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Abstract

Background: The emergence of antibiotic-resistant pathogens has created an urgent need for novel antimicrobial
treatments. Advances in next-generation sequencing have opened new frontiers for discovery programmes for natural
products allowing the exploitation of a larger fraction of the microbial community. Polyketide (PK) and non-ribosomal
pepetide (NRP) natural products have been reported to be related to compounds with antimicrobial and anticancer
activities. We report here a new culture-independent approach to explore bacterial biosynthetic diversity and
determine bacterial phyla in the microbial community associated with PK and NRP diversity in selected soils.

Results: Through amplicon sequencing, we explored the microbial diversity (16S rRNA gene) of 13 soils from
Antarctica, Africa, Europe and a Caribbean island and correlated this with the amplicon diversity of the adenylation (A)
and ketosynthase (KS) domains within functional genes coding for non-ribosomal peptide synthetases (NRPSs) and
polyketide synthases (PKSs), which are involved in the production of NRP and PK, respectively. Mantel and Procrustes
correlation analyses with microbial taxonomic data identified not only the well-studied phyla Actinobacteria
and Proteobacteria, but also, interestingly, the less biotechnologically exploited phyla Verrucomicrobia and
Bacteroidetes, as potential sources harbouring diverse A and KS domains. Some soils, notably that from Antarctica,
provided evidence of endemic diversity, whilst others, such as those from Europe, clustered together. In particular, the
majority of the domain reads from Antarctica remained unmatched to known sequences suggesting they could encode
enzymes for potentially novel PK and NRP.

Conclusions: The approach presented here highlights potential sources of metabolic novelty in the environment which
will be a useful precursor to metagenomic biosynthetic gene cluster mining for PKs and NRPs which could provide leads
for new antimicrobial metabolites.
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Background
Environmental bacteria are a source of natural product
diversity which formed the basis of early drug develop-
ment work on antibiotics. Over 80% of all antibiotics
deployed in the clinic, as well as ~ 47% of anticancer
drugs originate from natural products [1, 2]. Decades of
antibiotic misuse, both in the clinic and in agriculture,
have led to the worldwide antibiotic crisis with multi-
drug-resistant pathogens posing a significant threat to
human health [3]. The current dearth of antimicrobial
compounds with novel modes of action means that we

need to expand our exploration of natural products by
investigating the biosynthetic potential of the uncultured
soil bacteria through genome mining and metagenomic
approaches [4, 5]. Natural products from bacteria have
been widely used in human and veterinary medicine and
prokaryotic genome analysis has demonstrated that the
genes responsible are clustered and many contain
non-ribosomal peptide synthetase (NRPS) and polyke-
tide synthase (PKS) enzymes [5]. There is clear evidence
that in silico/in vitro combined strategy for identifying
NRPS and PKS could provide a rich source of new anti-
microbial agents [6].
Genome sequencing has revolutionised natural product

discovery with the identification of biosynthetic gene
clusters (BGCs) encoding for the production of natural

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: E.M.H.Wellington@warwick.ac.uk
†Chiara Borsetto and Gregory C.A. Amos contributed equally to this work.
1School of Life Sciences, University of Warwick, Coventry, UK
Full list of author information is available at the end of the article

Borsetto et al. Microbiome            (2019) 7:78 
https://doi.org/10.1186/s40168-019-0692-8

http://crossmark.crossref.org/dialog/?doi=10.1186/s40168-019-0692-8&domain=pdf
http://orcid.org/0000-0002-4329-0699
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:E.M.H.Wellington@warwick.ac.uk


products accounting > 10% of some bacterial genomes
such as in the case of Actinomycetes [5, 7]. It has been
observed that not all the identified BGC sequences could
be linked to an antimicrobial product under laboratory
conditions due to difficulties with expressing BGCs in cul-
ture to a level which facilitates natural product detection
and elucidation [8]. Indeed, the production of biologically
active natural products in natural environments is a tightly
regulated process controlled by a wide range of environ-
mentally activated responses such as gacA and gacS which
control phenazine production in Pseudomonas [9] and
signalling factors such as γ-butyrolactone and furans in
the Actinomycetales [10]. Little is known about the factors
stimulating the production of such signalling molecules
and the natural role of antibiotic biosynthesis in soil has
long been debated. However, evidence suggests natural
products likely have a role in signalling and protection,
with recent studies showing antibiotics playing a key role
in antagonism within ant communities and as protective
agents in wasps’ nests [11]. Recent genomic evidence
has also demonstrated that the less well-characterised
Bacteroidetes, Verrucomicrobia and Planctomycetes
harbour novel BGCs [12–14], though the functions of
these are widely unknown.
Exploring the uncultured soil bacteria for natural

products still remains challenging [15]. Efforts have been
made to recover single cells from the natural environ-
ment. Single cell isolation has now become a key route
to understanding the metabolism of uncultured cells,
using SiC-Seq to recover the genomes [16]. Such
methods are difficult to apply to bacteria intimately
associated with soil particles, but large-scale screening
efforts combined with iChip technology have uncovered
novel genera with bioactive properties [17]. In addition
to single cell isolation techniques, analysis of microbial
community DNA has enabled the exploitation of meta-
bolic diversity using metagenomic libraries combined
with expression screening [18, 19]. However, this
approach is challenging if large BGCs such as in the case
of natural products need to be recovered. Furthermore,
little information was provided in relation to the taxo-
nomic drivers of this diversity [20, 21]. The application
of co-occurrence statistics has enabled the linkage of
structure to function in microbial communities. Thus,
within microbiomes, the ability to understand the im-
portance of diversity in relation to metabolic function
has been improved [22].
Two known enzymes for the production of natural

products in bacteria are NRPS and PKS. These enzymes
are coded by core genes within BGCs which contain all
of the information for the biosynthesis of a defined
bioactive metabolite, including regulatory elements,
transporters and resistant genes [23, 24]. These core genes
contain domains that are conserved across all BGCs of

that type. The nucleotide identities of such domains can
be used to determine phylogenetic relationships between
related BGCs, in addition to giving an indication of the
natural product encoded. This has been validated at a
genomic level and underpins widely used bioinformatics
tools such as NaPDoS [25] and anti-SMASH [26].
Recently, we have developed a target assay based on the
adenylation (A) domain of the NRPS and the ketosynthase
(KS) domain of PKS resulting in amplification of non-con-
served regions of these genes that can be used for defining
novel metabolic capability [27]. Previous studies using
similar targets, focused on soil across the USA, provided
evidence that NRP and PK diversity varies with soil type
and actinomycete richness [4]. A further survey of Austra-
lian soils suggested that both pH and latitude drive BGCs
diversity [28]. However, on a global scale across multiple
habitats, the taxonomic drivers of BGC diversity are still
to be determined.
In collaboration with the British Antarctic Survey

(BAS), we became interested in microbial communities
within permafrost soils and found preliminary evidence
for diversity that could facilitate the exploitation of novel
metabolism for bioactive natural products. In particular,
BGCs with low similarity to already known clusters
belonging to Actinobacteria and Proteobacteria have
previously been isolated and identified through functional
metagenomic library screening [27, 29].
The aim of the current study is to understand how

differences in microbial community composition drives
PK and NRP diversity in a range of soils including those
from more extreme environments such as an Antarctic
fellfield and the Sahara Desert.
Our experimental design focused on the identification

of community structure-function correlations to eluci-
date the microbial groups driving the diversity in the A
and KS domains of the NRPS and PKS biosynthetic
genes, respectively. Results presented here shed new
light on approaches to discover the potential of unique
habitats for PK and NRP BGC diversity.

Materials and methods
Soil sample collection and processing
Soil samples were collected from 13 sites across different
countries (Algerian Sahara Desert, Mars Oasis in Ant-
arctica, Iceland, Sourhope and Warwick in UK, Tuscany
and South Tyrol in Italy, Kilkenny in Ireland, Cayo Blanco
and Trinidad in Cuba; Additional file 1: Table S1) under
DEFRA licence 51993/194938/3 and sampling permission
compliant with national biodiversity legislation. Chemical
analyses were performed by YARA Analytical Service,
LanCrop Laboratories, Grimbsy, UK. Samples were
collected with sterile equipment from the top 10 cm
of the soil layer, stored at 4 °C for transport and
immediately frozen at −30 °C upon arrival. Large soil
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samples (300–1000 g) were thawed and three individ-
ual samples (0.5 g) were taken from each soil for
DNA extraction using the FastDNA® SPIN Kit for soil
(MP Biomedicals) according to the manufacturer’s
instructions. A Nanodrop spectrophotometer (Thermo-
Fisher) was used to quantify DNA and DNA integrity was
confirmed with agarose gel electrophoresis.

Amplicon library preparation
A total of 117 MiSeq paired-end libraries (2 × 300 bp)
were prepared using the Illumina® Nextera XT Library
preparation kit for the V3–V4 region of the 16S
rRNA gene [30], the A domain of the NRPS gene and
the KS domain of the PKS gene [27] (Additional file 1:
Table S2). Amplification of the 16S rRNA gene target was
performed according to the manufacturer’s instructions
(Illumina). Reactions were optimized for A and KS am-
plicons, with 40 cycles of amplification being used to
improve the yield of amplicon DNA recovered (Additional
file 1: Table S2).

Sequence analysis
All amplicon reads are available at the European Nucleo-
tide Archive (study PRJEB11689) and were processed
using the EBI Metagenomics analysis pipeline v.3 [31] in
order to predict protein coding sequences that could be
used for taxonomic analysis (project ERP013097). A cus-
tom pipeline composed of PANDAseq [32], USEARCH
v.8.1.1861 [33], UPARSE [34], QIIME [35] v.1.9.1 and
Kaiju [36] was also used for microbial and functional
gene diversity analysis to validate results between diffe-
rent pipelines. In this custom pipeline, paired-end reads
were assembled using PANDAseq with a minimum over-
lap of 10 bp. USEARCH algorithms were then used to
de-replicate and sort by size the sequences, discarding
singletons. Operational taxonomic units (OTUs) were
clustered de novo using the UPARSE algorithm and
chimeras were removed based on the prediction of
UCHIME. A summary of sequence and observed OTU
counts per each dataset is reported in Additional file 1:
Tables S3 and S4. A and KS amplicons were initially
clustered into OTUs using 95% and 97% similarity but
results were comparable (Additional file 1: Table S5) and
97% was selected for all further analyses. The commu-
nity structure (16S rRNA gene amplicons) was also
resolved at 97% OTU similarity. The most abundant
sequence per each OTU was selected as the representa-
tive sequence. Mitochondrial or chloroplasts sequences
were also removed from 16S rRNA gene sequences
using the RDP gold database as a reference (in QIIME).
Rarefaction was performed using 17,000 sequences for
16S rRNA gene and 8500 or 2600 sequences for A and
KS datasets, as cut-offs to obtain OTU tables for further
comparative analyses.

Taxonomic assignment of reads
Taxonomy was assigned to 16S rRNA gene OTUs using
the RDP classifier and the Greengenes database.
Raw A and KS reads were processed and analysed

with the EBI Metagenomics analysis pipeline, which
performs protein prediction using FragGeneScan v1.15
[37]. Additional manual taxonomic annotation of the
predicted protein coding sequences derived from A and
KS reads were performed using the Unipept [38] software
with the NCBI taxonomy classification system. Kaiju web
software was also used for the taxonomic annotation of A
and KS OTUs [36].

Annotation of metabolites to A and KS OTUs
Selected A and KS OTUs from the network analysis
were associated to potential metabolite families. Blastx
against the MIBiG database (version 1.2) [39] was
performed with a cut-off expectation value (e-value)
of 10−20 to prevent misclassification.

Talent ratio calculation using Integrated Microbial
Genomes/Atlas of Biosynthetic Gene Clusters (IMG/ABC)
database investigation
In order to determine the biosynthetic potential of
communities discovered in the various soil samples, an
analysis of specific phyla was done in silico to highlight
already existing information on these groups. The IMG/
ABC [40] database was manually checked for the number
of BGCs and genomes available for each of the main phyla
used in the correlation analysis presented in this study.
Statistics available on the database were used to retrieve
the number of genomes and BGCs (inclusive of PKS,
NRPS, saccharides and terpenes) from all available
sequenced single isolate genomes deposited in the
database (data available on 13/04/2018). BGC evidence
(experimentally characterised or predicted only) was also
noted. The genetic potential for natural products bio-
synthesis, here called talent ratio (TR), was calculated for
each phylum as the total number of BGC counts divided
by the number of genomes for that specific bacterial
group. The TR calculation did not consider the different
genome average size for each phylum. This indicator
was created to investigate theoretical genetic potential
for BGC at the phylum level only and not at lower
taxonomic ranks.

Statistical analyses
Statistical analyses were performed using QIIME v. 1.9.1
[35] and R studio v 1.1.456 using the packages Vegan and
Phyloseq v 1.16.2 [41]. Alpha diversity was investigated
with the Simpson inverse index and part of the beta diver-
sity analysis was based on Bray-Curtis dissimilarity matri-
ces. Differences between rarefied and non-rarefied samples
were checked using a paired t test (p < 0.05) on the
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Simpson inverse index. OTU networks were created
through QIIME, visualized and further developed using
Cytoscape [42]. Analysis of similarities (ANOSIM) was per-
formed on groups observed in principal coordinate analysis
(PCoA) to test statistically significant difference between
groups of samples. The correlation between phyla (as 16S
rRNA gene) and the diversity of the two functional genes
was investigated using a Mantel correlation between the
generated Bray-Curtis dissimilarity matrices for each
marker gene, and further explored with a Procrustes super-
imposition of PCoA plots generated from Bray-Curtis
dissimilarity matrices. These analyses were performed
between each respective functional gene (A and KS
domain) and each separate phylum (filtered 16S rRNA gene
by phylum). The phyla selected for correlation analysis had
> 1% abundance in at least 20% of the samples representing
the core community covering on average 96% of the
total bacterial community population in each sample.
A correlation-like statistic, Procrustes randomization
test (PROTEST) using Monte Carlo simulations (999
permutations) tested the significance of the Procrustes
superimposition by evaluating the non-randomness
between two configurations. The goodness-of-fit (M2)
value from the PROTEST represented the concordance
between the ordinations used in the superimpositions
based on the residual sum of squares. The lower the M2

value, which ranges from 0 to 1, the greater the concor-
dance between the data sets [43]. Procrustes plots were
generated with QIIME and visualized using Emperor.

Results
A and KS domain diversity across soils
The annotation of translated sequences for A and KS
genes obtained through InterPro in the EBI pipeline
showed primer specificity for the desired targets. On
average, 98% of A reads per sample were assigned to
either the AMP-dependent synthetase/ligase domain

(IPR000873), the phosphopantetheine binding ACP
domain (IPR00081) or the AMP-binding enzyme
(IPR002510), while 70–80% of KS reads were assigned
either to the thiolase-like (IPR016039) or beta-ketoacyl
synthase domains (IPR013030 and IPR013031).
The rarefaction curves demonstrated that for the A and

KS domains, diversity was covered by the sequencing with
rarefaction not affecting the diversity (A, paired t test,
t(33)=3.67, p > 0.05; KS, paired t test, t(33)=0.997, p > 0.05)
(Additional file 1: Figure S1). A total of 5834 and 9625
OTUs were observed for the A and KS domains, respec-
tively. Alpha diversity was measured using the Simpson
inverse index and ranged across sites from 4.4 to 128.5 for
the A domain and from 2.8 to 144 for the KS domain
(Additional file 1: Figure S2). The Tuscan soil was signi-
ficantly more diverse than any of the other soils for both A
and KS domains (Tukey’s test, p < 0.05).
The A and KS domain diversity (based on Simpson

inverse index) did not show statistically significant
Pearson’s correlation to edaphic features such as pH and
salinity as electrical conductivity (EC). Linear regression
models with one or multiple predictors were also fitted
but no statistically significant results were obtained. Beta
diversity analysis through PCoA plots of A and KS
domains (based on Bray-Curtis dissimilarity matrices)
suggested that composition was dependent on geographic
location. In particular, for the A domain, European and
Cuban samples clustered together, whilst Antarctica,
Sourhope, Trinidad and Algeria each formed separate
clusters (ANOSIM, R = 0.65, p = 0.001) (Fig. 1). For the
KS domain, Cuban and Algerian soils clustered separately,
whilst the European, Antarctic, Icelandic, Trinidad and
South Tyrol soils had sequences that showed similarity
and grouped together (ANOSIM, R = 0.66, p = 0.001)
(Fig. 1). To visualize shared OTUs between samples and
OTUs present only in specific locations, OTU networks of
both A and KS OTUs were constructed (Fig. 2). Network

Fig. 1. Grouping of soil based on the principal components of diversity in two-dimensions (PCoA). Analysis of A domain, KS domain and 16S
rRNA genes based on Bray-Curtis dissimilarity matrices and coloured by location. Alg_KII, Algerian KII; Alg_KI, Algerian KI; Alg_B3, Algerian B3;
Cuba-Fir, Cayo Blanco (Fir-Shrub); Cuba-Sand, Cayo Blanco (Shrub)
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separation was based on the number of shared OTU
nodes between samples and sites distinctly separated
according to geographic location, supporting the results
obtained through PCoA plots. A further investigation of
the shared and location-specific OTUs across samples
allowed the identification of potential areas with endemic
A and KS diversity, such as Antarctica and Cuba. These
soils harboured lower community diversity than other
samples, such as Tuscany, but showed potential endemic
A and KS OTUs.

Microbial community differences across soils
Rarefaction indicated that the bacterial populations (16S
rRNA gene) were sampled to sufficient depth (paired t
test, t(38) = 1.128, p > 0.05) (Additional file 1: Figure S1).

Alpha diversity with the Simpson inverse index ranged
from 22.2 to 404.9, showing significantly lower 16S rRNA
gene diversity for the Algerian B3, Cuban and Antarctic
samples compared to the other soils (Tukey’s HSD,
p < 0.05) (Additional file 1: Figure S2). Pearson’s cor-
relation analysis did not show statistically significant corre-
lations between 16S rRNA gene diversity (Simpson inverse
index) and the edaphic features pH and salinity (as EC).
The analysis of beta diversity through PCoA based on
Bray-Curtis dissimilarity matrices identified six distinct
groups (ANOSIM, R = 0.96, p = 0.001): Antarctica, Iceland,
Sourhope, Cuba, Algeria and the remaining European soils
(Fig. 1). These results suggested differences in the microbial
communities according to their geographic locations which
were reflected in the microbial community structure at the

A

B

C

Fig. 2. Representation of A and KS domain diversity between samples using OTU networks. Main nodes (black dots) represent soil samples,
nodes at the end of edges (grey dots) represent single OTUs. The distance between main nodes is equal to the similarity between samples.
Edges connect OTU nodes to sample nodes. A OTU network was constructed for each dataset (A and KS domain separately), and both networks
were investigated and represented using a different node degree to represent a all OTUs, b only location endemic OTUs belonging to each soil
sample and c only OTUs shared between different locations (not between the same location) (node degree ≥ 4)
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phylum level (Additional file 1: Figure S3). The mean over-
all Bray-Curtis similarity value at the genus level
between biological replicates was 90.3% suggesting
low variability between replicates from the same geo-
graphic location.

Evidence for microbial groups driving A and KS domain
diversity
The taxonomic identity of all A and KS OTUs across
samples through Kaiju [36] assigned the majority of the
OTUs to Bacteria. In particular, for the bacterial A and
KS domain dataset, the majority of reads were assigned
to Actinobacteria (average 39% and 26% of the A and KS
sequences, respectively) and Proteobacteria (average 40%
and 24% of the A and KS OTUs) in accordance with the
prevalence of these two groups (average 16S rRNA gene
relative abundance of 24% and 25%, respectively).
Identity assignment of A and KS domain amino acid

sequences of individual soil samples through EBI/Uni-
pept showed similar results to the Kaiju analysis with an
average of 95% and 99% of read of A and KS domain,
respectively, assigned to Bacteria and the remaining
reads were assigned to Archaea and Eukaryota (Additional
file 1: Figure S4). However, this classification highlighted
some distinct profiles such as the Antarctic soil which
had an average of 10.7% and 16.1% of A and KS reads
assigned to Verrucomicrobia and Bacteroidetes phyla,
respectively. Whereas Sourhope showed an average of

53.9% A reads assigned to Firmicutes (Fig. 3). The
highest abundance of KS reads assigned to the phylum
Acidobacteria was revealed in the Icelandic soil (ave-
rage of 6.2%).
According to Mantel correlation analysis, there

was a positive correlation between the main phyla of the
microbial communities and the biosynthetic diversity
(Table 1). The Mantel correlation values for both domains
ranged from 0.81 for the well-known producers
Actinobacteria to the lower score of 0.64 for Nitrospirae.
In addition, the less well-characterised Bacteroidetes
phylum had a correlation coefficient of 0.82 and 0.83 for
A and KS domains, respectively, whilst the coefficient for
the Verrucomicrobia were 0.82 for A and 0.79 for KS do-
main (Table 1).
A number of Procrustes transformation superimposi-

tions were performed on all data and are presented
(Additional file 1: Figure S5 and Figure S6) with 16S rRNA
gene against A and KS domain data. The correlation with
A domains was stronger than for KS, with M2 of 0.36
(protest, p < 0.001) compared to 0.52 (protest, p < 0.001).
Separate superimposition of each phylum demonstrated
the strong relationship between Actinobacteria and A
domain diversity (M2 = 0.36, p < 0.001). Similarly, for the
KS domain, Bacteroidetes (M2 = 0.22, p < 0.001) and
Proteobacteria (M2 = 0.25, p < 0.001) showed a significant
goodness of fit with the KS domain superimposition. In
particular, this analysis illustrated A and KS domain

Fig. 3. Representation at a phylum level of the taxonomic providence of A and KS domain sequences assigned using the EBI/Unipept pipeline.
Phyla with a percentage below 1% in at least 20% of the samples were not individually represented. Bar stats represent mean values of triplicate
samples for each site
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diversity potentially related to Actinobacteria, Bacteroidetes
and Verrucomicrobia in Antarctic soil showing a closer
co-location of the datasets on the superimposed PCoA plot.

Antarctica: a case study for selected functional diversity
As demonstrated by beta diversity and network analysis,
the Antarctic soil harboured an endemic community of
bacteria and biosynthetic A and KS domains. Taxonomic
analysis of shared and location-specific A OTUs recovered
from the network analysis (Fig. 2) illustrated that OTUs
shared across all sites belonged to Actinobacteria, Pro-
teobacteria and Cyanobacteria species, whilst those en-
demic to Antarctica also belonged to the Bacteroidetes
phylum. The same analysis was performed on KS OTUs,
whereby only OTUs belonging to the Actinobacteria were

shared across all sites, whilst many of the endemic OTUs
belonged to the PVC (Planctomycetes-Verrucomicro-
bia-Chlamydiae) group. This suggests that Actinobac-
teria-derived A and KS domains are more widely
distributed than those belonging to other phyla.
The assignment of previously characterised compounds

(available from the MiBIG database) to Antarctic soil A
and KS OTUs indicated that biosynthetic capability for a
variety of possible metabolites was present (Fig. 4). Poten-
tial metabolites with antimicrobial activity such as teixo-
bactin [17] or antitumor activity as demonstrated for the
polyether salinomycin [44] were matched in the database.
A large proportion of the total Antarctic endemic
OTUs (11% and 59% of A and KS OTUs, respectively)
failed to match any of the compounds available in the
database suggesting potential for novel endemic meta-
bolites from BGCs.

Determining the talent ratio for different phyla
The top most abundant phyla across all the soil samples
contained some groups poorly represented in genome
databases, for example Verrucomicrobia. An audit of the
IMG/ABC database illustrated the Actinobacteria and
Proteobacteria were by far the most talented bacteria
present in the database (talent ratio of 35.83 and 13.02,
respectively). A total of 150 genomes were available for
Verrucomicrobia with 920 predicted BGCs associated
with this group. This represents a small fraction in
comparison to the most abundant phyla represented in
the database such as the Proteobacteria with 27,431
genomes available and 357,065 BGCs counted (Table 2).
However, the potential for natural product BGCs, expressed
as the talent ratio (TR), showed that Verrucomicrobia
are comparable to more represented groups such as

Table 1 Correlation between phyla (16S rRNA gene diversity)
and either A or KS domain diversity in all samples

Phylum R(***)

A KS

Acidobacteria 0.78534 0.77819

Actinobacteria 0.81329 0.80631

Bacteroidetes 0.81641 0.82899

Chloroflexi 0.78155 0.78091

Cyanobacteria 0.75134 0.71288

Firmicutes 0.61803 0.6985

Gemmatimonadetes 0.81245 0.81914

Nitrospirae 0.63576 0.63678

Planctomycetes 0.75403 0.74839

Proteobacteria 0.77487 0.78704

Verrucomicrobia 0.82042 0.79326

The Mantel correlation R values were statistically significant with a p value = 0.001 (***)

Fig. 4. Matched compounds of A and KS location-specific and shared Antarctic OTUs to the MIBiG database. All OTUs from the three Antarctic
samples were subject to Blastx analysis for the A and KS domains separately
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Cyanobacteria, which are better known and charac-
terised for natural product biosynthesis. Similarly, Bac-
teroidetes which only counted 2162 sequenced genomes
and 22,885 BGCs have a TR of 10.58 which is similar to
that of Firmicutes (Table 2).

Discussion
The current study provides an insight into the main
phyla involved in driving the A and KS domain diversity
in a range of soils, focusing on the inter-relationship
between structure and function of the microbial commu-
nity. The geographic segregation of different microbial
communities revealed in this study highlights the potential
for novel PK and NRP discovery in soils exposed to ex-
treme conditions, such as those of Antarctica, the Algerian
Saharan Desert or the pristine Cuban Cayo-Blanco regions.
The Antarctic has been the subject of intense study, pro-
viding evidence of endemicity amongst the terrestrial
metazoans, with endemics also having been identified
in cultured and uncultured Cyanobacteria and green
algae [45]. We posit that the global ubiquity hypothesis
[46] is challenged by our observation that metabolic
endemism occur in Antarctica but also in Cuba and
Algeria. A recent study on an extreme oligotrophic
oasis provided strong evidence of high diversity and
endemicity for culturable Actinobacteria [47]. The phylo-
genetic uniqueness of Streptomyces species recovered
from these desert soils provided additional support for
migration limitation emphasising the Baas Becking
hypothesis of environmental selection. We believe that the
Antarctic site at Mars Oasis provides similar endemism
for PK and NRP metabolite, further implying dispersal
limitation.
Correlation analysis between the main phyla and the A

and KS domain diversity showed an association between

NRPS or PKS genes and less characterised phyla such as
Bacteroidetes and Verrucomicrobia, especially in the
Antarctic soils. These two phyla are additional microbial
players in metabolite diversity together with the well-
known producers Actinobacteria [48], Proteobacteria
[49], Firmicutes [50] and Cyanobacteria [51]. BGCs from
human-associated Bacteroidetes were recently identified
[52] and a limited number of Verrucomicrobia genomes
were analysed, identifying possible novel NRPS and PKS
genes [12]. The majority of the BGCs reported for both
groups have only been predicted and not yet experimen-
tally characterised, but genome mining approaches as
well as the results from our study suggest that these
groups represent potential reservoirs of novel BGCs.
The current study emphasises the potential for less
well-characterised phyla being involved in NRP and PK
diversity of soil, even though only a small fraction of
OTUs were taxonomically matched to these groups. The
low number of (annotated) sequences for these phyla in
databases may have resulted in fewer matches. Conti-
nued sequence analysis combined with experimental
characterisation of the predicted clusters will provide an
understanding of the biosynthetic potential of these
untapped bacterial phyla and the roles in soil ecology of
the metabolites that they synthesize.
Antarctic soils harboured A and KS domain diversity

unique to this habitat in addition to other reads showed
similarities to derivatives of potentially useful antibac-
terial and anticancer drugs such as teixobactin [17],
gramicidin [53], salinomycin [44] and actinomycin [54].
The application of this structure-function relationship
analysis has demonstrated the importance of continuing
the long-term study of this unique Antarctic habitat.
The identification of variables that affect the microbial

community is challenging due to the intrinsic heterogeneity

Table 2 Counts of biosynthetic gene clusters (BGC) reported on the IMG/ABC database according to phylum and evidence
(experimentally proven or predicted only)

Phylum Genomes available BGC counts (total) BGC counts
(experimentally proven)

BGC counts
(predicted only)

Talent Ratio (TR)

Acidobacteria 100 960 0 960 9.60

Actinobacteria 6912 247,650 621 247,029 35.83

Bacteroidetes 2163 22,885 2 22,883 10.58

Chloroflexi 290 1262 0 1262 4.35

Cyanobacteria 1015 8159 60 8099 8.04

Firmicutes 15,015 157,654 106 157,548 10.50

Gemmatimonadetes 34 69 0 69 2.03

Nitrospirae 106 245 0 245 2.31

Planctomycetes 193 1343 0 1343 6.96

Proteobacteria 27,431 357,065 386 356,878 13.02

Verrucomicrobia 150 920 0 920 6.13

Data available on 13/04/2018
Talent ratio (TR) = BGC counts (total)/Genomes available
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of environmental samples, such as the soil matrix, where
different abiotic and biotic variables interact at the micro-
scale [55]. However, it has been shown for both micro-
organisms and macroorganisms that environmental
variables and geographic location affect biogeographic
patterns of diversity [56–60]. The presence of potentially
novel chemical structures in natural products might
represent an advantage to microorganisms selecting taxa
with different functional potentials to adapt to diverse
conditions. Network analysis of A and KS OTUs showed
segregation of metabolites forming diversity hotspots,
sharing a limited number of OTUs with the other envi-
ronments. Biogeographical studies have shown that limi-
tation to dispersal, such as physical barriers, do not
affect microorganisms but that environmental variables
act selectively on the metabolic traits present in the
microbial community [61].

Conclusions
The current study identified unexploited and unexplored
taxa, such as Verrucomicrobia and Bacteroidetes, as
potential sources of novel NRP and PK in soils with the
implication that geographic isolation was one of the
main drivers for microbial community functional diver-
sity. The application of the approach presented in this
study will assist in the identification of environments
and relevant bacterial groups rich in potentially novel
BGCs allowing a more focused targeted approach for
drug discovery programmes. The experimental vali-
dation of the BGC potential of these less characterised
phyla will also promote a better understanding of the
role of natural products in the environment.
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