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Abstract

Citizen-science thermometer measurements have the potential to provide information
about surface air temperature fields on scales smaller than is typically quantified by the
official monitoring network. As such National Meteorological Services are becoming in-
creasingly interested in these measurements as a possible source of data for use in weather
monitoring or forecasting. However, in order for the data to be used, biases in the data
need to be assessed. The most important source of bias is the potential over-heating of
the thermometer due to inadequate shielding or exposure. Previous research has indi-
cated that information about the nature of the instrument and its exposure is important
for correcting this bias. However, in the majority of cases this information is not avail-
able for amateur stations. In this paper we develop a statistical correction for shortwave
radiation-bias in the air temperature data recorded at 159 Weather Observations Website
(WOW) stations across the Netherlands during 2015 — 2016. Generalized Additive Mixed
Modelling (GAMM) is used to quantify and correct for shortwave radiation bias in the
hourly measurements, using a background temperature field generated from the official 34
automatic weather stations along with satellite-derived shortwave radiation estimates. It
is demonstrated that the corrected WOW data add local detail to the hourly temperature

field, which may provide a useful source of data to supplement official measurements.

Keywords: amateur observations; crowd sourced; Generalized Additive Model;
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1 Introduction

In 2011 the UK Met Office launched the Weather Observations Website (WOW) in associa-
tion with the Royal Meteorological Society (https://wow.metoffice.gov.uk). The project
aims to provide a web application through which individuals can upload their weather obser-
vations, recorded manually or via automatic weather stations, and access data recorded by
other observers. The repository contains both near-real time observations and historic ob-
servations from the WOW network. Although a relatively new venture, the WOW project
builds on earlier initiatives such as Weather Underground (www.wunderground.com), which
has provided web access to measurements recorded using private weather stations since 1993,
as well as projects that pre-date the internet age, notably the Climate Observers Link (COL)
(Brugge, 2010). The WOW network has grown substantially since its inception, with data
now being received from over 2000 sites worldwide, and associate projects have been de-
veloped in the Netherlands (WOW-NL, https://wow.knmi.nl) and Belgium (WOW-BE,
https://wow.meteo.be) by the Royal Netherlands Meteorological Institute (KNMI) and the
Royal Meteorological Institute of Belgium (KMI), respectively.

A particular advantage of the WOW and Weather Underground initiatives is the ability
to capture observations automatically from private weather stations. A range of variables
are recorded in the databases, including air temperature, wind speed and rainfall, and with
data uploaded as regularly as every ten minutes they constitute a large source of temporally
high-resolution readings (Bell et al., 2013). Given the wealth of observations in the WOW
repository, there has been a great deal of interest in the potential use of these data by Na-
tional Meteorological Services for weather monitoring and forecasting (Krennert et al., 2018).
In contrast to the locations of World Meteorological Organization (WMQO) approved official
weather stations, which aim to provide measurements that are representative over a wide area,
amateur stations are mostly sited in populated areas, and as such may provide important local
weather information, particularly in relation to urban environments (Wolters and Brandsma,
2012; Bell et al., 2013; Muller et al., 2013; Chapman et al., 2017; Fenner et al., 2017; Meier
et al., 2017; de Vos et al., 2017; Napoly et al., 2018).

In the Netherlands, there has been considerable research interest in the use of non-standard

meteorological measurements to supplement the network of official measurements. These have
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ranged from weather stations attached to lampposts (Ronda et al., 2017) to the amateur
measurements that are contained in the Weather Underground database (Steeneveld et al.,
2011; Wolters and Brandsma, 2012). Despite the different types of instruments used, all of
the studies have sought to use the measurements to analyse urban meteorology, and especially
to improve knowledge about the Urban Heat Island (UHI) effect (Oke, 1982; Chapman et al.,
2017; Steeneveld et al., 2011; Theeuwes et al., 2016; Thorsson et al., 2014; Lindberg and
Grimmond, 2011). This is a particularly important field of research given the increasing
proportion of urbanization in the country (DESA, 2017) along with the projected increase in
heatwaves in future decades (van den Hurk et al., 2006; Haines et al., 2006) — the effects
of which are potentially amplified by the UHI (Heusinkveld et al., 2010, 2014; Li and Bou-
Zeid, 2013; Li et al., 2015; Zhao et al., 2018), and are associated with an increase in thermal
discomfort (Molenaar et al., 2016).

The thermometer observations contained in the WOW repository can potentially provide
useful information about urban temperature but in order to fully utilise this information the
data must be corrected for potential biases. The siting of the instruments as well as the
type of instruments used can introduce biases that exceed the manufacturer-stated tolerances.
This was demonstrated in the year-long test of several commonly used amateur meteorological
stations alongside the official UK Met Office measurements at the Winterbourne meteorological
enclosure in Edgbaston, Birmingham by Bell (2014) and Bell et al. (2015). The air temperature
measurements displayed a marked bias as a result of inadequate radiation shielding — a feature
that has also been noted by Jenkins (2014) and Meier et al. (2017)— although the severity of
this bias was dependent on the type of instrument used. Using this information, a statistical
approach was developed by Bell (2014) to correct for radiation bias, along with the likely bias
introduced from poor instrument calibration.

In this paper we analyse the hourly, near-surface air temperature data recorded at WOW
sites across the Netherlands during the 24-month period from January 2015 until December
2016. These data have not previously been assessed for radiation bias in a systematic way.
Taking the findings of the previous studies described above as a starting point, we derive a
station-by-station correction for the WOW data using a statistical model that takes into ac-
count the background temperature field (derived from the official temperature measurements),

and an estimate of local direct shortwave radiation obtained from satellite data. We demon-
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strate that the corrected WOW data add local detail to the hourly temperature field, which

may provide a useful source of data to supplement official measurements.

2 Data and Methods

2.1 The nature of the WOW temperature data

The WOW air temperature data for stations situated in the Netherlands were obtained from
the UK Met Office data repository, along with the latitude/longitude coordinates of the station
and the time of observation. The number of WOW stations covering the Netherlands marks a
substantial increase over the number of official sites. During the period 2015-2016 a total of
318 stations supplied data to the WOW database, compared to the 34 official weather stations
(Figure 1). However, not all of the WOW station series are complete for this period and
stations were only used if they supplied (interpolated) hourly values that were 80 % complete
for each month. This resulted in a sample of 159 stations for use in this analysis. It should
be noted that the official KNMI automatic weather station (AWS) data are now included in
the WOW database, and when referring to the WOW stations we have excluded the AWS
stations.

The WOW stations are generally situated in urban environments, often in people’s gardens
or on school premises. The instruments typically used are relatively low-cost and are manufac-
tured, for example, by Davis Instruments or Oregon Scientific (Bell et al., 2015), although the
instruments from other manufacturers may be used as there is no stipulation on instrument-
type for the entry of data to the WOW. In addition, while there is the ability for observers
to supply meta-data in a standardized format, this is not mandatory; Bell (2014) estimated
that 15 % of observers omit this information, and clear information about the hardware used
was available in only around 60 % of stations. The coordinates of the station are mandatory
information, although the station altitude is not required; Bell (2014) estimated that for the
UK this altitude information was supplied by fewer than 75 % of observers.

In this analysis, all of the 159 WOW stations were analysed. However, four sample stations
were selected for closer examination. These stations represent the range of instruments and
exposure of the network across the Netherlands; the properties of these stations are summa-

rized in Table 1. Site A is a high-quality instrument situated in the De Bilt official WMO
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meteorological enclosure close to the official temperature measurements. Site B is a typical
instrument sited in a sheltered suburban garden. Site C uses the same instrument as Site B,
but is located in a low-cut grass field with an open exposure, where the nearest building is
10m from the weather station. Site D has a standard residential exposure and is situated in
the east of the country; the station uses the relatively low-cost AcuRite 5 in 1 instrument.
The WOW observations are recorded on varying time scales. In this analysis we are only
interested in hourly values and in order to simplify the analysis, the observation times were
rounded to the nearest 10 minute and these values were then interpolated to regular hours by
fitting a cubic smoothing spline to each station series. Gaps of longer than two hours (in the

10-minute values) without an observation were marked as missing.

2.2 The correction model

Generalized Additive Modelling (GAM) was used as the basis for the correction of the WOW
data. GAMs are an extension of Generalized Linear Modelling (GLM), which themselves are
a more flexible version of ordinary-least-squares regression, and allow a model to be fitted to a
dependent variable that is not necessarily from a Gaussian distribution (Hastie and Tibshirani,
1990). GAMs extend GLMs by allowing the use of one or more unknown (smooth) functions,
and may also include linear coefficients. Generalized Additive Mixed Modelling (GAMM) is a
further development that allows random effects and correlation structures to be accommodated
in the model (Wood, 2006).

Using the findings of Bell (2014) as a basis we modelled the WOW station data (Tie with
outcome at time i) at each site under a semi-parametric scheme (Hastie and Tibshirani, 1990)

using shortwave radiation (Rad) and background temperature (Tp,) terms as

Twow,i = Po + B1(Rad;) + f(Thgi) + €is € = Pi€i—2 + v,

where Tj, is formed from an interpolation of the hourly temperature measurements recorded
at the official KNMI weather stations, and Rad is formed from a local estimate of incoming so-
lar radiation derived from satellite retrievals. Sy represents an intercept term, and € is random
error assumed to be identically and independently distributed (i.i.d). Rad values represent

hourly averages over the hour leading up to the temperature observation. This corresponds
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to the findings of Bell (2014) who demonstrated a 1-2 hour lagged response of the WOW
measurements to shortwave radiation at the Winterbourne test site. In contrast, T}, represent
estimates of concurrent temperature measurements. The local derivation of Rad and Tj, is
described below

The smooth function f can be derived in a number of ways. Since we are dealing with a
univariate function the piece-wise cubic polynomial spline is an obvious choice as it is relatively
quick to converge. However, better model fitting was achieved by using a Thin-Plate Regression
Spline (TPRS) (Wood, 2003). TPRS are a more general form of cubic splines, and in practice
with the data used here produced splines that were slightly smoother and which were more
physically plausible.

Since the WOW observations analysed in this paper are comprised of hourly observations,
temporal autocorrelation in the observations needs to be taken into account in the models
in order to satisfy the i.i.d assumption. Neglecting temporal autocorrelation may lead to
inaccurate parameter estimation and poor uncertainty estimates of the model terms (Wood,
2006). We used a lag-2 autoregressive model in the GAMM, where the autoregressive coefficient
(¢) is estimated as part of the model fitting. The autogressive function was nested in each
month of data in order to speed-up the calculation. A variety of lag intervals were tested
and the lag-2 autocorrelation model effectively counteracted temporal autocorrelation in €, up
to a lag of 10 hours. A low-level of autocorrelation at around lag-24 remained in € for many
stations. This appears to represent a local diurnal cycle not quantified in the model covariates,
and is a likely feature of the local temperature data.

In this model the form of each of the parameters is chosen via a backfitting algorithm that
iteratively selects an optimal fitting of each function. The fitting of the smooth function f
represents a balance between over- and under-fitting of the function, i.e. between a spline
that is too smooth and one that is too “wiggly”. A penalization is imposed to the function
f to avoid over-fitting of the spline. An optimal fitting of the function in these models is
obtained through the calculation of a score that measures the degree to which the predictive
error is minimised. In the WOW-correction models used in this paper Marginal Likelihood
(ML) scores are used.

The fitting of the smoothed terms in the models used in this paper rely on the prior

setting of an upper limit (k) on the effective degrees of freedom (EDF) of the smoothing terms
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(Wood, 2003). This allows for a more efficient way of fitting the smoothing functions through
an eigendecomposition, but necessitates the subjective selection of k. As stressed by Wood
(2006) however, while this selection of k is subjective, the actual selection of the EDF uses the
pre-selected optimization procedure (Marginal Likelihood in this case), up to a limit of k& — 1.
Values of &k = 30 were chosen for the models used in this paper following application of the
heuristic tests recommended by Wood (2006).

This model assumes that Ty, can be modelled as a non-linear response to Ty ; (via f)
plus a linear response to Rad; (via the coefficient 31). By making this assumption we are able
to ensure that the response to radiation scales from a partial intercept at zero. We also tested
whether a simple model where the response to T}, was also linear, i.e. in the form of a GLM.
A significant difference was observed in these models in terms of the explained variance and
we therefore opted to retain the use of the smoothing function f under the GAMM scheme.
The non-linearity in f represents the local distortion to the background temperature field that
is assumed to arise from the temperature environment of the WOW station.

Prior to model-fitting, the T, values were quality-controlled against the respective Ty,
values: |Twow — Thg| > 8°C' values were removed, and identical values of Ty for more than
four consecutive hours were excluded. The Urban Heat Island in cities across the Netherlands
has been estimated by Steeneveld et al. (2011) to be of the order of 6 °C during calm, fair
weather and hence the threshold of 8 °C does not preclude the capturing of these types of
features in the data.

Since the GAM(M)s are additive in nature, the partial effects of each of the covariates
can be assessed individually. Specifically, the contribution of the shortwave radiation term
B1(Rad) may be extracted from the WOW temperature data as

/

Twow,i = Twow,i - b1 (Radl)

/

to produce the corrected WOW values (7,

wow,i)- 10 this way the shortwave radiation effect,

as modelled by the partial regression coefficient (51, is removed from T, and the corrected
temperature values are obtained from the (non-linear) relationship to Ty, (estimated from
f) plus any residual effect contained in e. Although the correction is zero at nighttime, the

models were applied to the data over the full 24-hour period to increase the sample size for
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fitting of the function f(T}4). Since the correction is applied through 3;(Rad), this correction
should be viewed as a parameterization of the shortwave radiation effect at a given WOW
station, under the assumption that any shortwave radiation effect detected in the data is an

artificial bias that results from inadequate shielding or siting of the instrument.

2.3 The background temperature field (7;,)

The background temperature values (T,) were calculated by fitting a GAM to the temper-
ature measurements recorded at the 34 official KNMI AWS sites (Figure 1), which was then
interpolated to the WOW station locations. In this case a tensive spline was used to model
the three-dimensional interaction of temperature across space (using longitude and latitude

coordinates) and time:

Tbg,i = Po + f(loni, lat;, timei) + €.

This space-time model is preferable to more common spatial interpolation techniques such
as kriging — which typically use only spatial coordinates and construct separate models for
each time-step — as the sample size for model fitting is increased considerably. This is im-
portant as there are only 34 AWS stations across the Netherlands, and this represents a small
sample size for fitting the interpolating model. The tensive spline has the advantage of being
insensitive to the units of measurement of the covariates (Wood, 2006), (degrees in the case
of longitude and latitude, and hours in the case of time). The spline is formed using the joint
interaction of longitude/latitude and time, where both components take a thin-plate spline
basis. As such an anisotropic relationship over space is modelled. The temperature lapse rate
is best captured by the longitude/latitude coordinates, since the altitude is relatively constant
across the Netherlands and for these purposes only becomes significant across the south of
the country. Tests were carried out using altitude as an additional covariate. However, the
fitted function did not have a plausible physical interpretation, which likely resulted from the
masking of the lapse-rate by hourly-scale temperature variations. Furthermore, altitude values
are not supplied in the WOW-station metadata and would need to be estimated via a Digital
Elevation Model adding to the uncertainty in lapse-rate estimation. Three other environmen-

tal parameters (coastal proximity, slope and aspect) were also tested in this model but were
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found to be insignificant, and are most likely also accommodated by the joint-interaction of
the latitude and longitude components.

It is impractical to fit this background temperature model to all of the data points simul-
taneously, since the model would take a considerable length of time and significant computing
resources to converge. Therefore the model was fitted on a day-by-day basis. To limit the
occurrence of edge effects, an overlap of six hours was used and hence for a given day data
from 6pm UTC of the previous day to 6AM UTC of the following day were used to produce

a moving-window of overlapping models.

2.4 The local shortwave radiation data (Rad)

Estimates of global solar radiation (the sum of direct and diffuse radiation) at the WOW sites
are derived from the MSG-CPP dataset (www.msgcpp.knmi.nl). These values are calculated
from the Meteosat SEVIRI imagery using the KNMI Cloud Physical Properties (CPP) al-
gorithm (Roebeling et al., 2006). In the visible range of the spectrum this dataset provides
15-minute retrievals at a ca. lkm resolution. At each WOW station the surface downwelling
shortwave (SDS) radiation values (in the unit of W/m?) were calculated as the average of the
nearest 3x3 pixels after Greuell et al. (2013).

The CPP algorithm calculates the SDS values using cloud retrievals and satellite-derived
reflectances. Deneke et al. (2008) evaluated the shortwave radiation data obtained from the
MSG-CPP dataset over the Netherlands through a comparison against pyranometer measure-
ments recorded at the official KNMI stations. They found that surface irradiance values were
comparable to ground-based instruments in the summer, although during the winter the ac-
curacy was lower as a result of the low sun elevation in combination with the large satellite
viewing angle across the Netherlands. Hence the data are considered to be suitable for the
correction of the WOW data, which are generally only affected by shortwave radiation bias at
higher radiation values, as indicated by the linear scaling against the radiation values from a
zero intercept. Night-time values (missing in the MSG-CPP visible spectrum data) were set

to zero.
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3 Results and Discussion

3.1 The background temperature and radiation values

Reliable estimations of the background temperature (734) and shortwave radiation values
(Rad) at each of the WOW sites are essential for successfully modelling, and ultimately cor-
recting, the WOW temperature measurements as any deficiency would potentially produce
skewed model residuals that would violate the i.i.d assumption of the model. To provide an
indication of the reliability of the background temperature model a leave-one-out cross vali-
dation exercise was conducted, using the observations from the official 34 official AWS (see
Figure 1). This exercise consisted of removing one AWS station at a time and interpolating
to that candidate station over all time steps in the years 2015-16 using the data from the
remaining stations. This cross-validation was repeated for each AWS in turn. The error of
Tyg relative to the official measurements was then calculated, with the assumption being that
a similar degree of error relative to T, would also be applicable to the WOW stations. The
results indicate that the interpolation produces a broadly unbiased estimate of the local tem-
perature (Figure 2). Root-mean squared error (RMSE) values for most stations are in the
range 0.4-0.8 °C, although there is a degree of variation during different seasons, with higher
RMSE values at certain stations during spring, summer and autumn. The largest of these
values (RMSE>1.5 °C) occur at the border regions, and likely result from the relatively large
distances from the nearest stations. Improvements could be made by incorporating data from
neighbouring countries.

The degree of error indicated in this cross-validation exercise compares favourably with the
results obtained by Bell (2014). That study similarly constructed background temperature
fields for the correction of UK-based WOW temperature readings. However, the method used
to interpolate the official measurements in the present study is greatly simplified compared to
the fields constructed by Bell (2014), which included many more covariates. The atmospheric
environment of the Netherlands does not require the range of covariates that are necessary for
an interpolation of temperature across the UK, but also the tensive spline used here provides
a more optimal fit of the data, using the few covariates that are employed. Notably, we do not
include short-range weather forecast data as a covariate in the model, as was the case with Bell

(2014), since a potential application of these data is assimilation in numerical weather models,
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and including the corrected WOW data could confound the determination of local temperature
information afforded by the WOW data. The GAMs are, however, flexible enough to allow
incorporation of such variables as additional model terms if required in future extensions of
the method.

The reliability of the local shortwave radiation estimates ( Rad) were assessed by evaluating
the MSG-CPP values against surface shortwave radiation values recorded at each of the official
weather stations. The MSG-CPP radiation estimates are strongly linearly related with station-
based shortwave radiation measurements during the year 2015-2016 (Figure 3), and have a
small bias of -2.29 W/m? and a RMSE value of 36.93 W/m?. These values are in accordance
with the findings of Deneke et al. (2008).

3.2 Evaluation of the GAMM for Station B

A GAMM was developed for each of the selected 159 WOW stations, following the method
described in Section 2, using data for the years 2015 and 2016. To provide an example of
the nature of the statistical models and the radiation correction, the results for station B (see
Table 1) are evaluated in this section.

The statistical model for Station B explains 98 % of the variation in the hourly WOW
temperature data (Figure 4 a), and the residuals from the model are normally distributed
with a standard deviation of 0.9 °C (Figure 4 b). This indicates that the WOW temperature
measurements can be successfully modelled using the background temperature and shortwave
radiation parameters since a deficiency in the model, for example through an important miss-
ing parameter, would produce a skewed distribution in the residuals. The incorporation of
the autocorrelation factor into the model has significantly reduced the degree of temporal
autocorrelation in the model’s residual. This is demonstrated in Figure 4 ¢, where residual au-
tocorrelation up to a lag of 41 hours from the lag-2 model are compared against those derived
where no temporal autocorrelation is assumed. The residual autocorrelation is reduced at all
lag intervals, particularly at lag-1. This plot also displays a moderate degree of autocorrela-
tion at around a lag of 24 hours, which indicates that the model is failing to capture a diurnal
cycle in the WOW temperature values. This may be a result of a inadequate representation
of heating from solar radiation, or may be a true feature of the local temperature field that

represents a diurnal urban temperature cycle.
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In the model for this station both of the parameters [f(Ty,) and Bi(Rad)| are highly
significant predictors (p<<0.001). A strong relationship with T}, is to be expected, however the
importance of Rad as a predictor is used as an indication of significant shortwave radiation
bias in the WOW readings for this station. In Figures 4 d and e the partial model terms are
plotted. It should be notated that the model-fitting is applied to values of y expressed as
deviations from the mean of y and hence in those figures the temperature response values are
relative to the intercept (f8p). The function f(Tpe) with 13 degrees of freedom shows a non-
linear relationship to the background temperature, with the largest deviations from linearity
occurring at the lowest temperature values. The radiation coefficient term (51 = 2.09e — 03)
scales from zero to a value of 1.67 °C (£ 0.09 °C, 95 % confidence interval) at Rad = 800W /m?..

Since the statistical models used here are additive in nature, the original time series of
WOW values can be decomposed into each of the model terms. The results from the time
series decomposition for Station B are demonstrated in Figure 5 for the year 2016. It should
be noted when evaluating this figure that the sum of the background temperature component,
shortwave radiation component, residual and the model intercept, equal the raw WOW values.
The annual and diurnal cycles in the shortwave radiation component are readily apparent from
this figure.

The magnitude of the estimated shortwave radiation bias in Station B is much larger than
that measured using a similar instrument (Davis Vantage Pro 2 ) by Bell (2014) in the field-
test at the Winterbourne meteorological enclosure; that instrument showed no appreciable
radiation bias. However, the instrument used in that experiment was equipped with fan-
assisted aspiration, whereas the instrument at used at Station B is naturally ventilated; the
lack of assisted ventilation therefore appears to have a detectable effect in these results and

leads to significant over-heating under moderate-to-high levels of insolation (>500 W /m?).

3.3 Ewvaluation of the Radiation Bias in all Test Stations

In Figure 6, tile plots are produced for the four Test Stations (Table 1). These plots show
the average bias per month and per hour of the day (c.f similar plots by (Bell et al., 2015) for
the Winterbourne test site). Stations A and C have the lowest estimated shortwave radiation
bias, up to average values of 0.6-0.7 °C in the summer months at around noon. Since Site

A uses a high-quality instrument and is sited in the official De Bilt Meteorological enclosure,
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a relatively low bias would be expected. The results from Site D show the largest bias, with
average noon biases reaching values above 3 °C during high-summer.

Sites B and C both use a passively-ventilated Davis Vantage Pro2 instrument. The main
difference in these sites is the exposure of the instruments: the instrument at Site C is sited
in an open field that consists of short grass, whereas Site B is in a more enclosed residential
setting. These results therefore suggest that the increased air-flow that would be expected
at Site C enhances the passive ventilation and reduces the shortwave-radiation bias in the
temperature readings. This effect could possibly be incorporated into the statistical models
through the incorporation of wind speed as an additional covariate. However, while many
stations record wind speed, it is not ubiquitous across the network and the values are highly
susceptible to local wind-flow distortion. Nonetheless, incorporation of this parameter in the
models could be considered in future updates to the method.

Since Station A is located in the De Bilt meteorological enclosure the validity of the
radiation correction can be assessed through comparing the WOW data against the official
AWS temperature measurements. In Figure 7 we have plotted the root-mean squared error of
the raw and corrected WOW data relative to the AWS data for at each hour of the day for four
selected months. The correction to the data has reduced the error to values consistent with
those observed during the night, when no corrections are applied to the data. This background
level of error is the same order of magnitude as the precision of the measurements that has been
estimated by the instrument manufacturer to be between + 0.3-0.4 °C. Variations around this
range in the corrected readings in Figure 7 likely result from sampling bias, arising from the
relatively small sample sizes used here and because the errors are not taken under laboratory

conditions.

3.4 Correcting Shortwave Radiation Bias across the WOW network

To examine the Ty, and Rad responses across the network, we have plotted the partial model
terms for all of the selected 159 WOW stations in Figure 8, in a similar manner to Figures
4 d and e above; the terms for the four test stations are also indicated. The departure from
linearity of the Tj, terms is most evident at the lower temperature values, and is apparent
in many of the stations. This non-linearity is likely a result of the urban distortion to the

background temperature field, beyond the shortwave radiation effect that is captured by the
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The radiation coefficient (/1) is significant in all of the station models. However, the
magnitude of bias estimated using this coefficient varies greatly across the network (Figure 8
b). Several stations have radiation bias that is below 0.3 °C across the range of radiation values,
and this is below the usual manufacturer-stated precision that is typically of the order of + 0.3
°C. Other stations have large estimated bias that are exceed 2 °C at Rad = 800 W/m?. It is
likely that the range of 81 coefficients across the network results from the different instruments
employed. This cannot be verified as the meta-data for all stations are not easy to acquire
(c.f. Bell (2014) who used 'web-scraping’ to obtain information for certain UK WOW stations),
however the results from the four test stations — for which we do know the type of instruments
used and their general situation — suggest that this is the case. Test stations A and C are
at the lower range of this spread, whereas Station D is the station that is most affected by
shortwave radiation bias by this estimation. However, as suggested above, it would seem
that the degree of shortwave radiation effect is a combination of the nature of the instrument
and the exposure/situation of the instrument. In addition to the enhanced ventilation in the
Davis VP2 instruments, these siting-effects likely also include a myriad of factors such as the
sky-view factor, the local land-use or local boundary conditions. An evaluation of a network
of sensors such as that provided Netatmo (e.g. Napoly et al. (2018)) would be useful in this
respect, since the confounding effect of different instrument types would be removed.

Several previous studies have indicated a non-linear response of citizen-science temperature
observations to shortwave radiation bias (Jenkins, 2014), particularly for those instruments
that were particularly vulnerable to shortwave radiation bias (Bell, 2014). A linear function
was used in the GAMMSs developed in the present study in order to ensure a scaling of the
radiation component from a partial zero intercept, but this is likely to be a simplification. The
analysis by Bell (2014) indicated that a quadratic function was most suitable for capturing
the radiation effect in the stations most affected by such biases, and hence the linear function
used here is likely to be a conservative estimate of shortwave radiation bias.

One of the main applications of the WOW data is for the examination of the UHI effect,
which is generally not captured by the official network of weather stations. A risk with the
correcting of the WOW station temperature data is that true UHI is mistaken for shortwave

radiation bias. To examine this we have calculated the diurnal cycle of temperature for each
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season as averages from the official AWS data and both the raw and corrected WOW tem-
perature measurements (Figure 9). The results indicate a typical feature found in the diurnal
temperature cycle of urban areas relative to the background rural temperature (represented
here by the AWS data) (Oke et al., 2017). Temperatures during the night are generally warmer
in urban areas but around dawn this difference reduces. This remains the case until the af-
ternoon when the difference increases again. The corrected WOW values in Figure 9 clearly
show this diurnal variation. In contrast, the raw WOW values show an augmented diurnal
cycle with elevated temperatures between around 9-14UTC, particularly during the spring
and summer seasons. These results indicate that while the largest shortwave radiation bias
is removed from the data, the urban-related diurnal cycle is retained in the corrected WOW

data.

3.5 Mapping the Temperature Data

To assess the value of the corrected WOW temperatures in examining the temperature field
across the Netherlands, we have mapped the AWS temperature values and the AWS together
with the corrected WOW data maps (AWS+WOW). This has been done for the hottest and
coldest events in the Netherlands during the 2015-2016 period: the 1300UTC readings from
2 July 2015, and the 0300UTC readings from 19 January 2016 (Figure 10). By comparing
the AWS and AWS+WOW maps the extra detail added by the WOW data can be examined.
It should be noted, however, that while the AWS are relatively evenly spatially distributed
the WOW are concentrated in urban areas and hence the AWS+WOW interpolation will be
biased towards the urban areas.

The July 2015 event was connected with a southerly airflow resulting from a high-pressure
system centred over Scandinavia, and occurred during a week that saw very high temperatures
recorded across northwest Europe. The spatial pattern of temperature observed from the AWS
and AWS-+WOW stations is broadly similar, with a gradient of temperatures evident across
the country from 36 °C in the south to less than 24 °C at the coast. However, the map
calculated using the AWS+WOW data indicates local detail not seen in the maps generated
from the AWS data alone. In particular, several urban heat and cool islands (Oke et al., 2017)
are apparent in the data, which correspond to urban centres and parkland respectively.

The January 2016 event was associated with the development of a ridge of high-pressure
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that had built from the east over the previous two days. As with the July 2015 maps, the
spatial gradient is broadly consistent in the maps produced from the AWS and AWS+WOW
data, although additional spatial features are apparent in the maps using the AWS+WOW
data. Temperatures are on the whole are warmer in the AWS+WOW map, which likely reflects
the urban-bias in the location of the WOW stations. A relatively large difference also occurs
in the south-western extremity of the country. The nearest official AWS at the location is at
Vlissingen, which although located on land is significantly affected by oceanic conditions. The
use of the corrected WOW data result in a cooler interpolated temperature for that region,
which further indicates the warm bias at the Vlissingen site during this cold winter event.

A factor that is not taken in correction of the WOW temperature data is the spatial-scale
lengths that are represented by the WOW data. The AWS locations are chosen so that the
data are representative of conditions over a relatively wide area, although as discussed above in
the case of certain stations such as Vlissingen this ideal may not always be reached. Similarly,
the WOW stations should be representative of the general conditions that are experienced in
the vicinity of the station, albeit in this case often from an urban environment. In practice,
however, the stations are sited at the convenience of the observer and hence the readings
will represent a very small area (Bell, 2014), possibly on the scale of a few metres. This
need not be the case, however, as indicated in the case of sample station C (see Table 1),
which appear to represent well the conditions surrounding the observation-site on account of
the instrument being located in an open situation, which is typical of the local environment.
Nonetheless, in order to make full use of the (corrected) WOW data for examining temperature
fields an evaluation of the likely spatial scale represented by each of the station would need
to be conducted. This would entail an examination of the surrounding environment of the
station, through the use of digital terrain information. This would also require precise station
coordinates, which are not always provided. However, representativity error could be reduced
when using the WOW data (in combination with the official AWS data) for country-scale
mapping through a spatial smoothing procedure. The degree of smoothing used in Figure
10, for example, is determined by the nugget variance of the variograms, which is estimated
automatically. Hence the maps calculated from the AWS+WOW data depict a spatial-scale
that is larger than the station-scale but smaller than the AWS maps. However, these maps

are not able to detect all features of urban temperature, given the large intra-urban variability
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in air temperature.

3.6 Aspects to Consider for Operational use of the Corrected Data

The WOW data are uploaded by users in near-realtime, with often only a delay of minutes
before the data are made available on the WOW website. Similarly, both the satellite data and
the AWS values are available in near-realtime. The WOW data and this correction method
are therefore of potential use in operational observing or forecasting procedures by National
Meteorological Services. The question therefore arises: how can the GAMM approach to
correcting the WOW temperature data developed in this paper be used in such operational
situations?

A major limitation to the use of the WOW data is the short duration of many records. In
this analysis only around half of the total stations that supplied data to the WOW repository
during the period 2015-2016 were used, since criteria were placed on the minimum number
of missing values in a series (see Section 2.1). While this ensures that the statistical models
are comparable between stations, it severely limits the pool of available stations. A different
approach was taken by Bell (2014). His analysis used an algorithm that gradually adjusted
the uncertainty of the bias as new data were added. Such an approach could be used in the
GAMM models presented here through use of the standard error metrics that can be calculated
for the smoothing splines (see for example Figure 4 e). These uncertainty estimates would
be expected to reflect sampling density, and could be used to indicate uncertainty through a
resampling scheme, through which draws from the posterior distribution of the spline could
be taken; these values could be used to produce a range of plausible corrections relative to the
spline uncertainty.

The question also arises in an operational setting about the speed of computation. The
GAMM takes considerable time to converge (several hours for a given station). However, in an
operational context a given model could be saved for each station and the corrections applied
as new data are received. The background temperature values are quicker to derive since
an autocorrelation is not embedded in the model. Similarly the satellite-derived shortwave
radiation estimates are quick to produce, since their derivation only relies on a pixel-overlay

across the station network.
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4 Conclusions

A correction for shortwave radiation-bias has been calculated for the hourly temperature mea-
surements taken at 159 WOW sites across the Netherlands. The corrections were derived on a
station-by-station basis for data recorded over the 2015-2016 period, with the aim of retaining
the local-scale information contained within the data, whilst removing the bias resulting from
inadequate shortwave radiation shielding. Although derived for the WOW network across the
Netherlands, the technique developed in this paper could equally be applied to other stations
in the WOW network — which has the highest density across the UK, the Netherlands and
Belgium — and to other platforms such as Weather Underground or Netatmo, which offer a
wider area of investigation.

The correction is calculated by fitting a Generalized Additive Mixed Model (GAMM) to
each station series, using satellite-derived shortwave radiation estimates and a local estimate
of the background temperature as model covariates. By decomposing the WOW temperature
series into components relating to each of the covariates, the effects of the shortwave radiation
component can be extracted from the data. The GAMM-approach offers an extremely flexible
way of modelling and hence correcting the WOW data, through the ability to model both
linear and non-linear responses and to incorporate a temporal autocorrelation component.

We have focused on shortwave radiation-bias in this paper, as this the most significant
limitation that is expected in readings from relatively low-cost weather stations, and which
through necessity are generally not sited in optimal locations. The shortwave radiation biases
estimated through the models developed in this paper are broadly comparable in magnitude
to those measured or estimated in previous analyses. However, these models are able to
correct for the shortwave radiation bias in the absence of meta-data about the nature of
the instruments or their exposure — information that is typically missing or incomplete in
databases of citizen-science observations. The correction relies on the assumption that any
direct relationship between global shortwave radiation and temperature values beyond the
background (rural) temperature temperatures are due to shortwave radiation-bias. Under
this assumption shortwave radiation biases are detected in all of the WOW stations but the
magnitude of bias varies considerably across the network. This appears to be related to a

combination of the nature of the instruments and their exposure. Further analysis is required
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on the spatial-scale that is depicted in the corrected WOW data. Nonetheless, the data
potentially allow a more detailed picture to be developed about temperature variability at a
scale smaller than can be depicted by the official network of instruments, and particularly with

regard to urban effects on the temperature field.
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Tables

Table 1: Properties of the four sample stations. The Urban Climate Zone (UCZ), Temperature and
Exposure are subjective assessments of the site and are supplied by the respective site operators. The
UCZ is as defined by the WMO (2014) ! 5 - Medium development; 6 - Mixed use with large buildings
in open landscape; 7 - Semi-rural development. 2 A - Standard instruments in Stevenson Screen; B -
Standard instruments in Stevenson Screen or manufacturer supplied AWS shortwave radiation screen;
C - Standard instruments in Stevenson Screen or manufacturer supplied AWS shortwave radiation
screen, site exposure 1 or less. 3 Exposure: I - Sheltered exposure; IT - Restricted exposure; IIT -
Standard exposure; V - Very open exposure.

Longitude Latitude Instrument Urban Climate Zone! Instrumentation? Exposure?
("E) (*N)
A 5.176 52.098 Vaisala WXT520 6 B I1
B 5.253 52.079 Davis VP2 5 C I
C 5.294 51.396 Davis VP2 7 A V
D 6.687 52.348 AcuRite 5-in-1 5 B 11
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Figure 1: The locations of the official KNMI AWS and the WOW stations across the Netherlands. The
WOW stations are categorized into those stations used in the study (WOW selected), and those that
contained too many missing values for the models to be applied (WOW excluded). Urban areas defined
using the Coordination of Information on the Environment (CORINE) land-cover dataset (CLC2018)

are indicated by shading.
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Figure 2: Results of the leave-one-out cross-validation of the KNMI temperature observations. a)
shows a scatter plot of the interpolated values relative to the recorded temperature values, and b)
shows the root-mean square error between the interpolated and recorded values. The inset in a)
shows a histogram of the interpolated minus the recorded values. The seasons take the conventional
meteorological definition (Winter as Dec-Feb, Spring as Mar-May etc.).
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Figure 3: Hourly-mean comparison of the MSG-CPP direct shortwave radiation estimates relative to
recorded shortwave radiation at the official KNMI stations over the period 2015-2016.
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Figure 4: Plots of several model attributes for station B: a scatter plot of fitted values against
predictand values (a); a histogram of the model residuals, with the vertical line indicating the mean
value (b); autocorrelation function (ACF) for a GAMM with assumed lag-2 autocorrelation (black)
and assuming independent residuals (grey) after Wood et al. (2017) (c); and the temperature (d) and
shortwave radiation (e) partial terms from the model. In d) and e) the standard errors of the partial
model terms are also indicated (dashed lines).

27



a) b)

WOW Temperature WOW Temperature
35
30 1 30 -f
204 254
10+ 207
15+
O <
10+
Background Temperature Component Background Temperature Component
20 1 20 -f
104 15+
10+
O -
o —~ 5+
O
L -104 é)./ 0-
® o
= 2
© Radiation Component © Radiation Component
) @
Q o
g £ 1s5-
@ S
1.0+
0.5+
0.0
Model Residual Model Residual
2.5+
2 <
04 0.0+
27 -25-
_4 -
T T T T — -5.0 t : T T T
Jan 2016 Apr2016 Jul2016 Oct2016 Jan 201 Jul 04 Jul 11 Jul 18 Jul 25 Aug 01
Time Time

Figure 5: Time series plots showing the original WOW temperature data at test station B, the back-
ground temperature and shortwave radiation terms, and the model residual for the year 2016 (a) and
for July 2016 (b). The shaded region in (a) indicates the period covered in (b). Note the slightly
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day (UTC, y-axis).
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Figure 7: Root-mean squared error values of the raw and corrected WOW data at the De Bilt
meteorological enclose relative to the official AWS values over the period 2015-2016. Values are
calculated for each hour of the day in the months indicated.
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Figure 8: Plots showing the background temperature (a) and shortwave radiation (b) partial model
terms calculated from the GAMMs for each WOW station (grey lines). The continuous black line
indicates the mean across the station models, and the values for the four test stations are highlighted.
The models are fitted using data from the full 24-month period.
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Figure 9: Average temperature values per hour of the day (UTC) over the period 2015-2016 for each
each season calculated as the mean from the KNMI AWS weather stations and the raw/corrected
WOW stations. Note the different y-axis in each of the panels. The seasons take the conventional
meteorological definition (Winter as Dec-Feb, Spring as Mar-May etc.)
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Figure 10: Maps of interpolated temperature for a) 1300 UTC on 2nd July 2015 and b) 0300 UTC
on 19th January 2016. The maps on the left (AWS) are produced using only the official KNMI
station readings, and the maps on the right (AWS+WOW) use both the corrected WOW temperature
measurements and the AWS data. The maps are produced using ordinary kriging, with a separate
variogram fitted to each map. Note the different contour spacing in a) (2 °C) compared to b) (1 °C).
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