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Summary 
 The National Plant Monitoring Scheme (NPMS) is a volunteer-based structured plant 

recording scheme. This report focuses on the development of a new statistical model for the 

species-level data generated by the NPMS. The aim is ultimately for this to contribute to a 

new indicator of UK habitat quality. 

 NPMS surveyors collect data on plant abundance (percentage covers) from small plots 

targeted at specific habitats. They can participate at different levels, with the level of 

participation influencing the list of species sought in the field. Typically, surveyors record 

around 5 small plots in a 1 km square, with each plot being visited twice a year. 

 NPMS data must be processed in order to accurately represent the information content of 

the plot surveys. Because surveyors use different lists of species depending on their level, in 

some cases we need to distinguish between true absences (species on a surveyor’s target list 

but not reported) and unknown cases (species not on a surveyor’s target list, meaning that 

absence from a list is not informative). 

 We present a novel hierarchical statistical model for NPMS species-level data. This model 

seeks to make maximum use of the data collected, and integrates a standard occupancy 

modelling approach for plot detections with a Beta distribution model for a species’ non-

zero cover data. 

 We evaluate the proposed model using a variety of different simulated datasets. The 

performance of the model is assessed in relation to the bias and variance shown relative to 

the actual parameters used in the data simulations. 

 The simulations indicate that the model performs as expected under a “perfect” scenario. 

Smaller datasets induce various biases, many of which can be traced to the fact that, in our 

simulations, abundance and detectability are closely related. This biases the estimated mean 

of the underlying cover distribution upwards, and also impacts estimates of the intercept 

and regression coefficient in the detection sub-model. In real datasets this relationship 

would likely be less clear-cut, and we do not expect these biases to affect species’ relative 

annual trend estimates. 

 Finally, we apply the model to NPMS data collected between 2015 and 2018 for 86 grassland 

species. The model estimates ecologically sensible mean cover values for the species 

analysed. However, mean plot occupancies tended to centre on 0.5, suggesting that many 

species may not yet have sufficient data for mean occupancy to be well estimated. 

 A novel combined abundance/occupancy indicator has been developed for NPMS data in a 

Bayesian framework. The simulation tests and applications to real data explored in this 

report indicate that the model performs well in ideal scenarios; biases in less data-rich 

scenarios can largely be explained by relationships between abundance and detectability. 

These are likely to be less clear-cut in real datasets, and future work will explore how 

additional covariates describing a species’ detectability could be incorporated. Extending the 

model to create annual indices, and considering how these may be aggregated, will also be 

required for the future creation of a habitat quality indicator using NPMS data.

mailto:olipes@ceh.ac.uk
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1. Introduction 

The National Plant Monitoring Scheme (NPMS; www.npms.org.uk) is a volunteer-based, habitat and 

plant monitoring scheme launched in 2015 (Walker et al., 2015). It was conceived as a national 

sample of high quality semi-natural habitats, but one that was straightforward enough in design to 

be appealing to volunteer botanical recorders. Comprehensive information on the founding 

motivations and design of the scheme is available in several reports and papers (Pescott et al., 2019, 

2016, 2015, 2014; Walker et al., 2015, 2010), and we do not review all of this information here. 

This report deals with the development of an analytical approach designed to produce species-level 

trend lines from proportional cover and occupancy data collected through the NPMS. The two main 

topics covered are data preparation (i.e. processing raw data collected by NPMS volunteers into a 

structure suitable for the proposed model), and the modelling approach itself. The data processing 

steps and model presented here do not represent the only possible approaches, but are an attempt 

to extract the maximum amount of information from NPMS data, based on knowledge of the design 

of the scheme. Depending on the amount of information on real world states and processes actually 

present in the dataset (rather than posited to be present in advance of any actual data inspection or 

analysis), the approach here may be simplified, or indeed expanded, in the future. 

2. The NPMS sampling protocol and dataset 

The core aim of the NPMS is to sample plant communities within habitats of conservation value 

using small plots. Volunteers are assigned a 1 km square within which such plots are established. 

Ideally these are visited twice a year, every year, although it is acknowledged that in reality the 

frequency of visits may be less than this, either because a square may be in a remote location, or 

because volunteers rotate 1 km squares between years to introduce additional novelty to their 

survey activities, and to reduce pressure on sensitive habitats. Figure 1 is an overview of the NPMS 

sampling process; much more detail can be found in Pescott et al. (2019). 

The National Plant Monitoring Scheme (NPMS) is a volunteer-based structured plant recording 

scheme. This report focuses on the development of a new statistical model for the species-level 

data generated by the NPMS. The aim is ultimately for this model to contribute to a new 

indicator of UK habitat quality. 

NPMS surveyors collect data on plant abundance (percentage covers) from small plots targeted 

at specific habitats. They can participate at different levels, with the level of participation 

influencing the list of species sought. Typically, surveyors record around 5 small plots in a 1 km 

square, with each plot being visited twice a year. 

http://www.npms.org.uk/
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Figure 1. A schematic of the NPMS survey process from the volunteer perspective. 

The key steps in Figure 1 are (2) Volunteer allocated square, (3) Choose level, (5) Identify NPMS 

habitat at ~3 points and record square plots, and (6) Identify NPMS habitat at ~2 intersects and 

record linear plots. This captures the process whereby volunteers chose an available 1 km square 

and attempt to set-up several small square and/or linear plots within that square (Walker et al., 

2015). The process of choosing plots is initially governed by a structured process designed to 

minimise the various biases involved in giving surveyors a completely free choice (Pescott et al., 

2019). The below figure demonstrates the structure of this plot selection process (Figure 2). 

 

Figure 2. An example of the type of 1 km square map that a surveyor receives with their survey pack. The gridded 

numbered squares and gridlines are intended to reduce bias in plot placement. See the main text for more information. 



v.1.1 - FINAL  8th July 2019 

5 
 

The small numbered squares in Figure 2 are laid out according to a 5 x 5 grid, although squares are 

omitted if they intersect urban, suburban or improved grassland land cover types as defined in the 

CEH 2007 Land Cover Map (Morton et al., 2011; Pescott et al., 2019); these squares are the unbiased 

candidate locations for volunteer plot surveys. The four grid lines dissecting the 1 km square into 

ninths are an unbiased approach to indicating potential locations for volunteers to set up linear plots 

(the gridlines are unbiased with respect to the underlying land surface). The red starred locations 

along these gridlines (Fig. 2) indicate potential survey points along linear habitat features, such as 

hedgerows or arable field margins. Note however, that the NPMS also allows for the self-selection of 

plots in order to account for the eventuality that these pre-selected locations are all unavailable, or 

do not coincide with NPMS habitats. 

Once selected, volunteers identify the habitat types within their plots. As a result of pre-launch 

consultations and field trials with volunteers, a two-tiered approach to habitat identification was 

developed (Pescott et al., 2019). The main reason for this was the lack of confidence of some 

volunteers when identifying the “fine-scale” habitat types developed for the NPMS. This two-tiered 

approach means that groups of associated fine-scale habitats are grouped into broad-scale 

categories, and volunteers then have the choice between recording at each of the two levels for any 

given plot. The broad- and fine-scale habitat types are shown in the table below (Table 1; Walker et 

al., 2015). 

Table 1. Broad and fine-scale NPMS habitat categories with the associated numbers of wildflower and indicator species (at 

the broad scale). Reproduced from Walker et al. (2015). 

 

All fine-scale NPMS habitats have associated positive and negative indicator species; positive 

indicators are taken to indicate a higher quality, or a more typical composition, of a habitat, whereas 

negative indicators are taken as signalling some type of decline in habitat quality. Counts of such 

indicators are shown in the above table (Table 1) for each broad-scale habitat category. As well as 

choosing the level at which habitats are discriminated (broad or fine), volunteers also choose their 

general level of participation in terms of the plant identification challenge. These levels are named 

Wildflower, Indicator and Inventory (these roughly coincide with beginner, improver and expert 

levels of identification ability, although even a “beginner” should be reasonably confident identifying 

the set of plants listed at that level). An Inventory-level recorder should be recording all species in a 

plot (regardless of whether flowering or not), although of course some level of error is inevitable in 

some habitats (e.g. recently mown or heavily grazed grassland), as is often the case for professional 

surveys (Morrison, 2016; Scott et al., 2008). Wildflower- and Indicator-level surveyors record a 
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specific set of indicator species linked to a habitat; Indicator-level recorders search from a longer list 

of species than those recording at the Wildflower level (see Table 1 above). The full list of indicator 

species, with their habitat affiliations, can be viewed at the NPMS website here; they are also 

illustrated in the NPMS species identification guide to be found here. The methodology behind the 

selection of the final set of habitat indicator species can be found in Pescott et al. (2019). 

Whilst the preceding sampling methodology was designed to be as accommodating as possible from 

the surveyor point of view, as befitting an accessible and sustainable citizen science scheme (Pescott 

et al., 2019), surveyor-choice flexibility introduces a number of challenges from an analytical 

perspective. For example, depending on the choices that a surveyor makes with respect to habitat 

resolution and level of general participation (i.e. Wildflower, Indicator etc.), a particular species may 

be present in a plot, absent, or in some unknown state (because the species of interest was not 

listed for the particular habitat-surveyor level combination at which a plot was surveyed). The 

important process of manipulating the raw NPMS dataset in order to generate a maximally 

informative set of “states” for any given species across all samples relevant to a particular modelling 

exercise is described in the next section. 

3. Processing the NPMS dataset 

Scripts 1 and 21 

The first step in the processing of the raw NPMS data, as captured into the PostgreSQL database 

underlying the NPMS website, is to extract the required information into an appropriate format for 

modelling. At the current time two separate SQL queries are run from within R (script 1), retrieving 

the relevant information. These are defined as functions, and are run separately in script 2; note that 

to run this script a password for the PostgreSQL database is required. The first function in script 1 

(getNpmsData_PlotsSamples) retrieves sample level information that will be required to later 

infer the underlying inferred status (i.e. present/absent/unknown) of a particular species in relation 

to surveyor sampling decisions. These data are returned in the following form (Table 2). 

Table 2. Information concerning samples (i.e. plot visits) retrieved for processing. plot_id is the label of a small plot; monad 

is the 1 km grid reference; sample is the identifier for a sampling visit; surv_habitat is the surveyor-reported habitat for the 

sampling visit. 

 

                                                           
1 Links to scripts can be found in the addendum at the end of this document. 

42360 TQ1168 884186 Wildflower survey Neutral pastures and meadows

42361 TQ1168 884198 Wildflower survey Neutral pastures and meadows

42363 TQ1168 884203 Wildflower survey Neutral pastures and meadows

42364 TQ1168 884216 Wildflower survey Nutrient-poor lakes and ponds

42367 TQ1168 884257 Wildflower survey Hedgerows of native species

42420 TQ2814 888635 Indicator survey Dry deciduous woodland

monad sample title surv_habitatplot_id

This section overviews the processing required for the raw data to accurately represent the 

information content of the NPMS plot surveys. Because surveyors use different lists of species 

depending on their level, in some cases we need to distinguish between true absences (species 

on a surveyor’s target list but not reported) and unknown cases (species not on a surveyor’s 

target list, so absence from a reported survey is not informative). 

https://www.npms.org.uk/sites/default/files/PDF/NPMS%20Species%20Lists_WEB_0.pdf
https://www.npms.org.uk/sites/default/files/PDF/NPMS%20ID%20GUIDE_WEB_0.pdf
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The second function in script 1 (getNpmsData_SamplesSpecies) returns species-level 

information, along with fields linking these data back to the sample-level information retrieved 

above. These data are returned as shown in Table 3 below (“sample_id” links to the “sample” field in 

Table 2 above). 

Table 3. Information about species records retrieved for processing. Id is the individual occurrence identifier; sample_id is 

the sampling visit identifier; date is the survey date; preferred_taxon is the recorded taxon name; tvk is a link to the UK 

Species Inventory; domin is the cover-abundance category according to the Domin scale. 

 

Script 3 

These two datasets are subsequently processed together in script 3. This script processes the 

retrieved data in the following ways: First, it reads in a standardised list of NPMS indicator species, 

with a row for every fine- and broad-scale habitat combination for each taxon. This information is 

then summarised into separate fine and broad habitat lists; new columns are also created indicating 

whether a species is an indicator at both the Wildflower and Indicator levels for a particular habitat. 

This information serves as a lookup table when later processing the NPMS field data. Finally, a 

reduced table called “indsLookup” is produced which provides information about the status of 

every NPMS indicator species in relation to all possible habitat-surveyor level combinations. An 

example extract from this table is given below (Table 4). 

Table 4. Look-up table created for interpreting presence/absence/unknown status of species records in relation to 

volunteer survey-level choices. indicaName is the recommended taxon name; indiciaPrefTvk is the link to the preferred 

name in the UK Species Inventory; ‘combined’ is a field that indicates the habitat × survey level for which the species is an 

indicator. 

 

The next stage is the extraction of a relevant set of samples for the analysis of any particular species. 

At this point inferential considerations enter play, because the choice of samples used for any 

particular analysis brings with it implications for subsequent inference. That is to say, considerations 

about the population from which a particular sample is a sample are of importance. For example, if 

we are interested in developing trends for dry calcareous grassland, but only select plots that were 

classified as such in the field, then we may be missing samples from grassland that are marginal in 

terms of their affiliation to that habitat type. Such samples may improve over time (e.g. due to 

changed management or other restoration efforts), and we would like any indicator to capture these 

changes. In the first instance, a sensible level for indicator development seems to be the broad 

habitat, and this is the approach developed here.  

4231103 2066461 30/09/2016 Digitalis purpurea NBNSYS0000004094 2 C NA

5933608 3006272 17/06/2017 Rumex crispus/obtusifolius NHMSYS0021123579 3 C NA

2409246 1122261 30/08/2015 Epilobium hirsutum NBNSYS0000003536 5 V NA

4246241 2072787 11/08/2016 Calluna vulgaris NBNSYS0000003902 8 V NA

5575360 2777671 11/08/2017 Mercurialis perennis NBNSYS0000003721 3 V NA

4144731 2024256 30/05/2016 Mentha aquatica NBNSYS0000004198 2 C NA

4161692 2033676 05/06/2016 Viola reichenbachiana/riviniana NHMSYS0020083544 3 C NA

6036022 3073543 12/09/2017 Cirsium vulgare NBNSYS0000004490 2 C NA

sensitivity_precisionid sample_id date preferred_taxon tvk domin record_status

Alopecurus myosuroides NHMSYS0000455779 Arable field margins, Indicator survey

Spartina anglica NHMSYS0000463855 Coastal saltmarsh, Indicator survey

Deschampsia flexuosa NBNSYS0000002623 Dry acid grassland, Indicator survey

Brachypodium pinnatum s.l. NHMSYS0021123603 Dry calcareous grassland, Indicator survey

Deschampsia flexuosa NBNSYS0000002623 Montane acid grassland, Indicator survey

Agrostis capillaris NBNSYS0000002638 Montane acid grassland, Indicator survey

Anthoxanthum odoratum NBNSYS0000002667 Montane acid grassland, Indicator survey

indiciaPrefTvk combinedindiciaName
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The function getSamples joins the species and sample level information previously extracted 

together, and filters these according to a user-defined list of fine- and broad-scale habitats that 

together define the population of habitats that we think represent a sensible environmental space 

around our target community. Other, less closely affiliated habitats could also transition into our 

target community: arable could be restored into an unimproved or semi-improved grassland for 

example. However, rather than include all plots and samples in the calculation of the indicator for a 

particular species, the current proposal is that plots are only included when at least one sampling 

event for a plot has been labelled as one of the habitats relevant to a particular species. For 

example, a plot that had previously been classified as arable would only enter the set of plots used 

for the creation of a trend for a particular grassland species once a sample from that plot had been 

recorded as an affiliated grassland type. From this point on, all older samples recorded at this plot 

would be included in the species’ trend; this would represent an improvement in the national stock 

of that habitat, as the historic samples would typically have zero cover for the grassland species until 

the point of restoration, whereupon a positive cover would be recorded. 

The next function in script 3, spSamplePA, takes the list of samples previously extracted according 

to our set of habitats (the example in the script uses the following set of NPMS broad and fine 

grassland habitats: Neutral pastures and meadows, Dry acid grassland, Dry calcareous grassland, 

Neutral damp grassland, Lowland grassland), and a focal species (or other taxon grouping used by 

our scheme). The function evaluates the status of the focal species according to the habitat-surveyor 

level of every sample, creating a dataset consisting of presences, absences, and unknowns (coded 

“NA”) on this basis. At the same time, the proportional cover information (collected according to the 

Domin scale) is unified across the species’ dataset; this last step is required because cover 

information collected by surveyors at the Wildflower level is coded differently to that collected at 

the other two levels in the database. For any given habitat group-species combination for which this 

function is run, a data frame in the following format is produced (Table 5; the example is for Yarrow, 

Achillea millefolium, across the grassland samples described above). 

Table 5. Processed species records information for Achillea millefolium in relation to the Lowland grassland broad habitat 

category. domin is the reported cover-abundance category according to the Domin scale; sample_id is a sample identifier; 

combination is the combination of habitat and survey level within which the species occurrence originated; date.x is the 

date of the survey; PAN is an indicator simplifying the Domin scale information to presence/absence/unknown; plot_id is a 

plot identifier; monad is the 1 km square grid reference; title is the survey level; surv_habitat is the reported habitat type. 

 

Note that, in the first column (‘domin’), both zeros, presences (with abundances according to the 

Domin scale), and an NA are represented (the column ‘PAN’ represents these simply as 

presence/absence/NA data). The NA here relates to a sampling visit recorded in “Neutral pastures 

and meadows” by a Wildflower-level surveyor, a combination for which Achillea is not included as an 

indicator; this means that we do not know whether Achillea was present or not, because the 

surveyor was not asked to explicitly report on the presence of this species. 

Script 4 

This script simply serves as an example of the preceding process. The rest of this report describes the 

statistical model currently being developed for such processed NPMS species-level data. 

domin sample_id combination date.x PAN plot_id monad title surv_habitat dominUnify

0 1155416 Lowland grassland, Indicator survey 10/09/2015 0 144658 TM2226 Indicator survey Lowland grassland 0

0 1193152 Neutral pastures and meadows, Inventory survey 01/07/2015 0 145706 SJ8850 Inventory survey Neutral pastures and meadows 0

1 1243480 Lowland grassland, Wildflower survey 31/07/2015 1 146530 SK6092 Wildflower survey Lowland grassland 1

7. 34-50% 1125910 Dry calcareous grassland, Indicator survey 19/05/2015 1 144454 TQ8353 Indicator survey Dry calcareous grassland 7

NA 884186 Neutral pastures and meadows, Wildflower survey 27/04/2015 NA 42360 TQ1168 Wildflower survey Neutral pastures and meadows NA
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4. Developing a statistical model for NPMS species data 

This section describes the statistical model that we have formulated for NPMS species-level data. 

The model is developed in a Bayesian framework using the JAGS language (Plummer, 2013) given the 

relative ease with which one can both specify complex hierarchical models and deal with missing 

data. See the addendum at the end of this report for a link to the GitHub repository containing the 

JAGS code representing this model. In addition, we also provide an illustrated representation of the 

NPMS survey processes that the following model seeks to represent in Appendix 1. 

The model estimates both per species non-zero proportional cover and occupancy at the plot scale. 

This is informed by two pieces of information generated by NPMS surveyors: the recorded cover in a 

sampling visit to a plot, and the detection history of a species within a plot in a given year. Due to 

the NPMS methodology specifying that surveyors should aim to visit their plots twice a year, some 

information will often be available concerning the within-year detectability of a species (although 

note that not all surveyors will be able to follow this guidance, particularly in remoter areas of the 

UK). A link between the recorded proportional cover and a species’ detectability is posited by the 

model (see McCarthy et al., 2013 for a discussion of this topic), in that a species’ recorded 

abundance is used as a covariate in the detection sub-model. This means that the model should be 

able to adjust for the fact that species in plots at low abundance are, all other things being equal, 

more likely to be missed by surveyors. This, as with all occupancy models (Royle and Dorazio, 2008), 

means that we should be able to estimate true occupancy, as opposed to the confounded product of 

occupancy and detectability, as we have explicitly accounted for non-detections (false absences, 

where a present species is missed by a surveyor). The formulation used here thus attempts to 

account for imperfect detection using a standard occupancy model, but also uses information about 

the estimated distribution of proportional covers when present to make inferences concerning a 

species’ true abundance in a plot. 

Note that because we do not have replicated observations of a species’ cover within sampling visits 

to a plot, we accept the reported plant species’ proportional cover as an accurate estimate of the 

true proportional cover state at the time of survey (cf. Wright et al., 2017). If one has multiple 

estimates of a species’ cover for a single sampling visit (e.g. if all plots were subject to independent 

recording by two or more surveyors during every visit) then these could also be included in the 

model, and the necessity of accepting a single report of proportional cover as “truth” would be 

removed. In that case, we would also be able to model the observation process for proportional 

cover, thus better separating observational error from the underlying true state (Wright et al., 2017). 

The first part of our model treats only the non-zero proportion cover data collected by the NPMS 

surveyors. (See Fig. 3 for additional information). The true underlying (latent) proportional cover 

values are estimated based on the distribution across all non-zero proportional cover observations 

for the species being modelled. Thus the non-zero observations across the i sites and j years are 

assumed to be distributed to follow a Beta distribution with shape parameters a and b: 

 

Eqn 1. CposLatenti,j ~ Beta (a, b) 

Eqn 2. a = μ ∙ τ 

Eqn 3. b = (1 − μ) ∙ τ 

Here we present a hierarchical statistical model for the NPMS data. This model seeks to make 

maximum use of the data collected, and integrates a standard occupancy modelling approach 

with a Beta distribution model for a species’ non-zero cover data. 
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However, the actual observation made by the surveyor during survey s of site i in year j is the 

interval-censored2 observation Di,j,s. Di,j,s is a random variable that can take the integer values 

{0,1,…,9,10}, these being the possible ordinal categories that a surveyor can score observed plant 

abundance at using the Domin scale3. Therefore, for any value of Di,j,s there are lower (Li,j,s) and 

upper (Ui,j,s) bounds on the proportional cover scale defined by the associated Domin category, 

where both Li,j,s and Ui,j,s lie in the interval {0,1} and Li,j,s ≤ Ui,j,s. If we recall that CposLatent is 

estimated for each site × year combination, but that there are in fact potentially two surveys for 

each site every year, then, for any survey cover score Di,j,s, it is implied that, 

Eqn 5. min(Li,j,s) < CposLatenti,j  < max(Ui,j,s) 

That is to say, the Domin abundance category recorded by the surveyor implies that the underlying 

cover value is within the proportional cover bounds associated with that observation. The lower and 

upper bounds of CposLatenti,j are min(Li,j,s) and max(Ui,j,s), i.e. the lowermost lower and uppermost 

upper cover boundaries for the species implied by the separate visits to a site during the year. As 

noted above (eqn 1), values of a and b are then estimated that best capture the distribution of the 

estimated “true cover” values of CposLatent across all sites and years. 

The second part of the model uses the detection history of the species within a site × year 

combination to make inferences about true occupancy; that is, it is a standard site-occupancy model 

(Kéry and Royle, 2016).  

 

Eqn 6. zi,j ~ Bern (Ψi,j) 

Equation 6 indicates that the true state is Bernoulli-distributed random variable with Ψi,j (psi) giving 

the estimated occupancy (presence/absence) probability for a species for any site × year 

combination. xi,j,s (eqn 7 below) indicates the observed state of a species (present/absent) during 

survey s. 

Eqn 7. xi,j,s ~ Bern (πi,j,s) 

Eqn 8. πi,j,s = zi,j ∙ αi,j,s 

Eqn 9. logit(αi,j,s) = γ0 + γ1 * Di,j,s 

Here, the observed presence/absence of a species during sampling visit s (xi,j,s) arises from a 

Bernoulli distribution with per trial success probability πi,j,s. In its turn, the per trial success πi,j,s is a 

function of the species true presence/absence at site i during year j and the detectability of the 

species during the visit αi,j,s, again, as in standard Bayesian occupancy models. The logit 

transformation of this detectability can be a function of a range of covariates (e.g. species type, such 

as graminoid4 or non-graminoid, the time of year, or site-specific management). However, in the 

current example, detectability is determined by an intercept term (γ0, or gamma0) and by the 

regression coefficient for the recorded ordinal cover category5 Di,j,s, γ1 (gamma1). In the simulations 

described in Section 5, the recorded cover is the actual simulated plot cover value after it has been 

                                                           
2 Censoring is when the true value of a variable is unknown; interval-censoring is when the true value is unknown, but is 

known to lie in a particular interval. 
3 Note that although 0 is included here, as it is a possible value for Di,j,s, when the values of CposLatent are estimated plot 
visits where Di,j,s  = 0 are excluded because we only model non-zero covers as arising from the Beta distribution. 
4 The term ‘graminoid’ means grass-like, and includes grasses (Poaceae), sedges (Cyperaceae) and rushes (Juncaceae). 
5 Note that the prior distribution chosen for the intercept γ0 and the regression coefficient γ1 should take into account the 
fact that this is a logistic regression. For example, a prior that puts a significant amount of weight on zero is actually 
emphasising the value 0.5 on the probability scale (Northrup and Gerber, 2018). We use the formulation of Kéry & Royle 
(2016) to avoid this problem (i.e. we used a two stage prior, with a beta distribution, uniform between zero and one, 
subsequently logit transformed, for the intercept). 
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subject to a probabilistic decision as to whether it is detected or not (which is dependent on its true 

abundance); however, when we fit the model to real NPMS data below in section 7, this is the actual 

recorded Domin cover value (including unknown values, which are given a prior distribution).  

Figure 3 provides an annotated Directed Acyclic Graph (DAG) of the model. DAGs normally map 

stochastic relationships using solid arrows and deterministic relationships using dashed arrows 

(Hobbs and Hooten, 2015). The state, z, a random variable, could also be influenced by covariates 

(e.g. climate), but the current model does not include this addition. Figure 3 indicates that the data 

xi,j,s and Di,j,s (the visit-level surveyor detection and recorded Domin-category cover respectively) are 

linked to the underlying true state z (the true presence/absence) in different ways: xi,j,s is a stochastic 

variable determined by the true state and detectability; whereas Di,j,s enables the estimation of μ and 

tau, but does not currently directly influence the estimation of z, except via its influence on 

detectability (αi,j,s). The recorded cover category at visit s, Di,j,s is a direct (deterministic) outcome of 

the estimated underlying cover in site i, year j, CposLatenti,j, which is itself a stochastic outcome of 

an underlying Beta distribution (parameterised by its mean (μ) and precision (tau)). 

In this example the global mean cover and precision are estimated across all years, although they 

could be indexed by year if an annual trend in a species’ cover distribution was required. The DAG 

also details the derived variable, Ci,j, which is a combination of the estimated true state and the 

mean of the estimated cover distribution for the species modelled.  

Eqn 10. Ci,j = zi,j ∙ Cposi,j 

Eqn 11. Cposi,j ~ Beta (a, b) 

Where Cpos is a new cover value estimated from the Beta distribution specified by the estimated 

parameters μ and tau. Although this does not have much practical value in the current set-up, if we 

extended our model to include covariates that influence the values that μ and tau can take, or 

information on spatial auto-correlation, then site × year estimates of Cpos, combined with zi,j, could 

allow for site-specific estimates of the zero-inflated6 cover of the species being modelled. 

 

 

                                                           
6 A distribution is zero-inflated when it contains a large proportion of zeros that cannot be accounted for by the probability 

distribution otherwise used to describe it. 
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Figure 3. A Bayesian network or Directed Acyclic Graph showing the stochastic relationships (solid arrows) and deterministic relationships (dashed arrow) within the 

candidate model for NPMS species data. Note that μ and tau could be indexed by year to give annual mean estimates of a species’ cover distribution. Red boxes are data, 

whereas blue boxes are parameters or states estimated by the model. 



v.1.1 - FINAL  8th July 2019 

13 
 

5. Testing the model using simulated data 

Novel models that are going to be applied to real world data should first be tested to see that they 

perform well in simulated examples: a model that fails to retrieve known, simulated, parameter 

values may not be suitable for use on noisier data from the real world. Model “performance” can be 

evaluated in many ways, although often the primary focus is on bias and variance, the two standard 

components of statistical error. That is to say, the estimates of parameter values should be centred 

around “truth”, i.e. they should be unbiased, and estimates with lower variance are often to be 

preferred.7 

The simulations presented in this section focus on whether the estimation of parameter values is 

accurate at large sample sizes, and then inspect the potential loss of accuracy and precision at 

smaller values more typical of the NPMS dataset (Table 6). A total of 11 scenarios are inspected. The 

simulations focus on whether the estimation of parameter values is accurate at large sample sizes, 

and then inspect the potential loss of accuracy and precision at smaller values likely to be more 

typical of the actual NPMS dataset. The simplest situation is that where all plots are occupied (i.e. all 

Ψi,j  = 1), under this scenario any missing plot cover values are due to observer non-detections. We 

also include a “perfect detection” model (Table 6), where all occurrences of a species are recorded if 

present (i.e. there is not a probabilistic relationship introduced relating detection to abundance). 

All model results focus on the estimation of μ, τ, γ0, γ1 and the estimated average annual 

occupancy, (∑ ∑ 𝑧𝑖,𝑗/𝑁)
𝑁
𝑖=1

𝐽
𝑗=1 /𝐽, i.e. the average of the annual estimates of plot occupancy (in our 

simulation occupancy does not change across years). All models were run using JAGS and R2jags 

with 3 chains, with a 500 iteration burn-in, followed by a 500 iteration sample. Convergence was 

assessed using Rhat and visual inspection of traceplots; although these are not long MCMC chains, 

Rhats were always < 1.1 (Brooks and Gelman, 1998) and traceplots indicated stable, well-mixed 

chains. Note that during the actual model fitting the observed cover values used in the detection 

model were mean-centred, however, the intercept, gamma0, was transformed back to the original 

scale for plotting. The mean-centring was done to reduce the correlation between gamma0 and 

gamma1, this in turn should reduce the variance of their estimates. This type of mean-centring only 

affects the value of the intercept, not the slope, hence only gamma0 requires the back-

transformation.

                                                           
7 Note, however, that this is not universally the case. The relative importance of bias and variance is context dependent; 
some statistical methods aiming for predictive (rather than, e.g., explanatory/inferential) accuracy trade off the tolerance 
of some bias against lower variance, with the net result of more accurate predictions on average (Shmueli, 2010). 

Here we evaluate the proposed model using a variety of different simulated datasets. The 

performance of the model is assessed in relation to the bias and variance shown in relation to 

the underlying parameters used in the data simulations. 
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Table 6. Parameters used for the simulation of data for models 0-3, and for the perfect detection scenario. 

Variable (variable 
name in R code) 

Notes 
(applicable to 
all tables) 

Perfect 
detection 

Model 0 Model 1 Model 2 Model 3 

Number of plots - 100 500 100 50 50 

Number of within-
year plot visits 

- 
10 10 10 5 2 

Number of years - 10 20 10 5 4 

Occupancy (Ψ, psi) - 1 1 1 1 1 

Mean plot cover 
where present (mu) 

Mean of beta 
distribution 

0.5 0.5 0.5 0.5 0.5 

Precision for plot 
cover where 
present (phi) 

Precision of 
beta 
distribution 

10 10 10 10 3 

Detection model 
intercept (gamma0) 

Logistic 
regression 

NA -2 -2 -2 -2 

Detection model 
slope (gamma1) 

Logistic 
regression 

NA 3 3 3 3 

 

 
Figure 4. Estimates of parameters (gamma0, gamma1, mu and tau) and the average annual occupancy across years 

(avgOcc) for the simulated scenarios 0-3 and “perfect detection”. Note that the “perfect detection” model (Table 6) does 

not have estimates of gamma0 and gamma1. White circles are the posterior 50th percentiles; coloured bars represent 95% 

credible intervals. Vertical black broken lines indicate the true value or values simulated. 
 

Simulations 4–6 focus on the situation where the underlying true occupancy is gradually reduced 

(Table 7). 
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Table 7. Parameters used for the simulation of data for models 4-6. 

Variable (variable name in 
R code) 

Model 4 Model 5 Model 6 

Number of plots 100 100 100 

Number of within-year plot 
visits 

5 5 5 

Number of years 5 5 5 

Occupancy (psi) 0.75 0.5 0.25 

Mean plot cover where 
present (mu) 

0.5 0.5 0.5 

Precision for plot cover 
where present (phi) 

3 3 3 

Detection model intercept 
(gamma0) 

-2 -2 -2 

Detection model slope 
(gamma1) 

3 3 3 

 

 
Figure 5. Estimates of parameters (gamma0, gamma1, mu and tau) and the average annual occupancy across years for the 

simulated scenarios 4-6. White circles are the posterior 50th percentiles; coloured bars represent 95% credible intervals. 

Vertical broken lines indicate the true value or values simulated. 

 

Finally, models 7–9 examine the situation where the mean cover of a species when present is low, 

coupled with low occupancy and fewer within-year visits (Table 8). 
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Table 8. Parameters used for the simulation of data for models 7-9. 

Variable (variable name in 
R code) 

Model 7 Model 8 Model 9 

Number of plots 100 100 100 

Number of within-year plot 
visits 

2 2 2 

Number of years 5 5 5 

Occupancy (psi) 0.25 0.25 0.25 

Mean plot cover where 
present (mu) 

0.25 0.10 0.025 

Precision for plot cover 
where present (phi) 

3 3 3 

Detection model intercept 
(gamma0) 

-2 -2 -2 

Detection model slope 
(gamma1) 

3 3 3 

 

 
Figure 6. Estimates of parameters (gamma0, gamma1, mu and tau) and the average annual occupancy across years for the 

simulated scenarios 7-9. White circles are the posterior 50th percentiles; coloured bars represent 95% credible intervals. 

Vertical broken lines indicate the true value or values simulated. 
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6. Simulated data discussion 

We have tested the model using simulated data under eleven scenarios. The results presented focus 

on whether the estimation of parameter values is accurate at large sample sizes, and then inspect 

the potential loss of accuracy and precision8 at smaller values likely to be more typical of the actual 

NPMS dataset. The “perfect detection” model (Table 6) accurately estimated both the annual plot 

occupancy and the mean and precision of the Beta distribution underlying our simulated cover data 

(Figure 4), suggesting that there are no deficiencies with the specification of our model when the 

available data represent the true situation exactly. From this scenario, we preceded to a set (models 

0-3; Table 6) where all plots were occupied (i.e. Ψi,j  = 1 for all i,j); under these scenarios any missing 

plot cover values are due to observer non-detections. Models 0 and 1 were intended as “best case” 

scenarios, which are not likely to be representative of NPMS data (e.g. these models simulate ten 

visits to each plot within each year). Model 3 is closer to reality for a common species within the 

NPMS dataset (albeit with likely lower occupancy and mean cover values); model 2 was included as a 

stepping stone between models 0-1 and model 3. Models 4–9 retain the likely structure of the NPMS 

dataset in terms of visit frequencies, but look at situations in which either occupancy (models 4–6) 

or cover (models 7–9) are reduced. 

Models 0-3 
Figure 4 indicates that the “best case” models 0 and 1 perform reasonably well in retrieving the true 

underlying states: the average annual occupancy and the precision of the Beta distribution 

underlying the cover values are estimated more-or-less without bias. Reducing the amount of data 

and/or decreasing precision (tau, i.e. increasing the variance of the Beta distribution) results in 

increasing bias and variance, although for differing amounts for different parameters and states. μ, 

the mean of the Beta distribution underlying a species’ cover values is, however, consistently 

overestimated (although not by large amounts) whenever detection is not perfect, irrespective of 

the number of plots, years and within-year visits (Fig. 4; models 0-3). This is considered to be due to 

the fact that detectability is a function of the observed cover: within our simulations observations 

are retained with probability anti-logit(gamma0 + gamma1 × original cover), therefore simulated 

observations with lower covers are more likely to be “overlooked” by our virtual surveyor. This 

effectively means that the information available to estimate the parameters of the Beta distribution 

underlying the observed covers is left-truncated, hence the mean is consistently biased upwards, as 

seen in Fig. 4 (mu plot). 

To demonstrate this, we ran an additional version of model 2 (not plotted) where detection was only 

dependent on the intercept term, i.e. observations were subject to non-detection with probability 

anti-logit(gamma0), this model estimated mu as 0.49 (95% CI 0.46-0.52), demonstrating that when 

detection is independent of cover, the ability to estimate the mean of the Beta distribution without 

bias is retained (this is equivalent to thinning the distribution rather than truncating it). Removing 

                                                           
8 Recall that accuracy and precision relate to bias and variance respectively. 

The results of the simulations indicate that the model performs as expected under “perfect” and 

large dataset scenarios. Smaller datasets induce various biases, many of which can be traced to 

the fact that, in our simulations, abundance and detectability were closely related. This biases 

the estimated mean of the underlying cover distribution upwards (because the distribution is 

left-truncated), and also impacts estimates of the intercept and regression coefficient in the 

detection sub-model. In a real dataset, this relationship would likely be less clear-cut, and we do 

not expect these biases to affect estimates of relative annual trends. 
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the dependence of detection on abundance, however, introduces its own issues: if observations are 

detected with anti-logit(gamma0), recall that gamma0 is the intercept in the detectability logistic 

regression, then the value of gamma0 can be influential. Low values of gamma0, i.e. intrinsically low 

detectability, results in underestimates of occupancy. For example, when gamma0 is -2, detectability 

is 0.12, and annual occupancy is estimated at around 70% for model 2 (when the truth is 100%, cf. 

Fig. 4). This effect can be ameliorated by increasing the number of visits to a plot within a year, e.g. 

for model 2, increasing the number of plot visits to 20 means that annual occupancy is estimated at 

95% (assuming again that detection is constant at 0.12 and true occupancy is 100%); this, however, 

is not a realistic scenario in terms of the actual NPMS survey protocol. Note that the issue of 

different combinations of detectability, within-season re-visits, occupancy etc. and their influence on 

model performance (in terms of variance and bias), are all discussed in detail by Welsh et al. (2013), 

with a rebuttal by Guillera-Arroita et al. (2014), response by Welsh et al. (2015), and a blog-based 

discussion (with numerous comments) by McGill (2014). The implications of these various issues are 

discussed below in the section “Simulation study conclusions”. 

The other striking conclusion from models 0-3 is the consistent underestimation of the intercept in 

the detectability regression (gamma0), and the consistent overestimation of the regression slope 

coefficient gamma1. This is likely to be due to the fact that, in our simulation, a probabilistic 

relationship exists between cover and detectability. As described above, the probability that an 

occurrence is not overlooked is anti-logit(gamma0 + gamma1 × original cover). Therefore, as for the 

estimation of mu, the result of left-truncating the cover distribution is to change the estimates of the 

intercept and slope in the detection logistic regression. This point is demonstrated below in Fig. 7, 

where a linear regression is fitted to a series of cover values and the corresponding series of 

detection probabilities are calculated as 𝑦 = anti-logit(-2 × 3𝑥), i.e. the values of gamma0 and 

gamma1 used in our simulations (e.g. see Table 6). The linear model fitted to the full data series is 

shown in red in Fig. 7a, Fig. 7b shows the linear model fitted to the same series truncated below 0.5. 

The linear model from the truncated series is also shown in blue in Fig. 7a, demonstrating the lower 

intercept and steeper slope that has resulted from this truncation. 

 
Fig. 7. (a) Two linear models fitted to simulated cover data and their implied detection probabilities, calculated as anti-

logit(gamma0 + gamma1 × 𝑥), with gamma0 = -2 and gamma1 = 3. The red line indicates the model resulting from using 

the full range of 𝑥; the blue is from fitting a linear regression to the truncated data series (cover > 0.5). (b) The linear model 

fitted to the truncated data only. Simulated data points are shown in grey in both cases. 
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Somewhat counter-intuitively, Figure 4 indicates that the biases in gamma0 and gamma1 get worse 

as you accumulate data, at least for this set of scenarios; this is discussed further below. This issue of 

truncation also presents an additional problem, one of separation: once the data are truncated, 

there is complete, or near-complete, separation between the presence of “zero abundance” cover 

observations and higher detection. That is to say, the slope parameter becomes very hard to 

estimate accurately because of near-complete confounding between one of the predictors (cover) 

and the outcome variable (detectability). In our simulations we have dealt with this issue using an 

informative prior for gamma1, a normal distribution with mean = 0 and standard deviation = 1 (cf. 

Gelman et al., 2008)9, this allows us to estimate a value for gamma1. The pattern of the biases in 

gamma0 and gamma1 (Fig. 4) across models 0-3, then, is likely to be a combination of the increasing 

amounts of available cover data coupled with the impacts of near-complete10 separation (Menard, 

2002). Note that in this situation it is not clear that the estimates of gamma1 are particularly 

meaningful: they represent the effect of combining an over-estimated slope coefficient with an 

informative prior dragging the estimate back towards zero. 

Models 4-6 
Models 4-6 explore the situation of decreasing true plot occupancy. In Figure 5 we see several 

consistent patterns: occupancy is overestimated, the intercept and slope of the detectability logistic 

regression are both under- and overestimated respectively. The mean of the cover distribution, mu, 

continues to be overestimated, and the precision of this distribution is also slightly overestimated; 

these biases in the parameters of the Beta distribution are considered to be for the same reasons as 

discussed above i.e. the left-truncation of the true cover distribution. 

For occupancy, the degree of overestimation appears to be dependent on the underlying true 

occupancy, with the overestimates appearing worse for lower true plot occupancy; this also appears 

to be the case for gamma0, the intercept, although the estimates of gamma1 appear to improve 

with decreasing true occupancy. The effect of true occupancy on the model estimates is likely to be 

due to the fact that with decreasing true occupancy distinguishing true absences from non-

detections becomes more difficult on average. This effect can be seen in the estimation of gamma0 

– the true estimate of gamma0 becomes increasingly negatively biased as true occupancy declines, 

indicating that the model estimates that higher occupancy and lower detectability is more likely than 

the true situation of lower occupancy and higher baseline detectability. The fact that estimates of 

gamma1 appear to get worse with increasing occupancy may be due to a complex trade-off between 

the issue of distinguishing between the two occupancy/detectability scenarios just described, and 

the amount of (truncated) cover data available to the model as occupancy increases, the latter 

perhaps worsening the issue of near-complete separation previously discussed. 

Models 7-9 
Models 7-9 explore the situation where, for a constant level of occupancy (Ψ = 0.25), the true 

underlying cover decreases (Fig. 6). Models 7-9 also have a reduced number of within-year plot visits 

(2) compared to models 4-6. As for models 4-6, the average annual occupancy is over-estimated for 

all models to a similar extent to model 6 (which also had an underlying true occupancy of 0.25). The 

estimates of gamma0 and gamma1 are slightly more accurate than models 4-6. Increasing the 

amounts of data available to these models by increasing the number of within-year visits or the 

number of years of monitoring changed the estimates of gamma0 and gamma1 in relation to the 

true underlying cover (results not shown). The parameter estimates for model 9 (true cover = 0.025) 

                                                           
9 See also the recommendations at https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations 
10 Also known as “quasi-complete” separation in the literature. 

https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations
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were not greatly affected by increasing these variables, whereas changing these variables for model 

7 (true cover = 0.25) resulted in estimates of gamma0 that were more negatively biased, and in 

estimates of gamma1 that were considerably larger (e.g. gamma1 estimate = 12.01 for model 7 with 

10 years of monitoring and 5 within-year plot visits). This indicates that biases in these estimates are 

driven by the amount of cover data available to the model, as suggested above. Finally, the larger 

uncertainty associated with tau for model 9 is likely to be associated with the interval-censored 

nature of the cover data: when the Beta distribution has a mean of 0.025, most observations end up 

in the bottom cover interval used in our simulation (1e-16 < cover < 0.05), meaning that the 

precision of the true simulated distribution is challenging to assess. 

Simulation study conclusions 
The simulations suggest that, whilst the fundamental model proposed here is sound (it estimates 

parameters and states correctly when detection is perfect), the introduction of a probabilistic 

relationship between cover-abundance and detectability will introduce various biases into the model 

estimates. Biases in estimates of mu, the mean of the underlying Beta distribution from which 

positive covers are drawn, are easy to understand, in that the cover information available is left-

truncated due to the fact that plots containing lower covers are more likely to go undetected. Biases 

in the average annual occupancy may be related to the more fundamental issues that occupancy 

models may have when only limited repeat visits within a time period are available (McGill, 2014; 

Welsh et al., 2013). However, these biases may also interact with the issue of quasi-complete 

separation that arises due to the left-truncation of the cover data. 

In reality the relationship between cover and detectability will likely be weaker than that included in 

our simulation, reducing or even removing issues with near-complete separation in the detection 

sub-model. In addition, the inclusion of other relevant parameters in the detection model that are at 

least partially independent of cover (e.g. habitat management, the time of year) should improve the 

ability of the model to accurately adjust for a species’ detectability. Investigating such additions to 

the model will be the focus of future work. 

Is the proposed model fit for purpose? 
The purpose of a statistical model is to capture important processes determining the data that we 

have observed, thus hopefully providing us with insight into the magnitude and direction of such 

processes. The model proposed here allows us to estimate both true plot occupancy and the 

distribution of recorded cover values of a species when it is present; it does this by combining a 

standard state-space model for occupancy, i.e. one incorporating an observation model, with a zero-

inflated Beta distribution model for recorded covers. Although our simulations indicate that the 

model may be biased in some scenarios, these biases can be understood, and should not impact on 

the key aim of our model, which is ultimately to provide annual trends in species occupancy and 

cover values. We expect that, across a large, heterogeneous dataset such as the NPMS, biases will be 

relatively constant, and relative changes in these parameters over time will reflect true increases or 

declines; that is, we have no strong reason to suspect that such biases will change over time, 

meaning that our trends should index the true situation. 
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7. Applying the model to NPMS grassland data 

In this section we describe the application of the model to the first four years of data collected 

within the NPMS. The model was applied to 86 species with available data that are listed as positive 

indicator species within the “Lowland grassland” NPMS broad habitat. Plots were only included in 

the modelling if there was at least one record of a species that had a known presence or absence, 

i.e. any plots consisting solely of ‘NAs’ were excluded. Two states were extracted from these model 

runs for plotting below: the estimated global mean cover of the Beta distribution underlying all years 

of a species’ cover observations (μ; Fig. 8), and estimates of a species’ plot occupancy for year 1 

(2015; Fig. 9). 

The estimates of the global mean of species’ cover distributions made ecological sense (e.g. common 

grasses tended to have higher means), and commoner species had tighter credible intervals around 

the estimate of the mean (Fig. 8). Occupancy estimates tended to be centred on 50% (Fig. 9), except 

for a few commoner species, and it is believed that this is due to plots with no or little data for a 

species at the current time point receiving estimates that are dominated by the prior distribution 

used by the model for the occupancy parameter. This prior is designed to be uninformative (a 

uniform distribution between zero and one is used); however, the parameter plotted below (Fig. 9) 

is the estimated mean plot occupancy for a given year, and the mean of n random draws from a 

uniform distribution between zero and one is still 0.5. The centring of the species’ occupancy 

estimates for 2015 around 0.5 indicates that, at this point, the prior used is likely to be dominating 

our conclusions about most species’ annual plot occupancies. In the current results mean cover is 

likely to be more precisely estimated than occupancy for two reasons: (1) we are estimating mean 

cover for a species across all years, so more data is available than for the single year occupancy 

estimate plotted; and, (2), even within a year there is up to twice as much information available 

concerning a species mean cover compared to occupancy. This is because a maximum of two 

separate observations of a species’ cover in a plot are made within a year, whereas a plot only 

contributes one data point towards the estimation of occupancy, and even this is less certain due to 

the issue of detectability. 

Those species that most clearly deviate from 50% are those that are commonest in the UK landscape 

at small scales (e.g. Rumex acetosa, Bellis perennis, Ranunculus repens etc.) Note that it is of course 

possible that a species does have a true plot occupancy of 50%, although if this were the case for any 

species plotted below, we might expect tighter credible intervals around the estimate of the mean 

due to the likelihood of the data and the prior coinciding. At this point, recall that what is plotted in 

Fig. 9 is not the full predicted occupancy distribution for a species, but an estimate of the mean of 

that distribution with the associated uncertainty of that estimate. That is, the 95% credible interval 

presented is conceptually akin to a standard error in that it provides information on the certainty 

associated with the estimate of the mean. Plotting the full posterior occupancy distribution for a 

species would also be informative for investigating the degree to which the prior dominates the 

available data within any given year. 

 

Here we apply the model to NPMS data on 86 grassland species collected between 2015 and 

2018. The model estimates ecologically sensible mean cover values for the species analysed, 

although mean plot occupancies tended to centre on 0.5, suggesting that many species do not 

have sufficient data for mean occupancy to be well-estimated at this early point in the survey. 
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Fig. 8. Per species mean cover estimates (with 95% Credible IntervaIs) for 43 of the 86 Lowland grassland species modelled across all years; ordered by mean. Recall that this is the estimate of the mean of the 

cover distribution when the species is present (i.e. zero covers are excluded). 
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Fig. 9. Per species mean plot occupancy estimates for 2015 (with 95% Credible Intervals) for 43 of the 86 Lowland grassland species modelled; ordered by mean. Recall that plot occupancy can either be defined 

as the proportion of truly occupied plots, or as the probability that any given plot is occupied. 
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8. Summary, conclusions and future work 

This report has outlined the structure of the NPMS dataset, and described the ways in which these 

data have been processed in order to extract the maximal amount of information for per species 

trend analyses. A hierarchical model, formulated within a Bayesian framework, has been developed 

which can: (i) deal with the missing data characteristic of the NPMS sampling scheme; (ii) deal with 

the interval-censored nature of the plant cover-abundance data collected; and which, (iii) integrates 

information on occupancy (accounting for detectability) and proportional cover into a single, zero-

inflated model (cf. Wright et al., 2017). This model was described in a variety of ways, including 

through an annotated directed acyclic graph. 

Data were simulated and processed in order to mimic the types of data likely to arise from the 

NPMS, as well other more data-rich scenarios, and a variety of such simulations were run in order to 

explore the strengths and weaknesses of the proposed model. A simulation in which species’ 

occurrences were detected perfectly indicated that the model was capable of estimating simulated 

states and parameters without bias. Various additional scenarios in which the amount of data, the 

underlying true annual plot occupancy, and the true underlying distribution of plant covers 

(conditional on presence) were all varied revealed various characteristics of the current model. 

Foremost amongst these insights was the fact that if there is a strong relationship between 

abundance and detectability, then an upwards bias in estimates of the mean of the underlying cover 

distribution of species is inevitable. In addition, such a strong relationship may also result in near-

complete separation in the detection sub-model (a logistic regression, as is standard in occupancy 

modelling). Additional issues with bias in estimating occupancy probably result from having few 

repeat visits within a time period (here a year), resulting in issues separating occupancy and 

detectability. This issue has been explored in detail elsewhere (Guillera-Arroita et al., 2014; McGill, 

2014; Welsh et al., 2013), but could be further explored within the specific context of our model. 

The model was also applied to Lowland grassland data (an NPMS broad habitat category) collected 

between 2015-18, and the results investigated graphically. These summaries made ecological sense 

where the mean of a species’ underlying cover distribution was concerned, with species such as 

common grasses and ericaceous subshrubs (e.g. Calluna vulgaris, Heather) being estimated to have 

relatively high means with low uncertainty. Common forbs, which are widespread at larger scales 

but typically at low cover in plots, had lower means with low uncertainty (e.g. Campanula 

rotundifolia, Harebell, and Cardamine pratensis, Cuckooflower). More rarely encountered species 

had correspondingly higher uncertainty (e.g. Gymnadenia conopsea, Fragrant Orchid). 

Future work 
What changes to the model, then, are warranted by the work presented here? The detection model 

is a key issue, and, whilst we can learn something about the impacts of particular specifications 

A novel combined abundance/occupancy indicator has been developed for NPMS data in a 

Bayesian framework. The simulation tests and applications to real data explored in this report 

indicate that the model performs well in ideal scenarios; biases in less data-rich scenarios can 

largely be explained by relationships between abundance and detectability. These are likely to 

be less clear-cut in real datasets, and future work will explore how additional covariates, thought 

to be of importance a priori, can be incorporated into future applications of the model to NPMS 

data. Extending the model to create annual indices, and considering how these may be 

aggregated, are considered to be the next steps required in the creation of a habitat quality 

indicator using NPMS data. 
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through simulations, ultimately (given that the truth is inaccessible) we must make a decision, or set 

of decisions, and hope that they capture key aspects of the processes at work in the real world. 

Assuming that detectability scales with abundance in some way is reasonable for the types of small 

plot surveys (25 m2-100 m2) that form the heart of the NPMS; this assumption has also been borne 

out by various bits of experimental and theoretical work (e.g. Dennett et al., 2018; McCarthy et al., 

2013). Additional covariates could be added to this model to account for other likely drivers of 

detectability in our survey, e.g. plant functional group (graminoid or non-graminoid) or size is also 

likely to be a key driver, as is whether or not the habitat in the plot has been managed in some way 

(e.g. whether a grassland is reported as mown or grazed at the time of survey, information which is 

collected by NPMS volunteers). An alternative route would be to provide fixed estimates of 

detectability for species, these could be combined with other coefficients to be estimated from the 

data (such as the adjustments for habitat management noted above, or surveyor participation level),  

or simply used in isolation. Fixed detection probabilities per species have the advantage of reducing 

variance in the estimated states and parameters, but may induce bias if the chosen values are at 

odds with reality in some way. A related option might be the provision of a more informative prior 

for detectability, such that detection is assumed to be high unless the data indicate otherwise; we 

are not aware that this approach has been implemented in the ecological literature, although the 

ecological statistician Mark Brewer notes this strategy in one of the many comments on McGill 

(2014). 

Another key extension of the work presented here is the estimation of annual mean covers for 

species (recall that above we have estimated a global mean cover across all four years of the survey, 

rather than estimates for each year). Such work would feed in the decisions required around 

whether occupancy, cover distributions, or both, would be best taken forward as habitat quality 

indicators. Finally, other challenges for the future include decisions around the visualisation and 

aggregation of trends. As we have seen from this report, both parameters relating to occupancy and 

proportional cover could be generated across species, decisions on which to present need to be 

made. Subsequently, it is envisaged that existing approaches to combining species trend lines could 

be employed (e.g. Isaac et al., 2015), this should be a relatively straightforward process once a 

model is decided upon.
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Appendix 1 

 
Figure A1. This figure attempts to represent the key observation processes that our statistical model seeks to represent for any given species within the NPMS. Within a given year, multiple small plots are surveyed at two different time 

points (visits). Given that individual occurrences of plants in plots have a chance of being overlooked, the naïve estimates of plot occupancy (i.e. the number of presences/number of plots considered) and cover-when-present are both 

likely to be inaccurately estimated. Occupancy modelling approaches allow us to use the information about a species’ detectability to estimate the true annual occupancy, rather than being satisfied with the naïve (unadjusted) estimates. 

Note that, without multiple surveys of a plot within a visit, we cannot estimate the true cover-when-present – our model relies on the reported numbers only for estimates of this variable.  
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Addendum 
All code and data referred to in this report, except for the actual database underlying the NPMS 

data-capturing website (www.npms.org.uk), are available at 

https://github.com/sacrevert/NPMStrends. Extracts of the raw NPMS data, with all relevant 

metadata, are deposited in the NERC CEH Environmental Information Data Centre on an annual 

basis. The corresponding raw biological records, i.e. species presence data only without the 

additional information required to reconstruct the sampling history of particular plots, are also 

available through the National Biodiversity Network. 

Within the GitHub repository, the URLs for the scripts referred to in section 3 of this report are as 

follows: 
Script 1: https://github.com/sacrevert/NPMStrends/blob/master/scripts/1_getDataFromIndiciaFuns.R 
Script 2: https://github.com/sacrevert/NPMStrends/blob/master/scripts/2_getDataFromIndiciaExec.R  
Script 3: https://github.com/sacrevert/NPMStrends/blob/master/scripts/3_processDataFuns.R 
Script 4: https://github.com/sacrevert/NPMStrends/blob/master/scripts/4_extractData.R 
Simulation script: 

https://github.com/sacrevert/NPMStrends/blob/master/scripts/X2f_simData_JAGS_intervalCens_forSims.R 

http://www.npms.org.uk/
https://github.com/sacrevert/NPMStrends
https://catalogue.ceh.ac.uk/eidc/documents#term=NPMS&page=1
https://registry.nbnatlas.org/public/show/dp192
https://github.com/sacrevert/NPMStrends/blob/master/scripts/1_getDataFromIndiciaFuns.R
https://github.com/sacrevert/NPMStrends/blob/master/scripts/2_getDataFromIndiciaExec.R
https://github.com/sacrevert/NPMStrends/blob/master/scripts/3_processDataFuns.R
https://github.com/sacrevert/NPMStrends/blob/master/scripts/4_extractData.R
https://github.com/sacrevert/NPMStrends/blob/master/scripts/4_extractData.R
https://github.com/sacrevert/NPMStrends/blob/master/scripts/X2f_simData_JAGS_intervalCens_forSims.R

