor FJR. 1980. On dinoflagellate evolution. BioSystems 13:65–108.

Turland NJ, Wiersema JH, Barrie FR, Greuter W, Hawksworth DL, Herendeen PS, Knapp S, 4651 Kusber W-H, Li D-Z, Marhold K, May TW, McNeill J, Monro AM, Prado J, Price MJ, Smith 4652 4653 GF (editors). 2018. International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017. 4654 Regnum Vegetabile 159. Koeltz Botanical Books, Glashütten, Germany 4655 4656 https://doi.org/10.12705/Code.2018. 4657 Vozzhennikova TF. 1961. K voprosu o sistematike iskopayemykh Peridiney. Akademiya Nauk 4658 SSSR (Doklady Earth Science Sections) 139:1461–1462 (published English translation dated 4659 1963 in Doklady of the Academy of Sciences of the U.S.S.R., Earth Science Sections issued by 4660 4661 the American Geological Institute 139:852–853.) 4662 Wall D. 1967. Fossil microplankton in deep-sea cores from the Caribbean Sea. Palaeontology 4663 4664 10:95-123. 4665 Wetzel O. 1933. Die in organischer Substanz erhaltenen Mikrofossilien des baltischen Kreide-4666 Feuersteins mit einem sediment-petrographischen und stratigraphischen Anhang. 4667 Palaeontographica Abteilung A 78:1-110. 4668 4669 Willey A, Hickson SJ. 1909. The Protozoa (continued). Section F- the Mastigophora. In: 4670 Lankester R. editor. A Treatise on Zoology. Part 1. Introduction and Protozoa. First Fascicle. 4671 4672 London, Adam and Charles Black, 154–192 (reprinted by A. Asher, Amsterdam, 1964.) 4673 Williams GL, Downie C. 1966. Further dinoflagellate cysts from the London Clay. In: Davey RJ, 4674 Downie C, Sarjeant WAS, Williams GL. Studies on Mesozoic and Cainozoic dinoflagellate 4675 cysts. British Museum (Natural History) Geology Bulletin Supplement 3:215-236. 4676 4677 Williams GL, Lentin JK, Fensome RA. 1998. The Lentin and Williams Index of fossil 4678 dinoflagellates 1998 edition. American Association of Stratigraphic Palynologists Contributions 4679

4680	Series No.	34,	817	p.
------	------------	-----	-----	----

4682	Williams GL, Brinkhuis H, Pearce MA, Fensome RA, Weegink JW. 2004. Southern Ocean and
4683	global dinoflagellate cyst events compared: index events for the Late Cretaceous-Neogene.
4684	Proceedings of the Ocean Drilling Program Scientific Results 189:1–98.
4685	
4686	Williams GL, Damassa SP, Fensome RA, Guerstein GR. 2015. Wetzeliella and its allies - the
4687	'hole' story; a taxonomic revision of the Paleogene subfamily Wetzelielloideae. Palynology
4688	39:289–344 (published online 2015, hard copy 2016).
4689	
4690	Williams GL, Fensome RA, MacRae RA. 2017. The Lentin and Williams index of fossil
4691	dinoflagellates 2017 edition. American Association of Stratigraphic Palynologists Contributions
4692	Series No. 48, 1097 p.
4693	
4694	Willumsen PS. 2012. Three new species of dinoflagellate cyst from Cretaceous-Paleogene (K-
4695	Pg) boundary sections at mid-Waipara River and Fairfield Quarry, South Island, New Zealand.
4696	Palynology 36:48–62.
4697	
4698	Wilson GJ. 1988. Paleocene and Eocene dinoflagellate cysts from Waipawa, Hawkes Bay, New
4699	Zealand. New Zealand Geological Survey Paleontological Bulletin No. 57, 96 p.
4700	
4701	Woollam R, Riding JB. 1983. Dinoflagellate cyst zonation of the English Jurassic. Institute of
4702	Geological Sciences Report No. 83/2, 42 p.
4703	
4704	Wood SEL, Riding JB, Fensome RA, Williams GL. 2016. A review of the Sentusidinium
4705	complex of dinoflagellate cysts. Review of Palaeobotany and Palynology 234:61-93.
4706	
4707	Yu Jingxian. 1982. Late Jurassic to Early Cretaceous dinoflagellate assemblages of eastern
4708	Heilongjiang Province, China. Chinese Academy of Geological Sciences, Shenyang Institute of
4709	Geology and Mineral Resources Bulletin No. 5:227–267 (in Chinese with an English abstract).

4710		
4711	Yu Jingxian, 2	Zhang Wangping. 1980. Upper Cretaceous dinoflagellate cysts and acritarchs of
4712	western Xinji	ang. Chinese Academy of Geological Sciences Bulletin Series 1, No. 2:93–119 (in
4713	Chinese with	an English abstract).
4714		
4715	Yun Hyesu. 1	981. Dinoflagellaten aus der Oberkreide (Santon) von Westfalen.
4716	Palaeontograp	phica Abteilung B 177:1–89.
4717		
4718		
4719	Appendix 1	
4720		
4721	Significant m	ilestones in the conceptual evolution of the Cyclonephelium group of
4722	areoligeracea	ns and Pseudoceratium. The name Tenua refers to Tenua Eisenack 1958, not Tenua
4723	Davey 1978,	unless otherwise specified.
4724		
4725	1955	Deflandre & Cookson (1955) erected the genus Cyclonephelium, with
4726		Cyclonephelium compactum as type, with the genus also including
4727		Cyclonephelium distinctum.
4728	1957	Gocht (1957) erected the genus Pseudoceratium, with Pseudoceratium pelliferum
4729		as type.
4730	1958	Eisenack (1958a) erected the genus Tenua, with Tenua hystrix as type. In the
4731		same publication, Eisenack (1958a) erected Aptea, with Aptea polymorpha as
4732		type.
4733	1960	Cookson & Eisenack (1960b) erected the genus Canningia, with Canningia
4734		reticulata as type.
4735	1961	Alberti (1961) erected Circulodinium, with Circulodinium hirtellum as type.
4736	1961/1963	Evitt (1961c, 1963a, 1963b) recognised the nature of archaeopyles, allowing the
4737		assignment of forms now attributed to the Areoligeraceae as dinoflagellate cysts.
4738	1962	Cookson & Eisenack (1962b) erected Canninginopsis, with Canninginopsis
4739		denticulata as type.

4740	1964	Eisenack (1964) considered <i>Circulodinium</i> to be a taxonomic junior synonym of
4741		Canningia.
4742	1966	Sarjeant (1966c) erected Doidyx, with Doidyx anaphrissa as type.
4743		Williams & Downie (1966c) emended Cyclonephelium to include chorate species.
4744	1967	Drugg (1967) erected Cassidium, with Cassidium fragilis as type.
4745		Clarke & Verdier (1967) erected the genus Senoniasphaera, with Senoniasphaera
4746		protrusa as type.
4747	1968	Sarjeant (1968) emended Tenua to include some forms now considered to belong
4748		to the non-areoligeracean genus Sentusidinium.
4749	1972	Pocock (1972) emended Tenua, recognising for the first time the offset parasulcal
4750		notch.
4751	1974	Norvick & Burger (1974) presented an overview of Cyclonephelium, but made no
4752		taxonomic proposals.
4753	1977	Ioannides et al. (1977) emended Cyclonephelium to "clarify the types of cysts
4754		accommodated in the genus."
4755	1978	Sarjeant & Stover (1978) considered <i>Doidyx</i> to be a taxonomic junior synonym of
4756		Aptea. They also considered Tenua to be a taxonomic junior synonym of
4757		Cyclonephelium, and erected the genus Sentusidinium to accommodate non-
4758		areoligeracean species previously assigned to Tenua.
4759		Stover & Evitt (1978) emended Cyclonephelium and removed chorate species
4760		from it, assigning them to their new genus Glaphyrocysta. They accepted Tenua
4761		as a taxonomic junior synonym of <i>Cyclonephelium</i> .
4762		Davey (1978) proposed illegitimately to change the type of Tenua, inadvertently
4763		creating the homonym Tenua Davey. Tenua Davey is a taxonomic junior
4764		synonym of Sentusidinium (as well as an illegitimate junior homonym of Tenua
4765		Eisenack. Davey (1978) also effectively considered Circulodinium and Tenua
4766		Eisenack to be taxonomic junior synonyms of Cyclonephelium.
4767	1980	Dörhöfer & Davies (1980) emended Cyclonephelium, restricting it to forms with
4768		and "apteate" ornament. They accepted Tenua as a taxonomic junior synonym of
4769		Cyclonephelium. They also emended Aptea, Canningia and Pseudoceratium to

4770		accord with a re-interpretation of paratabulation no longer accepted.
4771	1981	Below (1981a) erected Cerbia for forms similar to Canninginopsis but with
4772		penitabular rather than parasutural ornament. He also emended Canningia,
4773		considering that is differed from Senoniasphaera in being holocavate rather than
4774		cavate.
4775	1985	Sarjeant (1985a) considered Cerbia to be a taxonomic junior synonym of Tenua.
4776	1986	Bint (1986) considered <i>Doidyx</i> and <i>Aptea</i> to be taxonomic junior synonyms of
4777		Pseudoceratium, which he also emended.
4778		In a restudy of material described by Pocock (1962, 1972), Jansonius (1986)
4779		resurrected Circulodinium for areoligeraceans with short, free-standing elements.
4780	1987	Helby (1987) independently retained Circulodinium with a similar concept to that
4781		of Jansonius (1986). He retained Aptea and Pseudoceratium separately but
4782		suggested that this separation would be difficult to maintain. He also emended
4783		Canningia, re-emphasising that it is holocavate rather than cavate, like
4784		Senoniasphaera.
4785		Stover & Williams (1987) retained Cerbia separately from Tenua.
4786	1988	Backhouse (1988) suggested that Circulodinium may be a taxonomic junior
4787		synonym of <i>Tenua</i> , but did not make a formal proposal to that effect.
4788	1992	Sarjeant (1992b) re-instated the synonymy of Cerbia with Tenua.
4789		Quattrocchio & Sarjeant (1992) retained Aptea separately from Pseudoceratium.
4790	2002	Duxbury (2002) retained Cerbia as a separate genus.
4791		
4792		
4793	Appendix 2	
4794		
4795	The current s	status of taxa of Aptea, Canningia, Canninginopsis, Cassidium, Cerbia,
4796	Circulodiniu	m, Cyclonephelium, Pseudoceratium, Senoniasphaera and Tenua considered
4797	"correct" in	Williams et al. (2017). TJS = taxonomic junior synonym. An asterisk denotes the
4798	type of the g	enus.
4799		

4800	APTEA Eisenack 1958 emend. nov.
4801	Aptea notialis Quattrocchio & Sarjeant 1992
4802	Now Pseudoceratium notialis
4803	*Aptea polymorpha Eisenack 1958
4804	Still Aptea polymorpha
4805	
4806	CANNINGIA Cookson & Eisenack 1960
4807	Canningia apiculata Jain & Garg in Jain et al. 1984
4808	Now Tenua? apiculata
4809	Canningia bassensis Marshall 1990a
4810	TJS of Canningia transitoria
4811	Canningia duxburyi Harding 1990
4812	Still Canningia duxburyi
4813	Canningia fairfieldensis Willumsen 2012
4814	Still Canningia fairfieldensis
4815	Canningia grandis Helby 1987
4816	Still Canningia grandis
4817	Canningia? granulata Morgenroth 1966
4818	Now Petalodinium? granulatum
4819	Canningia hulinensis He Chengquan et al. 1999
4820	Now Canningia? hulinensis
4821	Canningia keiemensis Louwye 1997
4822	Still Canningia keiemensis
4823	Canningia macroreticulata Lebedeva in Ilyina et al. 1994
4824	Still Canningia macroreticulata
4825	Canningia? microciliata Jain 1977
4826	Now Senoniasphaera microciliata
4827	Canningia pistica Helby 1987
4828	Still Canningia pistica
4829	*Canningia reticulata Cookson & Eisenack 1960

4830	Still Canningia reticulata
4831	Canningia retirugosa He Chengquan (al. Kallosphaeridium retirugosum)
4832	Now Aptea? retirugosa
4833	Canningia? rotundata Cookson & Eisenack 1961
4834	Now Aptea rotundata
4835	Canningia rugulosa (Clarke & Verdier 1967) Stover & Evitt 1978
4836	Still Canningia rugulosa
4837	Canningia scabrosa Cookson & Eisenack 1970
4838	Now Tenua scabrosa
4839	Canningia senonica Clarke & Verdier 1967
4840	Still Canningia senonica
4841	Canningia spongireticulata Prössl 1990
4842	Now Aptea? spongireticulata
4843	Canningia torulosa Davey & Verdier 1973
4844	Now Sindridinium torulosum (see Nøhr-Hansen et al. 2017)
4845	Canningia transitoria Stover & Helby 1987b
4846	Still Canningia transitoria
4847	Canningia? turrita Brideaux 1977
4848	Now Epelidosphaeridia? turrita
4849	Canningia xinjiangensis Chen et al. 1988
4850	TJS of Canningia reticulata
4851	
4852	CANNINGINOPSIS Cookson & Eisenack 1962
4853	Canninginopsis bretonica Marshall 1990b
4854	Still Canninginopsis bretonica
4855	*Canninginopsis denticulata Cookson & Eisenack 1962
4856	Still Canninginopsis denticulata
4857	Canninginopsis intermedia Morgan 1980
4858	Now Cerbia intermedia
4859	Canninginopsis maastrichtiensis Slimani 1994

4860	Still Canninginopsis maastrichtiensis
4861	Canninginopsis ordospinosa Smith 1992
4862	Now Cerbia ordospinosa
4863	
4864	CASSIDIUM Drugg 1967 (TJS of Aptea)
4865	Cassidium filosum Wilson 1988
4866	Now Canningia? filosa
4867	*Cassidium fragile (Harris 1965) Drugg 1967
4868	Now Aptea fragilis
4869	
4870	CAUVERIDINIUM Khowaja-Ateequzzaman & Jain 1990 (TJS of Cyclonephelium)
4871	Cauveridinium indicum
4872	Now Cyclonephelium indicum
4873	Cauveridinium intermedium
4874	TJS of Cyclonephelium indicum
4875	Cauveridinium longispinosum
4876	TJS of Cyclonephelium indicum
4877	Cauveridinium membraniphorum
4878	Now Cyclonephelium membraniphorum
4879	
4880	CERBIA Below 1981
4881	Cerbia magna Duxbury 2001
4882	Now Tenua magna
4883	Cerbia monile Duxbury 2002
4884	Now Canninginopsis monile
4885	*Cerbia tabulata (Davey & Verdier 1974) Below 1981
4886	Still Cerbia tabulata
4887	
4888	CIRCULODINIUM Alberti 1961 emend. nov.
4889	Circulodinium? araneosum (Brideaux 1977) Fauconnier in Fauconnier & Masure 2004

4890	Now Tenua? araneosa
4891	Circulodinium asperum (Singh 1971) Helby 1987
4892	TJS of <i>Tenua scabrosa</i>
4893	Circulodinium asymmetricum (Burger 1980) He Chengquan & Sun Xuekun 2000
4894	Now Tenua? asymmetrica
4895	Circulodinium attadalicum (Cookson & Eisenack 1962) Helby 1987
4896	Now Tenua? attadalica
4897	Circulodinium barbiferum (Cookson & Eisenack 1982) Fauconnier in Fauconnier &
4898	Masure 2004
4899	Now Cyclonephelium? barbiferum
4900	Circulodinium brevispinatum (Millioud 1969) Fauconnier in Fauconnier & Masure 2004
4901	TJS of Tenua hystrix
4902	Circulodinium brevispinosum (Pocock 1962) Jansonius 1986
4903	TJS of Tenua hystrix
4904	Circulodinium chinense (He Chengquan 1991) He Chengquan et al. 2009
4905	Now Tenua chinensis
4906	Circulodinium cingulatum He Chengquan et al. 1999
4907	TJS of Tenua scabrosa
4908	Circulodinium colliveri (Cookson & Eisenack 1960) Helby 1987
4909	Now Tenua colliveri
4910	Circulodinium comptum (Davey 1982) Helby 1987
4911	Now Tenua compta
4912	Circulodinium copei Bailey et al. 1997
4913	Now Tenua copei
4914	Circulodinium deflandrei Alberti 1961
4915	TJS of Circulodinium distinctum
4916	Circulodinium densebarbatum (Cookson & Eisenack 1960) Fauconnier in Fauconnier & Masure
4917	2004
4918	Now Tenua densebarbata

Circulodinium distinctum (Deflandre & Cookson 1955) Jansonius 1986

4920	Still Circulodinium distinctum
4921	Circulodinium distinctum subsp. distinctum
4922	Now redundant
4923	Circulodinium distinctum subsp. laevigatum (Mehrotra & Sarjeant 1986) Lentin & Williams
4924	1989
4925	TJS of Circulodinium distinctum
4926	Circulodinium distinctum subsp. psilatum (Yu Jingxian & Zhang Wangping 1980) Lentin &
4927	Williams 1989
4928	TJS of Tenua kukebaiensis
4929	Circulodinium elongatum (He Chengquan 1991) He Chengquan et al. 2009
4930	Now Tenua? elongata
4931	*Circulodinium hirtellum Alberti 1961
4932	TJS of Circulodinium distinctum
4933	Circulodinium? indicum Mehrotra & Sarjeant 1987 ex Lentin & Williams 1989
4934	TJS Cleistosphaeridium diversispinosum
4935	Circulodinium insigne (He Chengquan 1991) He Chengquan et al. 2009
4936	TJS of Tenua hystrix
4937	Circulodinium kukebaiense (Mao Shaozhi & Norris 1988) He Chengquan et al. 2009
4938	Now Tenua kukebaiensis
4939	Circulodinium latoaculeum (Yun Hyesu 1981) Prince et al. 1999
4940	Now Cleistosphaeridium latoaculeum
4941	Circulodinium? micibaculatum (Jiabo 1978) He Chengquan et al. 2009
4942	Now Tenua? micibaculata
4943	Circulodinium paucispinum (Davey 1969) Fauconnier in Fauconnier & Masure 2004
4944	TJS of Circulodinium distinctum
4945	Circulodinium pentagonum (He Chengquan 1991) He Chengquan et al. 2009
4946	Now Tenua? pentagona
4947	Circulodinium vermiculatum Stover & Helby 1987a
4948	TJS of Aptea rotundata

Circulodinium wulagenense (He Chengquan 1991) He Chengquan et al. 2009

4950	Now Circulodinium? wulagenensis
4951	
4952	CYCLONEPHELIUM Deflandre & Cookson 1955 emend. nov.
4953	Cyclonephelium? ambiguum He Chengquan 1991
4954	Now Spiniferites? ambiguus
4955	Cyclonephelium areolatum Cookson & Eisenack 1960
4956	TJS of Canningia reticulata
4957	Cyclonephelium? baculatum Song Zhichen in Song Zhichen et al. 1985
4958	Now Selenopemphix? baculatum
4959	Cyclonephelium? bulbosum Smith & Harding 2004
4960	Now Bataiacasphaera? bulbosa
4961	Cyclonephelium chabaca Below 1981
4962	TJS of Canningia reticulata
4963	Cyclonephelium circulatum He Chengquan 1991
4964	Now Circulodinium circulatum
4965	Cyclonephelium clathromarginatum Cookson & Eisenack 1962
4966	Now Canningia? clathromarginata
4967	Cyclonephelium combibaculum Song Zhichen in Song Zhichen et al. 1985
4968	Now Polysphaeridium? combibaculum
4969	*Cyclonephelium compactum Deflandre & Cookson 1955
4970	Still Cyclonephelium compactum
4971	Cyclonephelium crassimarginatum Cookson & Eisenack 1974
4972	Now Canningia crassimarginata
4973	Cyclonephelium deconinckii Boltenhagen 1977
4974	Still Cyclonephelium deconinckii
4975	Cyclonephelium? dubium (Jain & Millepied 1975) Sarjeant & Stover 1978
4976	Now Tenua dubia
4977	Cyclonephelium filoreticulatum (Slimani 1994) Prince et al. 1999
4978	Now Senoniasphaera filoreticulata

Cyclonephelium formosum (Iosifova 1992) Fauconnier in Fauconnier & Masure 2004

4980	TJS of Circulodinium distinctum
4981	Cyclonephelium? granulatum (Horowitz 1975) Stover & Evitt 1978
4982	Now Trichodinium? granulatum
4983	Cyclonephelium? hexalobosum (Cookson & Eisenack 1974) Stover & Evitt 1978
4984	Now Cerbia? hexalobosa
4985	Cyclonephelium hughesii Clarke & Verdier 1967
4986	Now Circulodinium? hughesii
4987	Cyclonephelium inconspicuum Duxbury 1983
4988	Now Canningia inconspicua
4989	Cyclonephelium intonsum Duxbury 1983
4990	Still Cyclonephelium intonsum
4991	Cyclonephelium longispinatum (Davey 1978) Fauconnier in Fauconnier & Masure 2004
4992	TJS of Tenua anaphrissa
4993	Cyclonephelium longispinosum He Chengquan 1991
4994	Now Cleistosphaeridium? longispinosum
4995	Cyclonephelium maugaad Below 1981
4996	Still Cyclonephelium maugaad
4997	Cyclonephelium? operculatum Yu Jingxian 1982
4998	Still Cyclonephelium? operculatum
4999	Cyclonephelium paucimarginatum Cookson & Eisenack 1962
5000	TJS of Aptea rotundata
5001	Cyclonephelium? tarimense He Chengquan 1991
5002	TJS of Spiniferites? ambiguus
5003	Cyclonephelium uncinatum (Norvick 1976) Stover & Evitt 1978
5004	Now Aptea uncinata
5005	Cyclonephelium vannophorum Davey 1969
5006	Now Aptea? vannophora
5007	
5008	PSEUDOCERATIUM Gocht 1957 emend. nov.

5009 Pseudoceratium almohadense (Below 1984) Lentin & Williams 1989

5010	Now Circulodinium almohadense
5011	Pseudoceratium anaphrissum (Sarjeant 1966) Bint 1986
5012	Now Tenua anaphrissa
5013	Pseudoceratium aulaeum Harding 1990 ex Harding in Williams et al. 1998
5014	Still Pseudoceratium aulaeum
5015	Pseudoceratium australiense Fensome & Williams 2004
5016	Still Pseudoceratium australiense
5017	Pseudoceratium brevicornutum Herngreen et al. 2000
5018	Now Pseudoceratium? brevicornutum
5019	Pseudoceratium distinctum Duxbury 2001
5020	Now Circulodinium vectensis (substitute name)
5021	Pseudoceratium eisenackii (Davey 1969) Bint 1986
5022	TJS of Cyclonephelium compactum
5023	Pseudoceratium expolitum Brideaux 1971
5024	Still Pseudoceratium expolitum
5025	Pseudoceratium gochtii Neale & Sarjeant 1962
5026	Still Pseudoceratium gochtii
5027	Pseudoceratium iehiense Helby & May in Helby 1987
5028	Now Pseudoceratium? iehiense
5029	Pseudoceratium interiorense Bint 1986
5030	Still Pseudoceratium interiorense
5031	Pseudoceratium iveri Nøhr-Hansen 1993
5032	Still Pseudoceratium iveri
5033	Pseudoceratium? parvum Michael 1964
5034	Still Pseudoceratium? parvum
5035	*Pseudoceratium pelliferum Gocht 1957
5036	Still Pseudoceratium pelliferum
5037	Pseudoceratium plerum (Duxbury 1983) Bint 1986
5038	Now Canningia plera
5039	Pseudoceratium retusum Brideaux 1977

5040	Still Pseudoceratium retusum
5041	Pseudoceratium? robustum Michael 1964
5042	Still Pseudoceratium? robustum
5043	Pseudoceratium securigerum (Davey & Verdier 1974) Bint 1986
5044	TJS of Circulodinium distinctum
5045	Pseudoceratium solocispinum (Davey 1974) Harding 1990
5046	Still Pseudoceratium solocispinum
5047	Pseudoceratium spitiense Jain & Garg in Jain et al. 1984
5048	Still Pseudoceratium spitiensis
5049	Pseudoceratium toveae Nøhr-Hansen 1993
5050	Still Pseudoceratium toveae
5051	Pseudoceratium weymouthense Helby 1987
5052	Still Pseudoceratium weymouthense
5053	
5054	SENONIASPHAERA Clarke & Verdier 1967 emend. nov.
5055	Senoniasphaera clavellii Bailey et al. 1997
5056	Now Senoniasphaera? clavellii
5057	Senoniasphaera edenensis Marshall 1990a
5058	Still Senoniasphaera edenensis
5059	Senoniasphaera inornata (Drugg 1970) Stover & Evitt 1978
5060	Still Senoniasphaera inornata
5061	Senoniasphaera jurassica (Gitmez & Sarjeant 1972) Lentin & Williams 1976
5062	Still Senoniasphaera jurassica
5063	Senoniasphaera lordii (Cookson & Eisenack 1968) Lentin & Williams 1976
5064	Still Senoniasphaera lordii
5065	Senoniasphaera macroreticulata Prince et al. 2008
5066	Still Senoniasphaera macroreticulata
5067	Senoniasphaera microreticulata Brideaux & McIntyre 1975
5068	Still Senoniasphaera microreticulatum
5069	Senoniasphaera palla Louwye 1997

5070	Still Senoniasphaera palla
5071	*Senoniasphaera protrusa Clarke & Verdier 1967
5072	Still Senoniasphaera protrusa
5073	Senoniasphaera protrusa subsp. congrensa Prince et al. 2008
5074	Now Senoniasphaera congrensa
5075	Senoniasphaera protrusa subsp. protrusa
5076	Now redundant
5077	Senoniasphaera ptomatis Helby et al. in Helby 1987
5078	Still Senoniasphaera ptomatis
5079	Senoniasphaera? reticulata (Khanna & Singh 1981) Lentin & Williams 1993
5080	Still Senoniasphaera? reticulatum
5081	Senoniasphaera rotundata Clarke & Verdier 1967
5082	Now Canningia glomerata (substitute name)
5083	Senoniasphaera rotundata subsp. alveolata
5084	TJS of Senoniasphaera turonica
5085	Senoniasphaera? sarrisii (Archangelsky 1969) Stover & Evitt 1978
5086	Now Turbiosphaera? sarrisii
5087	Senoniasphaera stagonoides (Benedek 1972) Helenes 1983
5088	Now Deflandrea? stagonoides
5089	Senoniasphaera turensis Vasilyeva in Andreeva-Grigorovich et al. 2011
5090	Now Senoniasphaera? turensis
5091	Senoniasphaera turonica (Prössl 1990) Pearce et al. 2011
5092	Still Senoniasphaera turonica
5093	Senoniasphaera whitenessensis Prince et al. 2008.
5094	Now Trimuridinium whitenessense
5095	
5096	TENUA Eisenack 1958 emend. nov.
5097	Tenua? americana (Pöthe de Baldis & Ramos 1983) Prössl 1992
5098	TJS of Tenua hystrix

Tenua aucda (Below 1981) Lentin & Williams 1993

5100	Now Cerbia? aucda
5101	Tenua formosa (Mao Shaozhi & Norris 1988) Lentin & Williams 1993
5102	Now Cerbia? formosa
5103	*Tenua hystrix Eisenack 1958
5104	Still Tenua hystrix
5105	Tenua reducta (Châteauneuf 1980) Courtinat in Fauconnier & Masure 2004
5106	Still Tenua reducta
5107	Tenua suturispinosa (He Chengquan 1991) Lentin & Williams 1993
5108	TJS of Cerbia? formosa
5109	Tenua wenquanensis Cheng Jinhui & He Chengquan 2006
5110	Now Cerbia? wenquanensis
5111	
5112	
5113	Appendix 3.
5114	A table illustrating the details of the provenance of the specimens newly illustrated in this study.
5115	Column A gives the relevant figure number in the present paper. Column B gives the taxon
5116	name. Column C gives the Geological Survey of Canada (GSC) type number. Columns D and E
5117	give the region and locality name respectively. Column F gives the processing number (GSC
5118	Calgary system). Column G gives the sample and slide number. Column H gives height from
5119	base of section or formation for surface section (ss) samples (the prefix C = Christopher
5120	Formation; the prefix I = Isachsen Formation); or depth in the well for ditch cuttings (dc) and
5121	conventional core (CC) samples; for further information, see Supplemental data. Column I gives
5122	the microscope coordinates on Zeiss Axioplan microscope serial no. 310243 at GSC (Atlantic).
5123	Column J gives England Finder (EF) coordinates (the asterisk indicating that the England Finder
5124	was inserted upside down and parentheses indicate that the EF coordinates were derived from the
5125	microscope coordinates, not relocation of the specimen). Column K gives provides specifics of
5126	the lens used for the photograph ($pc = phase contrast$; $ic = interference contrast$; $bf = bright$
5127	field).
5128	

5130 Figure Captions

5159

Figure 1. The position of the main antapical/lateral horns according to Evitt (1985). A, C: the 5132 5133 position of main antapical/lateral horns (dotted circles) in the Areoligeraceae (including the Cyclonephelium group). B, D: the position of main antapical/lateral horns (dotted circles) in the 5134 Ceratiaceae (including Pseudoceratium). Redrawn after Evitt (1985, fig. 10.6). 5135 5136 Figure 2. Configuration of the anterior margin of the first precingular paraplate (1"; indicated 5137 by the arrow) in the Areoligeraceae (including the Cyclonephelium group) (A) and Ceratiaceae 5138 (including *Pseudoceratium*) (B) according to Bint (1986). Redrawn after Bint (1986, fig. 11). 5139 5140 5141 Figure 3. Flow chart showing how the genera reviewed in this study are related. The top row illustrates the difference between areoligeraceans and the ceratiacean genus *Pseudoceratium*. In 5142 the lower two rows, each genus is represented by an idealised line drawing showing the principal 5143 5144 characteristics. The one genus accepted as a member of the Cyclonephelium group herein but not illustrated in this figure is *Trimuridinium*, which is characterised by three wall layers. 5145 5146 Figure 4. New specimens of Aptea and Canninginopsis; complete details are shown in Appendix 5147 3. Scale bars = 20 μ m. A–N, Aptea cassis sp. nov.: C is the holotype; A–D, G–H, L–M show 5148 ventral views of mostly the ventral surface; E-F show the ventral and dorsal surfaces 5149 respectively of a ventral view of a single specimen; I, K and possibly J and N show dorsal views 5150 of mostly the ventral surface. O-P, Aptea sp., a thick-walled microreticulate form, dorsal view of 5151 5152 dorsal (O) and ventral (P) surfaces. Q-S, Aptea uncinata: Q shows a ventral view; Q shows an oblique dorsoventral view; and S shows a dorsoventral view. T, Canninginopsis sp., ventral 5153 view. 5154 5155 5156 Figure 5. New specimens of *Canningia* and *Cerbia*; complete details are shown in Appendix 3. Scale bars = 20 µm. A–G, Canningia reticulata: A shows a ventral view of the ventral surface; B 5157 shows a ventral view of the dorsal surface; C shows a dorsal view of the dorsal surface; D shows 5158

a dorsal view of the ventral surface; E–G are dorsoventral views. H–O, *Canningia inconspicua*:

H shows a ventral view; I shows a ventral view of the ventral surface; J shows a ventral view of
the dorsal surface; K–M show dorsal views; N–O show ventral views. P, *Cerbia* sp., probably a
ventral view.

5163

5164 **Figure 6.** New specimens of *Circulodinium*; complete details are shown in Appendix 3. Scale 5165 bars = $20 \mu m$. **A–D**, *Circulodinium distinctum*: A, C show dorsoventral views; B shows a dorsal

5166 view; D shows a ventral view.

5167

5168 **Figure 7.** New specimens of *Cyclonephelium*; complete details are shown in Appendix 3. Scale

bars = 20 μm. **A–J**, *Cyclonephelium compactum*: A, D, I–J show dorsal views; B–C show dorsal

5170 view of dorsal (B) and ventral (C); E shows a ventral view; F–H shows a dorsoventral (probably

5171 dorsal) view at high (F), medium (G) and low (H) foci. K–L, Cyclonephelium intonsum,

5172 dorsoventral views.

5173

Figure 8. New specimens of *Senoniasphaera*; complete details are shown in Appendix 3. Scale
bars = 20 μm. A–B, *Senoniasphaera microreticulata*, ventral views. C–D, *Senoniasphaera* sp.,
dorsoventral views.

5177

5178 Figure 9. New specimens of *Tenua* (1); complete details are shown in Appendix 3. Scale bars =

5179 20 μm. **A–C**, *Tenua colliveri*: A shows a dorsal view of the ventral surface; B–C show ventral

5180 views. **D-H**, *Tenua anaphrissa*; D-E show dorsal views; H shows a ventral view; F-G show

5181 dorsoventral views. I-L, Tenua hystrix: I shows a ventral view; J-K show dorsal views; L shows

5182 a dorsoventral view.

5183

Figure 10. New specimens of *Tenua* (2); complete details are shown in Appendix 3. Scale bars =
20 μm. A–P, *Tenua scabrosa*: A shows a dorsoventral (?dorsal) view; B–C, G–H show ventral
views; D, M–P show dorsal views; E–F show dorsal views of ventral (E) and dorsal (F) surfaces;
I–J show dorsal views of dorsal (I) and ventral (J) surfaces; K–L show ventral views of ventral

5188 (K) and dorsal (L) surfaces.

5190 Figure 11. New specimens of *Pseudoceratium*; complete details are shown in Appendix 3. Scale

bars = 20 μm. A-D, *Pseudoceratium pelliferum*: A-B, D show dorsal views; C shows a ventral
view.

5193

5194 **Figure 12.** Reproduced illustrations of holotypes of species treated in the present work — 1.

5195 A. Aptea fragilis. Holotype from Harris (1965, pl. 27, fig. 5, as Ovoidites fragilis); Lower

Eocene; Princetown Member, Dilwyn Clay; Princetown area, Victoria, Australia. The specimen
appears to be in ventral view; length 60 μm, breadth 70 μm, derived from magnification (x630)
given in publication.

5199 **B.** *Aptea polymorpha*. Holotype from Eisenack (1958, pl. 22, fig. 5, as *Aptea polymorpha*);

5200 Aptian; northern Germany. The specimen is in ventral view; length 114 μm, breadth 81 μm.

5201 C. Aptea? retirugosa. Holotype from He Chengquan (1991, pl. 8, fig. 11, as Canningia

5202 retirugosa); Upper Cretaceous; western Tarim Basin, southern Xinjiang Province, China. The

specimen appears to be in dorsoventral view; dimensions unknown.

5204 **D.** Aptea rotundata. Holotype from Cookson & Eisenack (1961, pl. 12, fig.1, as Canningia

5205 rotundata); Senonian (Upper Cretaceous); Belfast No. 4 bore, southwestern Victoria, Australia.

5206 The specimen appears to be in dorsal view; length $87\mu m$, breadth 90 μm .

5207 E. Aptea? spongireticulata. Holotype from Prössl (1990, pl. 13, fig. 5, as Canningia

5208 spongireticulata); upper Albian – middle Turonian; Konrad 101 core, Lower Saxony Basin,

5209 northwestern Germany. The specimen is in dorsoventral view; length 55 μm, breadth 61 μm.

- 5210 F. Aptea unicinata. Holotype from Norvick (1976, pl. 8, fig. 11, as Adnatosphaeridium
- 5211 uncinatum); Cenomanian; Bathurst Island No. 2 well, core 9, Northern Territory, Australia. The
- 5212 specimen is in dorsoventral (possibly ventral) view; length 58 μm, breadth 65 μm.
- 5213 G. Aptea? vannophora. Holotype from Davey (1969, pl. 11, fig.11, as Cyclonephelium

5214 *vannophorum*); Cenomanian; Lower Chalk Group; Compton Bay, Isle of Wight, England. The

- specimen is in dorsoventral view; length $65 \mu m$, breadth $62 \mu m$.
- 5216 **H.** *Canningia clathromarginata*. Holotype from Cookson & Eisenack (1962, pl. 6, fig. 2, as
- 5217 Cyclonephelium clathromarginatum); upper Albian Cenomanian; Wapet's seismic shot hole
- 5218 B1, north of Gingin, Australia. The specimen is in dorsoventral view; breadth 136 µm.
- 5219 I. Canningia crassimarginata. Holotype from Cookson & Eisenack (1974, pl. 28, fig. 3, as

- 5220 Cyclonephelium crassimarginatum); middle Cretaceous; Gingin Brook bore, Australia. The
- 5221 specimen is in dorsoventral view; breadth 94 μ m.
- 5222 J. Canningia duxburyi Holotype from Harding (1990b, pl.5, fig.1, ex Harding in Williams et al.,
- 5223 1998 as *Canningia duxburyi*); upper Hauterivian lower Barremian; Norfolk, England. The
- 5224 specimen is in dorsal view; scale bar is $10 \ \mu m$.
- 5225 K-L. Canningia fairfieldensis. Holotype from Willumsen (2012, pl. 2, figs 1–2, as Canningia
- 5226 fairfieldensis); Lower Paleocene; Fairfield Quarry, South Island, New Zealand. The specimen is
- 5227 in ventral view according to Willumsen (2012); other details of focal levels not given; scale bar
- 5228 in Q is 10 μm.
- 5229 M–N. *Canningia*? *filosa*. Holotype from Wilson (1988, pl. 2, figs 8a–b, as *Cassidium filosum*);
- 5230 Paleocene; Waipawa section, Hawkes Bay, New Zealand. The figures show a dorsoventral view
- 5231 of the dorsal (M) and ventral (N) surfaces; scale bar in M is 20 μ m.
- 5232 **O.** Canningia glomerata. Holotype from Clarke and Verdier (1967, pl.14, fig.2, as
- 5233 Senoniasphaera rotundata); Senonian; Isle of Wight, England. The specimen is in dorsoventral
- 5234 view; overall length 92 μ m, overall breadth 67 μ m.
- 5235 P. Canningia inconspicua. Holotype from Duxbury (1983, pl. 3, fig. 6, as Cyclonephelium
- 5236 *inconspicuum*); upper Aptian; Lower Greensand; Isle of Wight, southern England. The specimen
- 5237 is in dorsal view; length 58 μ m, breadth 64 μ m.
- 5238 Q-T. Canningia grandis. Holotype from Helby (1987, figs 30A–D, as Canningia grandis);
- 5239 Hauterivian; Plover-2 well, Australia. The specimen appears to be in ventral view, the figures
- ranging (from Q to T) from low to high focus; length 105 μm, breadth 123 μm, derived from
- 5241 magnification (x400) given in publication.
- 5242
- 5243 Figure 13. Reproduced illustrations of holotypes of species treated in the present work -2.
- 5244 A-C. Canningia? hulinensis. Holotype from He Chengquan et al. (1999, pl. 1, figs 1–3, as
- 5245 *Canningia hulinensis*); upper Hauterivian Barremian; H87-3 well, Hulin Basin, eastern
- 5246 Heilongjiang, northeastern China. The specimen is in dorsoventral view, ranging from low to
- 5247 high focus; length 110 μ m, breadth 104 μ m.
- 5248 **D.** *Canningia plera*. Holotype from Duxbury (1983, pl.1, fig.7, as *Aptea plera*); lower Aptian;
- 5249 Lower Greensand; Isle of Wight; England. The specimen is in dorsal view; length 82 μm,

- 5250 breadth 102 μm.
- 5251 E-H. Canningia keiemensis. Holotype from Louwye (1997, pl., figs 1–3, 6, as Canningia
- *keiemensis*); Turonian; well 36E135, West Flanders, Belgium. The specimen appears to be in
- ventral view, with E–F of the ventral surface and G–H of the dorsal surface; length 91 μ m,
- 5254 breadth 84 μm.
- 5255 I-J. Canningia macroreticulata. Holotype from Ilyina et al. (1994, pl. 30, figs 6–7, as Canningia
- *macroreticulata*); upper Coniacian; Siberia. The specimen is in dorsoventral view; length 65 μm,
 breadth 72 μm, derived from magnification (x900) given in publication.
- 5258 K-L. Canningia reticulata. Holotype (K) and other specimen (L) from Cookson & Eisenack
- 5259 (1960, pl. 38, figs 1–2 respectively, as *Canningia reticulata*); Tithonian; of Broome No. 1 bore,
- 5260 Western Australia. Both specimens show dorsal views; holotype length 100 μm, breadth 86 μm.
- 5261 M–P. Canningia pistica. Holotype from Helby (1987, figs 30I–L, as. Canningia pistica);
- 5262 Hauterivian; Plover-2 well, Australia. The specimen appears to be in ventral view, the figures
- ⁵²⁶³ ranging (from M to P) from low to high focus; length 94 μm, breadth 108 μm, derived from
- 5264 magnification (x400) given in publication.
- 5265 Q. Canningia rugulosa. Holotype from Clarke & Verdier (1967, pl. 12, fig. 6, as Aptea
- 5266 rugulosa); Santonian; Chalk Group; Culver Cliff, Isle of Wight, England. The specimen is in
- 5267 (possibly oblique) dorsoventral view; length 74 μm, breadth 50 μm.
- 5268 R. Canningia senonica. Holotype from Clarke & Verdier (1967, pl. 1, fig. 12, as Canningia
- *senonica*); Santonian; Chalk Group; Culver Cliff, Isle of Wight, England. The specimen is
- 5270 possibly in dorsal view; length 69 μ m, breadth 57 μ m.
- 5271 S-T. Canninginopsis bretonica. Holotype from Marshall (1990b, figs 6N–O, as Canninginopsis
- 5272 *bretonica*); upper Campanian middle Maastrichtian; Western Australia. The specimen appears
- 5273 to be in ventral view, showing dorsal (S) and ventral (T) surfaces; length 71 μ m, breadth 81 μ m.
- 5274
- 5275 **Figure 14.** Reproduced illustrations of holotypes of species treated in the present work 3.
- 5276 A-E. Canningia transitoria. Holotype from Stover & Helby (1987b, figs 3A-E, as Canningia
- 5277 transitoria); Barremian lower Aptian; Houtman-1 well, Western Australia. The specimen is in
- 5278 dorsoventral view; A–C are in interference contrast, from high to low focus; D–E are in bright
- 5279 field illumination, high focus and optical section respectively; length 114 μm, breadth 122 μm,

- 5280 derived from magnification (x340) given in publication.
- 5281 F. Canninginopsis denticulata. Holotype from Cookson & Eisenack (1962, pl., fig. 16, as
- 5282 Canninginopsis denticulata); Albian Cenomanian; Australia. The specimen is ventral view,
- showing the dorsal surface; length 120 μ m, breadth 111 μ m.
- 5284 G-H. Canninginopsis monile. Holotype from Duxbury (2002, pl. 1, figs 7–8, as Cerbia monile);
- ⁵²⁸⁵ upper Aptian lower Albian; well 13/30a-4, Central North Sea Basin. The specimen appears to
- 5286 be in dorsal view, in dorsal (G) and ventral (H) foci; length 83 μm, breadth 85 μm.
- 5287 I-K. Canninginopsis maastrichtiensis. Holotype from Slimani (1994, pl. 16, figs 5–7, as
- 5288 Canninginopis maastrichtiensis); upper Maastrichtian; Halembaye, Turnhout, Belgium. The
- 5289 specimen is apparently in dorsoventral view, in dorsal (I) and ventral (J–K) foci; length 64 μm,
- 5290 breadth 52 μm.
- 5291 L. Cerbia? aucda. Holotype from Below (1981, pl. 4, fig. 3, as Cerbia aucda); Barremian;
- 5292 Chichaoua bore, southwestern Morocco. The specimen is in dorsal view; length 88 μm, breadth
 5293 83 μm.
- 5294 M. Cerbia? formosa. Holotype from Mao Shaozhi & Norris (1988, pl. 1, fig. 9, as Cerbia
- 5295 formosa); Upper Eocene Lower Oligocene; Wulagen Formation; Qimugen section, Kashi area,
- 5296 Tarim Basin, Xinjiang Province, China. The specimen is probably in ventral view; length 65 μm,
- 5297 breadth 63 μm.
- 5298 N. Cerbia? hexalobosa. Holotype from Cookson & Eisenack (1974, pl. 26, fig. 7, as Cassidium
- *hexalobosum*); middle to Upper Cretaceous; Balcatta bore, Australia. The specimen is possibly in
 ventral view; length 90 μm, breadth 76 μm.
- 5301 **O–P.** Cerbia intermedia. Holotype from Morgan (1980, pl. 3, figs 7–8, as Canninginopsis
- *intermedia*); lower Albian; Australia. The specimen is in ventral view, showing dorsal (O) and
- 5303 ventral (P) surfaces; length 97 μ m, breadth 102 μ m.
- 5304 **Q.** *Cerbia ordospinosa.* Holotype from Smith (1992, fig. 5i, as *Canninginopsis ordospinosa*);
- 5305 upper Campanian lower Maastrichtian; Cape Lamb Member, López de Bertodano Formation;
- 5306 Cape Lamb, Vega Island, Antarctica. The specimen is upright and is in dorsal view; length 112
- 5307 μ m, breadth 88 μ m, derived from magnification (x600) given in publication.
- 5308 **R–S.** Cerbia tabulata. Holotype from Davey & Verdier (1974, pl. 92, figs 1, 4, as
- 5309 Cyclonephelium tabulatum); Aptian; La Bédoule, southeastern France. The specimen is in

- 5310 dorsoventral view, in dorsal (R) and ventral (S) foci; length 57 μm, breadth 72 μm.
- 5311 T. Circulodinium circulatum. Holotype from He Chengquan (1991, pl. 10, fig. 7, as
- 5312 Cyclonephelium circulatum); Middle to Upper Eocene; Tarim Basin, southern Xinjiang
- 5313 Province, China. The specimen is obliquely oriented, probably with apex to upper right and in
- dorsoventral view; dimensions are unknown.
- 5315
- **Figure 15.** Reproduced illustrations of holotypes of species treated in the present work 4.
- 5317 A-B. Cerbia? wenquanensis. Holotype from Cheng Jinhui & He Chengquan (2006, fig. 3s1–3s2,
- as *Tenua wenquanensis*); upper Kimmeridgian; Xueshan Formation; Wenquan, Tanggulashan
- 5319 Town, Golmud City, Qinghai Province, China. The specimen is in dorsoventral view, apparently
- 5320 in dorsal (A) and ventral (B) foci; length 31 μ m, breadth 42 μ m.
- 5321 C-D. Circulodinium almohadensis. Holotype from Below (1984, pl. 1, figs 5A-B, as Aptea
- 5322 almohadensis); middle-upper Aptian; Mazagan Plateau, northwestern Africa. The specimen is
- ventral view, optical section? (C), ventral surface (D); length 58 μm, breadth 60 μm; scale bar is
 10 μm.
- 5325 E. Circulodinium distinctum. Holotype from Deflandre & Cookson (1955, pl. 2, fig. 14, as
- 5326 Cyclonephelium distinctum); Senonian (Upper Cretaceous); Gingin, Western Australia. The
- specimen is apparently in dorsoventral view; length 80 μm, breadth 120 μm, derived from
- 5328 magnification (x400) given in publication.
- 5329 F. Circulodinium? hughesii. Holotype from Clarke & Verdier (1967, pl. 2, fig. 6, as
- 5330 Cyclonephelium hughesii); Cenomanian lower Turonian; Southern Cliff, Isle of Wight,
- 5331 England. The specimen is in uncertain orientation; length 66 μm, breadth 63 μm.
- 5332 G. Circulodinium vectensis. Holotype from Duxbury (2001, fig. 11, no. 1, as Pseudoceratium
- *distinctum*); upper Aptian; central North Sea; offshore UK. The specimen is in ventral view;
- length 88 μ m, breadth 94 μ m; scale bar is 10 μ m.
- 5335 H. Circulodinium? wulaganensis. Holotype from He Chengquan (1991, pl. 9, fig. 16, as
- 5336 Canningia wulagenensis); Upper Cretaceous; western Tarim Basin, southern Xinjiang Province,
- 5337 China. The specimen is rotated by -90° and is possibly in dorsoventral view; dimensions5338 unknown.
- 5339 I. Cyclonephelium? barbiferum. Holotype from Cookson & Eisenack (1982, pl. 7, fig. 9, as

- 5340 *Cyclonephelium? barbiferum*); Albian Cenomanian; Balcatta bore, Australia. The specimen is
 5341 possibly in dorsoventral view; length 95 μm, breadth 88 μm.
- 5342 J. Cyclonephelium compactum. Holotype from Deflandre & Cookson (1955, pl. 2, fig. 12, as
- 5343 *Cyclonephelium compactum*); Albian Santonian; Onepah Station, New South Wales, Australia.
- 5344 The specimen is in ventral view, showing the ventral surface; length 78 μ m, breadth 82 μ m,
- 5345 derived from magnification (x420) given in publication.
- 5346 K-L. Cyclonephelium deconinckii. Holotype from Boltenhagen (1977, pl. 4, figs 5a-b, as
- 5347 Cyclonephelium deconinckii); Campanian; Port Gentil, Gabon, Africa. The specimen is in
- 5348 dorsoventral view, general view (K), optical section showing structure of processes (L); length
- 5349 64 μm, breadth 67 μm.
- 5350 M–Q. Cyclonephelium indicum. Holotype from Khowaja-Ateequzzaman & Jain (1990, pl.1, figs
- 5351 1–5; text-figs 1A–C as *Cauveridinium indicum*); Turonian Santonian of the Cauvery Basin,
- 5352 India. The specimen is in dorsal high to dorsal low views (M–O) respectively and ventral low
- and ventral high views (P–Q) respectively; length of body 70 μ m, breadth of body 80 μ m, length of processes 6–12 μ m.
- 5355 **R.** *Cyclonephelium intonsum.* Holotype from Duxbury (1983, pl. 2, fig. 7, as *Cyclonephelium*
- 5356 *intonsum*); upper Aptian lower Albian; Sandrock Series; Atherfield section, Isle of Wight,
- 5357 England. The specimen is in dorsal view; length 75 μm, breadth 81 μm.
- 5358 S. Cyclonephelium maugaad. Holotype from Below (1981, pl. 11, fig. 2, as Cyclonephelium
- 5359 *maugaad*); Hauterivian Aptian; southwestern Morocco. The specimen is in dorsoventral view;
 5360 length 54 μm.
- 5361 **T.** Cyclonephelium membraniphorum. Holotype from Cookson & Eisenack (1962b, pl.6, fig.9, as
- 5362 *Cyclonephelium membraniphorum*); upper Albian Cenomanian; Wapet's seismic shot hole B1,
- north of Gingin, Australia. The specimen is in dorsoventral view; length 127 μm, breadth 108
- 5364 μm.
- 5365
- **Figure 16.** Reproduced illustrations of holotypes of species treated in the present work 5.
- 5367 A. Cyclonephelium? operculatum. Holotype from Yu Jingxian (1982, pl. 7, fig. 21, as
- 5368 Cyclonephelium operculatum); Upper Jurassic Lower Cretaceous; eastern Heilongjiang
- 5369 Province, China. The specimen is possibly in dorsoventral view; dimensions unknown.

- 5370 B. Senoniasphaera clavellii. Holotype from Bailey et al. (1997, fig. 4d, as Senoniasphaera
- 5371 *clavellii*); upper Kimmeridgian; Kimmeridge Clay Formation, Bed 75; Hen Cliff, near
- 5372 Kimmeridge Bay, England. The specimen appears to be in dorsoventral view; length 85 µm,
- 5373 breadth 55 μm.
- 5374 C-D. Senoniasphaera congrensa. Holotype from Prince et al. (2008, pl. 2, figs 1, 2, as
- 5375 Senoniasphaera protrusa subsp. congrensa); middle Santonian lower Campanian; Chalk
- 5376 Group, England. The figures show a ventral view of the ventral (C) and dorsal (D) surfaces;
- 5377 length 62 μ m, breadth 54 μ m.
- 5378 E-G. Senoniasphaera? edenensis. Holotype from Marshall (1990a, figs 15R-T, as
- 5379 Senoniasphaera edenensis); Campanian; Gippsland Basin, southeastern Australia. The specimen
- is in dorsal view high focus (E), mid focus (F) and low focus (G); length 69 μm, breadth 84
 μm.
- 5382 H. Senoniasphaera inornata. Holotype from Drugg (1970, fig. 3C, as Chiropteridium
- 5383 inornatum); Danian; McBryde Limestone Member, Clayton Formation; Alabama, U.S.A. The
- specimen is in dorsal view; length 121 μm, breadth 102 μm, derived from magnification (x384)
 given in publication.
- 5386 I-L. Senoniasphaera filoreticulata. Holotype from Slimani (1994, pl. 15, figs 1–4, as Canningia
- *filoreticulata*); Campanian; Beutenaken, The Netherlands. The specimen is in dorsal view,
- showing progressively lower foci from I to L; length 80 μm, breadth 100 μm.
- 5389 M. Senoniasphaera jurassica. Holotype from Gitmez & Sarjeant (1972, pl. 14, fig. 5, as
- 5390 Hexagonifera jurassica); middle Kimmeridgian wheatleyensis zone; BGS Warlingham Borehole,
- 5391 Surrey, England. The specimen is apparently in ventral view; length 126 µm, derived from
- 5392 magnification (x350) given in publication.
- 5393 N. Senoniasphaera jurassica. Specimen (BGS figured specimen MPK 1265) from Davey (1979,
- 5394 pl. 1, fig. 3, as *Hexagonifera jurassica*); Tithonian; Upper Kimmeridge Clay Formation; BGS
- 5395 Warlingham Borehole, Surrey, England at 696.65 m. The specimen is in ventral view; overall
- 5396 length 89 μm; breadth at paracingulum 75 μm.
- 5397 O. Senoniasphaera lordii. Holotype from Cookson & Eisenack (1968, fig. 1J, as Ascodinium
- 5398 lordii); Santonian lower Campanian; Gingin Brook Silty Limestone; No. 4 borehole, Western
- 5399 Australia. The specimen is in dorsoventral (possibly dorsal) view; length 90 μm, breadth 77 μm.
- 5400 P. Senoniasphaera microciliata. Holotype from Jain (1977, pl. 3, fig. 25, as Canningia
- *microciliata*); lower Albian; Kallakkudi Limestone Quarry, Dalmiapuram, southern India. The
 specimen is is possibly in dorsoventral view; length 60 µm, breadth 56 µm.
- 5403 **Q-R.** Senoniasphaera macroreticulata. Holotype from Prince et al. (2008, pl. 1, figs 7–8, as
- 5404 *Senoniasphaera macroreticulata*); upper Santonian lower Campanian; Chalk Group; England.
- The specimen is in dorsoventral view; Q is in general view; R is focused on supporting pillars;
 length 70 μm, breadth 69 μm.
- 5407 S-T. Senoniasphaera palla. Holotype from Louwye (1997, pl. 2, figs 3, 6, as Senoniasphaera
- 5408 *palla*); Turonian; well 95W153, Nieuwkerke, West Flanders, Belgium. The specimen is in
- 5409 dorsoventral view; S is a general view; T is an optical section; length 71 μ m, breadth 65 μ m.
- 5410
- 5411 **Figure 17.** Reproduced illustrations of holotypes of species treated in the present work 6.
- 5412 A-C. Senoniasphaera microreticulata. Holotype from Brideaux & McIntyre (1975, pl. 11, figs
- 5413 7–9, as Senoniasphaera microreticulata); middle Albian; Horton River Formation; Northwest
- 5414 Territories, Canada. The figures show the specimen in ventral view, ventral surface at high focus
- 5415 (A), ventral surface at mid-focus (B) and dorsal surface at low focus (C); length 123 μ m, breadth
- 5416 118 μm.
- 5417 **D.** Senoniasphaera protrusa. Holotype from Clarke & Verdier (1967, pl. 14, fig. 8; as
- 5418 Senoniasphaera protrusa); Santonian; Culver Cliff, Isle of Wight, England. The specimen is in
- 5419 ventral view; length 92 μm, breadth 67 μm.
- 5420 E-H. Senoniasphaera ptomatis. Holotype from Helby (1987, figs 25A-D, as Senoniasphaera
- 5421 *ptomatis*); middle Berriasian; Lacepede-1A well, Australia. The figures show the specimen in
- 5422 ventral view, dorsal surface (E), mid-foci (F–G) and ventral surface (H); length 82 μm, breadth
- 5423 80 μm, derived from magnification (x400) given in publication.
- 5424 I. Senoniasphaera? reticulata. Holotype from Khanna & Singh (1981, fig. 1, no. 4, as
- 5425 Hexagonifera reticulata); Lower to Middle Eocene; Subathu Formation; Dharmpur, Simla Hills,
- 5426 India. The specimen is apparently in dorsoventral view; length 79 μm, breadth 66 μm.
- 5427 J. Senoniasphaera? turensis. Holotype from Vasilyeva in Andreeva-Grigorovich et al. (2011, pl.
- 5428 2, fig. 6, as Senoniasphaera turensis); Danian; Lithuania. The specimen is apparently in
- 5429 dorsoventral view; length 69 μ m, breadth 66 μ m.

- 5430 K-L. Senoniasphaera turonica. Holotype from Prössl 1990, pl. 16, figs 1–2, as Craspedodinium
- 5431 *turonicum*); middle Cenomanian upper Turonian; Konrad 101 core, Lower Saxon Basin,
- northwestern Germany. The specimen is possibly in dorsoventral view; length 78 μm, breadth 79
- 5433 μm.
- 5434 M. Tenua anaphrissa. Holotype from Sarjeant (1966, pl. 22, fig. 8, as Doidyx anaphrissa); lower
- 5435 Barremian; Speeton Clay; Shell West Heslerton borehole, Yorkshire, England. The specimen is
 5436 apparently in ventral view; length 105 μm, breadth 118 μm.
- 5437 N. Tenua? apiculata. Holotype from Jain et al. (1984, pl. 2, fig. 27, as Canningia apiculata);
- Kimmeridgian lower Tithonian; Spiti Shale; Malla Johar area, Himalaya, India. The specimen
 appears to be in dorsal view; length 80 μm, breadth 66 μm.
- 5440 **O–P.** Tenua? araneosum. Holotype from Brideaux (1977, pl. 9, figs 1–2, as Cleistosphaeridium
- 5441 araneosum); Aptian Albian; Horton River Formation, Richardson Mountains, Northwest
- 5442 Territories, Canada. The specimen is in dorsoventral view, high focus apparently on dorsal
- 5443 surface (O) and low focus apparently on ventral surface (P); length 55 μ m, breadth 52 μ m,
- 5444 derived from magnification (x1000) given in publication.
- 5445 Q. Tenua? asymmetrica. Holotype from Burger (1980, fig. 7a, as Cyclonephelium
- 5446 asymmetricum); Neocomian (Lower Cretaceous); Rolling Downs Group; seismic shot hole,
- 5447 Carpentaria Basin, northern Queensland, Australia. The specimen is in dorsoventral view; length
- 5448 90 μm, breadth 77 μm, derived from magnification (x600) given in publication.
- 5449 R. Tenua? attadalica. Holotype from Cookson & Eisenack (1962, pl. 5, fig. 13, as
- 5450 Cyclonephelium? attadalicum); Aptian Albian; Osbourne Formation; Attadale borehole,
- 5451 Australia. The specimen is in dorsal view; length 82 μ m, breadth 72 μ m.
- 5452 S. Tenua chinensis. Holotype from He Chengquan (1991, pl. 9, fig. 17, as Canningia chinensis);
- 5453 Middle Eocene; western Tarim Basin, southern Xinjiang Province, China. The specimen is
- 5454 appears to be in ventral view; dimensions unknown.
- 5455 T. Tenua colliveri. Holotype from Cookson & Eisenack (1960, pl. 38, fig. 4, as Canningia
- 5456 colliveri); Aptian; Roma Formation; Balmoral No. 1 well, northern Queensland, Australia. The
- specimen appears to be in dorsal view; length 107 μ m, breadth 100 μ m.
- 5458
- 5459 **Figure 18.** Reproduced illustrations of holotypes of species treated in the present work 7.

- 5460 A. Tenua compta. Holotype from Davey (1982, pl. 8, fig. 3, as Canningia compta); Portlandian
- 5461 (Tithonian) lowermost Valanginian; Sandringham Sands; Brook Farm, North Runcton,
- 5462 Norfolk, England. The specimen is in dorsal view; length 54 µm, breadth 52 µm.
- 5463 **B.** *Tenua copei*. Holotype from Bailey et al. (1997 fig. 3a, as *Circulodinium copei*); upper
- 5464 Kimmeridgian; Golden Hill Quarry, Marton, North Yorkshire, England. The specimen is in
- 5465 dorsoventral view; length 70 μm, breadth 75 μm.
- 5466 C. Tenua densebarbata. Holotype from Cookson & Eisenack (1960, pl. 38, fig. 10, as
- 5467 Cyclonephelium densebarbatum); Tithonian; Alexander Formation, Western Australia. The
- 5468 specimen is possibly in ventral view; length 95 μ m, breadth 92 μ m.
- 5469 **D.** *Tenua dubia*. Holotype from Jain & Millepied (1975, pl. 5, fig. 76, as *Tenua dubia*);
- 5470 Campanian Maastrichtian; Borehole No. CM-4, Senegal Basin, west Africa. The specimen is in
 5471 dorsoventral view; length 78 μm, breadth 70 μm.
- 5472 E. Tenua elongata. Holotype from He Chengquan (1991, pl. 9, fig. 1, as Canningia elongata);
- 5473 Turonian; western Tarim Basin, southern Xinjiang Province, China. The specimen is in 5474 dorsoventral view; dimensions unknown.
- 5475 **F.** *Tenua hystrix.* Holotype from Eisenack (1958, pl. 23, fig. 1, as *Tenua hystrix*); Aptian;
- 5476 northern Germany. The specimen appears to be in ventral view; length 97 μm, breadth 86 μm.
- 5477 G. Tenua kukubaiensis. Holotype from Mao Shaohi & Norris (1988, pl. 1, fig. 7, as
- 5478 Circulodinium kukebaiensis); Turonian Santonian; Kukebai Formation; Wuluokeqiate section,
- 5479 Tarim Basin, Xinjiang Province, China. The specimen appears to be in dorsoventral view; length
 5480 48 μm, breadth 58 μm.
- 5481 **H.** *Tenua magna*. Holotype from Duxbury (2001, fig. 4, no. 3, as *Cerbia magma*); upper
- 5482 Barremian; central North Sea, offshore U.K. The specimen appears to be in dorsal view; length
- 5483 117 μ m, breadth 127 μ m; scale bar is 10 μ m.
- 5484 I. Tenua? micibaculata. Holotype from Jiabo (1978, pl. 7, fig. 1, as Canningia micibaculata);
- 5485 Palaeogene, coastal region of Bohai, China. The specimen is possibly in dorsoventral view;
- 5486 dimensions unknown.
- 5487 J. Tenua? pentagona. Holotype from He Chengquan (1991, pl. 9, fig. 13, as Canningia
- 5488 pentagona); Upper Cretaceous; western Tarim Basin, southern Xinjiang Province, China. The
- 5489 specimen is in ventral view; dimensions unknown.

- 5490 K. Tenua reducta. Holotype from Châteauneuf (1980, pl. 21, fig. 10, as Cyclonephelium
- 5491 reductum); Upper Eocene; Calcaire de St-Ouen; Paris Basin, France. The specimen is rotated by
- -66° with apex facing upper left. possibly in ventral view; length 70 μ m, breadth 60 μ m, derived
- from magnification (x1000) given in publication.
- 5494 L. Tenua scabrosa. Holotype from Cookson & Eisenack (1970, pl. 13, fig. 6, as Canningia
- 5495 scabrosa); Albian Cenomanian; Madura No. 1 Bore, Eucla Basin, Western Australia. The
- specimen is possibly in ventral view; length $102 \mu m$, breadth $90 \mu m$.
- 5497 M–N. Trimuridinium whitenessensis. Holotype from Prince et al. (2008, pl. 1, figs 11–12, as
- 5498 Senoniasphaera whitenessense); upper Santonian; White Ness, Isle of Thanet, England. The
- 5499 specimen is in dorsoventral view, ventral (M) and dorsal (N) sides; note the three wall layers;
- ⁵⁵⁰⁰ length 58 μm, breadth 72.5 μm, derived from magnification (x430) given in publication.
- 5501 **O.** *Pseudoceratium aulaeum.* Holotype from Harding (1990, pl. 1, fig. 1, as *Pseudoceratium*
- 5502 aulaeum); upper Barremian; Warlingham borehole, Surrey, England. The specimen is rotated by
- -15° and is in dorsal view; scale bar is 10 μ m.
- 5504 **P.** *Pseudoceratium brevicornutum.* Holotype from Herngreen et al. (2000, pl. 9, fig. 6, as
- 5505 *Pseudoceratium brevicornutum*); upper Ryazanian (middle Berriasian) lower Hauterivian;
- 5506 Vlieland Claystone Formation; well L02-03, The Netherlands. The specimen is in ventral view;
- 5507 length 114 μ m, breadth 60 μ m.
- 5508 Q-R. Pseudoceratium australiense. Holotype from Riding & Helby (2001, figs 15J-K, as
- 5509 Pseudoceratium robustum); Tithonian; Mindil-1 well, northwestern Australia. The specimen is in
- 5510 ventral view, high focus (Q) and median focus (R); scale bar is 25 μ m.
- 5511 S. Pseudoceratium exploitum. Holotype from Brideaux (1971, pl. 30, fig. 106, as
- 5512 Pseudoceratium exploitum); middle upper Albian; Lower Colorado Group; central Alberta,
- 5513 Canada. The specimen is in ventral view; length 158 μm, breadth 66 μm.
- 5514 T. Pseudoceratium gochtii. Holotype from Neale & Sarjeant (1962, pl. 20, fig. 3, as
- 5515 Pseudoceratium (Eopseudoceratium) gochtii); upper Hauterivian middle Barremian; Speeton
- 5516 Clay; West Heslerton, Yorkshire, England. The specimen is in ventral view; length 187 μm,
- 5517 breadth 93 μm.
- 5518
- 5519 **Figure 19.** Reproduced illustrations of holotypes of species treated in the present work 8.

- 5520 A-B. Pseudoceratium? iehiense. Holotype from Helby (1987, figs 16I-J, as Pseudoceratium
- 5521 *iehiense*); upper Tithonian lower Berriasian; Zeewulf-1 well, Exmouth Plateau, Western
- 5522 Australia. The specimen is in ventral view, foci on dorsal (A) and ventral (B) surfaces; x400.
- 5523 C-D. Pseudoceratium interiorense. Holotype from Bint (1986, pl. 3, figs 3, 9, as
- 5524 Pseudoceratium interiorense); upper Albian; Kiowa Formation; Western Interior, U.S.A.
- 5525 Enlargement (x640) of operculum (C) note two wall layers and reticulate connections; dorsal
- view (D); length with operculum detached 82 μm, breadth 40 μm, derived from magnification
 (x800) given in publication.
- 5528 E. Pseudoceratium iveri. Holotype from Nøhr Hansen (1993, pl. 19, fig. 1, as Pseudoceratium
- *iveri*); uppermost Barremian; Wollaston Formation; Aucella Bjerg, East Greenland. The
- 5530 specimen is upright and is in dorsal view; length 170 μm, breadth 85 μm.
- 5531 F. Pseudoceratium notiale. Holotype from Quattrocchio & Sarjeant (1992, pl. 5, fig. 1, as Aptea
- 5532 notialis); middle upper Tithonian; Puente del Arroyo Picún Leufú, Neuquén Basin, Argentina.
- 5533 The specimen is in dorsal view; length 75 μ m, breadth 55 μ m; scale bar is 10 μ m.
- 5534 G. Pseudoceratium? parvum. Holotype from Michael (1964, pl. 2, fig. 1, as Pseudoceratium
- *parvum*); lower Barremian; Ziegeleigrube Roklum, northwestern Germany. The specimen is of
- 5536 indeterminate orientation; length 25 μ m.
- 5537 H. Pseudoceratium robustum. Holotype from Michael (1964, pl. 2, fig. 2, as Pseudoceratium
- *robustum*); lower Barremian; Ziegeleigrube Roklum, northwestern Germany. The specimen is in
- 5539 dorsoventral view; length 154 μm.
- 5540 I-K. Pseudoceratium pelliferum. Holotype from Gocht (1957, pl. 18, figs 1a-c, as
- 5541 Pseudoceratium pelliferum); Valanginian upper Hauterivian; Rühlertwist-3 borehole, Emsland,
- 5542 northwestern Germany. The specimen is in ventral view ventral surface (I), apical horn (J),
- 5543 left antapical horn (K); length 132 μm, breadth 59 μm.
- 5544 L. Pseudoceratium solocispinum. Holotype from Davey (1974, pl. 9, fig. 6, as Pseudoceratium
- 5545 *pelliferum* var. *solocispinum*); middle upper Barremian; Speeton Clay, Yorkshire, England.
- 5546 The specimen is in dorsal view; length 103 μ m, breadth 67 μ m; phase contrast.
- 5547 M-O. Pseudoceratium retusum. Holotype from Brideaux (1977, pl. 4, figs 10–12, as
- 5548 Pseudoceratium retusum); Barremian Aptian; Richardson Mountains, Northwest Territories,
- 5549 Canada. The specimen is in dorsal view; length 100 μm, breadth 82 μm dorsal (M) and

- ventral (N) surfaces and detail of periphragm in left paracingular area (re-oriented with apex to
 left); M–N x500, O x1200.
- 5552 P. Pseudoceratium spitiensis. Holotype from Jain et al. (1984, pl. 3, fig. 42, as Pseudoceratium
- *spitiense*); Kimmeridgian lower Tithonian; Spiti Shale; Malla Johar area, India. The specimen
- is in dorsal view; length 114 μ m, breadth 70 μ m.
- 5555 Q. Pseudoceratium toveae. Holotype from Nøhr-Hansen (1993, pl.22, fig.1, as Pseudoceratium
- 5556 *toveae*); upper Barremian lowermost Aptian; Greenland. Overall length 190 μm.
- 5557 **R.** *Pseudoceratium turneri*. Holotype from Cookson & Eisenack (1958, pl.5, figs 2–6 as
- 5558 Pseudoceratium turneri); Albian; Gearle Siltstone; Rough Range No. 1, Western Australia. The
- specimen is in dorsal view; length 171 μm, breadth 122 μm, derived from magnification (x420)
- 5560 given in publication.
- 5561 S-T. Pseudoceratium weymouthense. Holotype from Helby (1987, figs 19A-B, as
- 5562 Pseudoceratium weymouthense); upper Tithonian lower Berriasian; Cape Weymouth-2 well,
- 5563 northern Queensland, Australia. The specimen is in ventral view dorsal (S) and ventral (T)
- surfaces; length 130.5 μm, breadth 73 μm, derived from magnification (x400) given in
- 5565 publication.
- 5566
- **Figure 20.** Reproduced illustrations of holotypes of species treated in the present work 9.
- 5568 A. "Circulodinium indicum" (herein considered a taxonomic junior synonym of
- 5569 Cleistosphaeridium diversispinosum). Holotype from Mehrotra & Sarjeant (1987, pl. 2, fig. 2, as
- 5570 *Cyclonephelium indicum*, an illegitimate name); Paleocene of Andhra Pradesh, India; length 55
- 5571 μm, breadth 65 μm.
- 5572 B. Cleistosphaeridium latoaculeum. Holotype from Yun Hyesu (1981, pl. 11, fig. 18, as
- 5573 *Cleistosphaeridium multifurcatum* subsp. *latoaculeum*); lower Santonian; Westphalia, Germany.
- 5574 The specimen is in dorsoventral view; length 72 µm, breadth 88 µm, derived from magnification
- 5575 (x550) given in publication.
- 5576 C. Cleistosphareidium? longispinosum. Holotype from He Chengquan (1991, pl. 9, fig. 19, as
- 5577 Cyclonephelium longispinosum); Middle Eocene; western Tarim Basin, southern Xinjiang
- 5578 Province, China. The specimen appears to be in dorsoventral view; dimensions unknown.
- 5579 **D.** Spiniferities? ambiguus. Holotype from He Chegquan (1991, pl. 28, fig. 7, as Cyclonephelium

- *ambiguum*); Paleocene; western Tarim Basin, southern Xinjiang Province, China. The specimenis in uncertain orientation; dimensions unknown.
- 5582 E-F. Turbiosphaera? sarrisii. Holotype from Archangelsky (1969, pl. 2, figs 6–7, as
- 5583 Polystephanephorus? sarrisii); Eocene; Río Turbio Formation, Santa Cruz Province, Argentina.
- 5584 The specimen is in uncertain orientation; length 43 μ m, breadth 40 μ m.
- 5585 **G.** *Trichodinium? granulatum.* Holotype from Horowitz (1975, pl.1, fig.4, as *Doidyx granulata*);
- originally considered to be from the Upper Triassic, but see text; southern Israel. The specimen is in ventral view; length 75 μ m, breadth 67 μ m.
- 5588 H. Polysphaeridium? combibaculum. Holotype from Song Zhichen et al. (1985, pl. 6, fig 10, as
- 5589 *Cyclonephelium combibaculum*); ?Lower Pleistocene; Longjing structural area, Shelf Basin,
- 5590 Donghai region, East China Sea. The specimen is in uncertain orientation; dimensions unknown.
- 5591 I-K. Batiacasphera? bulbosa. Holotype from Smith & Harding (2004, pl. 4, figs 6–8, as
- 5592 Cyclonephelium bulbosum); middle Volgian (upper Tithonian); Kashpir section, Volga Basin,
- Russia. The specimen is possibly in dorsoventral view; ventral focus (I), median focus (J) and
 dorsal focus (K); scale bar is 10 μm.
- 5595 L. Deflandrea? stagonoides. Holotype from Benedek (1972, pl. 2, fig. 12, as Ascodinium
- 5596 stagonoides); Upper Oligocene; Tönisberg, Lower Rhine region, Germany. The specimen is in
- 5597 dorsoventral view; dimensions unknown.
- 5598 M-O. Epelidosphaeridia? turrita. Holotype from Brideaux (1977, pl. 4, figs 1–3, as Canningia
- 5599 *turrita*); Barremian; Stoney Core Hole F-42, Richardson Mountains, Northwest Territories,
- 5600 Canada. The specimen is possibly in ventral view, high focus on ventral surface (M), mid-focus
- 5601 on ventral surface (N), low focus on dorsal surface (O); length 42 μm, breadth 50 μm.
- 5602 P. Petalodinium? granulata. Holotype from Morgenroth (1966, pl. 2, fig. 10, as Canningia
- 5603 granulata); Lower Eocene; of the Fehmarn, Katharinenhof, Germany. The specimen is in
- 5604 dorsoventral view; length 90 μm, breadth 78 μm.
- 5605 **Q-R.** *Selenopemphix? baculatum.* Holotype from Song Zhichen et al. (1985, pl. 6, figs 1–2, as
- 5606 Cyclonephelium baculatum); ?Lower Pleistocene; Longjing structural area, Shelf Basin, Donghai
- ⁵⁶⁰⁷ region, East China Sea. The specimen is presumably in dorsoventral view; dimensions unknown.

5611 Supplemental data

5612

The new material used in this study was drawn from the following sources: the Hume River and Imperial River outcrop sections in the Mackenzie Plain – Peel Plateau area of the Northwest Territories, Canada; the Glacier Fiord surface section, Axel Heiberg Island, Nunavut, Canada; exploration wells in offshore southeastern Canada (Argo F-38, Demascota G-32, Onondaga E-84 and Wenonah J-75); and exploration wells in the Labrador–Baffin Seaway (Roberval K-92 and Skolp E-07). Sections on each of these four areas follow.

5619

5620 Mackenzie Plain – Peel Plateau area

5621 Material from this area is from two surface sections, the Hume River and Imperial River (Supplemental data Fig. 1). Samples from the Hume River section were collected by Thomas 5622 Hadlari of the Geological Survey of Canada (Calgary), and Danielle Thomson and Claudia 5623 5624 Schröder-Adams of Carleton University, Ottawa, Canada; samples from the Imperial River section were collected by Thomas Hadlari. Information on the samples and specimens from this 5625 section used in this study is presented in Supplemental data Table 1. The basic stratigraphy is 5626 shown in Supplemental data Fig. 2 after Thomson et al. (2011), and a commentary to possible 5627 variation on this can be found in Fensome (2016). Details of sample occurrence in the Hume 5628 River section is shown in Supplemental data Figs 3-4. Details of sample occurrence in the 5629 Imperial River section is shown in Supplemental data Fig. 5. 5630

5631

5632 Glacier Fiord section, Axel Heiberg Island

This is a single section collected by Jennifer Galloway of Geological Survey of Canada
(Calgary). The location of the section is shown in Supplemental data Fig. 6. Information on the
samples and specimens from this section used in this study is presented in Supplemental data
Table 2. Details of sample occurrence in the Isachsen Formation in the Glacier Fiord section are
shown in Supplemental data Fig 7. A similar chart for samples from the younger Christopher
Formation is not available, but details of this part of the section can be found in Schröder-Adams
et al. (2014).

5641 Scotian Margin

Material from four Scotian Margin wells was used in this study (Supplementary data Fig. 8). 5642 5643 Information on the samples and specimens from this section used in this study is presented in Supplemental data Table 3. Biostratigraphical analyses of Demascota G-32, Onondaga E-84 and 5644 Wenonah J-75 were recorded in detail by Fensome et al. (2008, 2009). Charts for each of these 5645 wells are reproduced here as Supplemental data Figs 9-11, with samples used in the present 5646 study indicated by red boxes. The material from Argo F-38 used in the present study is based on 5647 new reconnaissance analyses, although no new stratigraphy has been developed; a chart for this 5648 5649 well is provided here as Supplemental data Figs 9-12.

5650

5651 Labrador Margin

Material from two Labrador Margin wells was used in this study (Supplementary data Fig. 13). Information on the samples and specimens from this section used in this study is presented in Supplemental data Table 4. Biostratigraphical analyses of Roberval K-92 were recorded in detail by Williams (2017). Biostratigraphical scheme for Skolp E-07 has been provided by one of us (GLW) and L. Dafoe (unpublished data). Charts for each of these wells are reproduced here as Supplemental data Figs 14–15, with samples used in the present study indicated by red boxes.

5659

5660 **References**

5662	Barss MS, Bujak JP, Williams GL. 1979. Palynological zonation and correlation of sixty-seven
5663	wells, eastern Canada. Geological Survey of Canada Paper 78-24, 117 p.

- 5664
- 5665 Canada–Newfoundland and Labrador Offshore Petroleum Board. 2008. Schedule of Wells:
- 5666 Newfoundland and Labrador Offshore Area. October 2008. <u>http://www.cnlopb.ca/wells/</u>.
- 5667
- 5668 Fensome RA. 2016. A palynological analysis of middle Cretaceous strata in the Hume River
- section, Northwest Territories, Canada. Geological Survey of Canada Open File 8073, 132 p.

|--|

5672	Fensome RA, Crux JA, Gard IG, MacRae RA, Williams GL, Thomas FC, Fiorini F, Wach G.
5673	2008. The last 100 million years on the Scotian Margin, offshore eastern Canada: an event-
5674	stratigraphic scheme emphasizing biostratigraphic data. Atlantic Geology 44:93–126.
5675	
5676	Fensome RA, Williams GL, MacRae RA. 2009. Late Cretaceous and Cenozoic fossil
5677	dinoflagellates and other palynomorphs from the Scotian Margin, offshore eastern Canada.
5678	Journal of Systematic Palaeontology 7:1–79.
5679	
5680	Galloway JM, Sweet A, Sanei H, Dewing K, Hadlari T, Embry AF, Swindles GT. 2013. Middle
5681	Jurassic to Lower Cretaceous paleoclimate of Sverdrup Basin, Canadian Arctic Archipelago
5682	inferred from the palynostratigraphy. Marine and Petroleum Geology 44:240–255.
5683	
5684	Hadlari T, MacLean BC, Galloway JM, Sweet AR, White JM, Thomson D, Gabites J, Schröder-
5685	Adams CJ. 2014. The flexural margin, the foredeep, and the orogenic margin of a northern
5686	Cordilleran foreland basin: Cretaceous tectonostratigraphy and detrital zircon provenance,
5687	northwestern Canada. Marine and Petroleum Geology 57:173–176.
5688	
5689	MacLean BC, Wade JA. 1993. Seismic markers and stratigraphic picks in the Scotian Basin
5690	wells. East Coast Basin Atlas Series, Energy, Mines and Resources Canada, 276 p.
5691	
5692	Nøhr-Hansen H, Williams GL, Fensome RA. 2017. Biostratigraphic correlation of the western
5693	and eastern margins of the Labrador-Baffin Seaway and implications for the regional geology.
5694	Geological Survey of Greenland and Denmark Bulletin 37, 74 p.
5695	
5696	Schröder-Adams CJ, Herrle JO, Embry AF, Haggart JW, Galloway JM, Pugh AT, Harwood DM.
5697	2014. Aptian to Santonian foraminiferal biostratigraphy and paleoenvironmental change in the
5698	Sverdrup Basin as revealed at Glacier Fiord, Axel Heiberg Island, Canadian Arctic Archipelago.
5699	Palaeogeography, Palaeoclimatology, Palaeoecology 413:81-100.

5701	Thomson D, Schröder-Adams CJ, Hadlari T, Dix G, Davis WJ. 2011. Albian to Turonian
5702	stratigraphy and palaeoenvironmental history of the northern Western Interior Sea in the Peel
5703	Plateau region, Northwest Territories, Canada. Palaeogeography, Palaeoecology,
5704	Palaeoclimatology 302:270–300.
5705	
5706	Weston JF, MacRae RA, Ascoli P, Cooper MKE, Fensome RA, Shaw D, Williams GL. 2012. A
5707	revised biostratigraphic and well-log sequence-stratigraphic framework for the Scotian Margin,
5708	offshore eastern Canada. Canadian Journal of Earth Sciences 49:1417–1462.
5709	
5710	Williams GL. 2017. Palynological Analysis of the Two Labrador Shelf Wells, Petro-Canada et
5711	al. Roberval C-02 and Total Eastcan et al. Roberval K-92, offshore Newfoundland and Labrador.
5712	Geological Survey of Canada Open File 8183, 63 p. (not formally published).
5713	
5714	
5715	Figure and table captions:
5716	Figures:
5717	
5718	Supplemental data Figure 1. Map of the Mackenzie Plain – Peel area showing the locations of
5719	the Hume River and Imperial River surface sections. Adapted from Hadlari et al. (2014, figs 1-
5720	2).
5721	
5722	Supplemental data Figure 2. Chronostratigraphy and formations according to Thomson et al.
5723	(2011). Adapted from Thomson et al. (2011, fig. 3).
5724	
5725	Supplemental data Figure 3. Sample locations in the Hume River section — Martin House and
5726	Arctic Red formations. Samples with specimens illustrated in this study are framed by a red box.
5727	Adapted from Thomson et al. (2011, figs 6–7).
5728	
5729	Supplemental data Figure 4. Sample locations in the Hume River section — Slater River and

5730	Trevor formations. Samples with specimens illustrated in this study are framed by a red box.
5731	Adapted from Thomson et al. (2011, figs 6, 8–9).
5732	
5733	Supplemental data Figure 5. Sample locations in the Imperial River section. Samples with
5734	specimens illustrated in this study are indicated in the inset red box. Adapted from a figure
5735	provided by Thomas Hadlari.
5736	
5737	Supplemental data Figure 6. Map of part of the Canadian Arctic Archipelago showing the
5738	location and general geological setting of the Glacier Fiord section on Axel Heiberg Island.
5739	Adapted from a figure provided by Jennifer Galloway (Galloway et al. 2013).
5740	
5741	Supplemental data Figure 7. Sample locations in the Galcier Fiord section — Isachesen
5742	Formation. Samples with specimens illustrated in this study are framed by a red box. Adapted
5743	from a figure provided by Jennifer Galloway.
5744	
5745	Supplemental data Figure 8. Map of the Scotian Margin, offshore eastern Canada, showing the
5746	location of the wells from which specimens illustrated in the present paper derive. Adapted from
5747	a figure provided by Andrew MacRae; see also Fensome et al. (2008) and Weston et al. (2012).
5748	
5749	Supplemental data Figure 9. Chart showing biostratigraphical, chronostratigraphical,
5750	lithostratigraphical, sample and well-log data from the Demascota G-32 well. For location, see
5751	Supplemental data Figure 8. Samples with specimens illustrated in this study are framed by a red
5752	box. Adapted from Fensome et al. (2008).
5753	
5754	Supplemental data Figure 10. Chart showing biostratigraphical, chronostratigraphical,
5755	lithostratigraphical, sample and well-log data from the Onondaga E-84 well. For location, see
5756	Supplemental data Figure 8. Samples with specimens illustrated in this study are framed by a red
5757	box. Adapted from Fensome et al. (2008).
5758	
5759	Supplemental data Figure 11. Chart showing biostratigraphical, chronostratigraphical,

5760	lithostratigraphical, sample and well-log data from the Wenonah J-75 well. For location, see
5761	Supplemental data Figure 8. Samples with specimens illustrated in this study are framed by a red
5762	box. Adapted from Fensome et al. (2008).
5763	
5764	Supplemental data Figure 12. Chart showing biostratigraphical, chronostratigraphical,
5765	lithostratigraphical and sample data from the Argo F-38 well. For location, see Supplemental
5766	data Figure 8. Samples with specimens illustrated in this study are those shown. Adapted from a
5767	figure provided by Andrew MacRae; lithostratigraphy from McLean and Wade (1993);
5768	biostratigraphy adapted from Bujak in Barss et al. (1979).
5769	
5770	Supplemental data Figure 13. Map of the Labrador Margin, offshore eastern Canada, showing
5771	the location of the wells from which specimens illustrated in the present paper derive. Adapted
5772	from Nøhr-Hansen et al. (2017).
5773	
5774	Supplemental data Figure 14. Chart showing biostratigraphical, lithology and
5775	lithostratigraphical data from the Roberval K-92 well, and the location of the single sample used
5776	in this study from this well. For location, see Supplemental data Figure 13. Lithostratigraphy
5777	from Canada–Newfoundland-Labrador Offshore Petroleum Board (2008); biostratigraphy from
5778	Williams (2017).
5779	
5780	Supplemental data Figure 15. Chart showing biostratigraphical, lithology and
5781	lithostratigraphical data from the Skolp E-07 well, and the location of the single sample used in
5782	this study from this well. For location, see Supplemental data Figure 13. Lithostratigraphy from
5783	Canada-Newfoundland-Labrador Offshore Petroleum Board (2008); biostratigraphy from L.
5784	Dafoe and G.L. Williams (personal communication March 2018).
5785	
5786	Tables:
5787	
5788	Supplemental data Table 1. Table showing the details of Mackenzie Plain – Peel Plateau area
5789	samples and specimens used for this publication. Column A gives the relevant Figure number

5790 from the present paper. Column B gives the taxon name. Column C gives the locality name.

5791 Column D gives the GSC Calgary locality (P) number. Column E gives the palynology slide

5792 number. Column F gives the GCS Calgary laboratory sample number. Column G gives the field-

sample collection number. Column H gives the measurement above the base of the section.

5794 Column I gives the GSC Type Collection number. Column J give the coordinates on the slide.

5795 England finder coordinates and optical details can be found through cross-referencing with

- 5796 Appendix 3 in the paper.
- 5797

Supplemental data Table 2. Table showing the details of Glacier Fiord samples and specimens 5798 5799 used for this publication. Column A gives the relevant Figure number from the present paper. Column B gives the taxon name. Column C gives the GSC Calgary locality (P) number. Column 5800 5801 D gives the palynology slide number. Column E gives the GCS Calgary laboratory sample (C) number. Column F gives the field-sample collection number. Column G gives the measurement 5802 in metres above the base of the formation: I = Isachsen Formation; C = Christopher Formation. 5803 5804 Column H gives the GSC Type Collection number. Column I give the coordinates on the slide. England finder coordinates and optical details can be found through cross-referencing with 5805 Appendix 3 in the paper. 5806

5807

Supplemental data Table 3. Table showing the details of Scotian Margin samples and 5808 specimens used for this publication. Column A gives the relevant Figure number from the 5809 present paper. Column B gives the taxon name. Column C gives the well name. Column D gives 5810 the palynology (P) preparation sample number. Column E gives the slide number. Column F 5811 5812 gives the depth in the well in metres (m) or feet (ft) and the type of sample (dc = ditch cutting, 5813 swc = sidewall core). Column G give the coordinates on the slide. Column H gives the GSC type number. England finder coordinates and optical details can be found through cross-referencing 5814 with Appendix 3 in the paper. 5815

5816

Supplemental data Table 4. Table showing the details of Labrador Margin samples and
specimens used for this publication. Column A gives the relevant Figure number from the
present paper. Column B gives the taxon name. Column C gives the well name. Column D gives

- the GSC type number. Column E gives the conventional-core number (Roberval K-92). Column
- 5821 F gives the depth in the well in metres. Column G give the coordinates on the slide. England
- 5822 finder coordinates and optical details can be found through cross-referencing with Appendix 3 in
- 5823 the paper.