nerc.ac.uk

Subglacial geology and geomorphology of the Pensacola‐Pole Basin, East Antarctica

Paxman, Guy J.G.; Jamieson, Stewart S.R.; Ferraccioli, Fausto; Jordan, Tom A. ORCID: https://orcid.org/0000-0003-2780-1986; Bentley, Michael J.; Ross, Neil; Forsberg, René; Matsuoka, Kenichi; Steinhage, Daniel; Eagles, Graeme; Casal, Tania G.. 2019 Subglacial geology and geomorphology of the Pensacola‐Pole Basin, East Antarctica. Geochemistry, Geophysics, Geosystems, 20 (6). 2786-2807. https://doi.org/10.1029/2018GC008126

Before downloading, please read NORA policies.
[img]
Preview
Text (Open Access)
©2019. The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
2018GC008126.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (13MB) | Preview

Abstract/Summary

The East Antarctic Ice Sheet (EAIS) is underlain by a series of low‐lying subglacial sedimentary basins. The extent, geology and basal topography of these sedimentary basins are important boundary conditions governing the dynamics of the overlying ice sheet. This is particularly pertinent for basins close to the grounding line wherein the EAIS is grounded below sea level, and therefore potentially vulnerable to rapid retreat. Here, we analyze newly acquired airborne geophysical data over the Pensacola‐Pole Basin (PPB), a previously unexplored sector of the EAIS. Using a combination of gravity, magnetic and ice‐penetrating radar data, we present the first detailed subglacial sedimentary basin model for the PPB. Radar data reveal that the PPB is defined by a topographic depression situated ~500 m below sea level. Gravity and magnetic depth‐to‐source modeling indicate that the southern part of the basin is underlain by a sedimentary succession 2–3 km thick. This is interpreted as an equivalent of the Beacon Supergroup and associated Ferrar dolerites that are exposed along the margin of East Antarctica. However, we find that similar rocks appear to be largely absent from the northern part of the basin, close to the present‐day grounding line. In addition, the eastern margin of the basin is characterized by a major geological boundary and a system of overdeepened subglacial troughs. We suggest that these characteristics of the basin may reflect the behavior of past ice sheets and/or exert an influence on the present‐day dynamics of the overlying EAIS.

Item Type: Publication - Article
Digital Object Identifier (DOI): https://doi.org/10.1029/2018GC008126
ISSN: 1525-2027
Additional Keywords: East Antarctica, South Pole, airborne geophysics, subglacial topography, subglacial geology, ice sheet dynamics
NORA Subject Terms: Earth Sciences
Date made live: 05 Jun 2019 13:35 +0 (UTC)
URI: http://nora.nerc.ac.uk/id/eprint/523677

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...