nerc.ac.uk

Daily bathymetric surveys document how stratigraphy is built and its extreme incompleteness in submarine channels

Vendettuoli, D.; Clare, M.A.; Hughes Clarke, J.E.; Vellinga, A.; Hizzet, J.; Hage, S.; Cartigny, M.J.B.; Talling, P.J.; Waltham, D.; Hubbard, S.M.; Stacey, C.; Lintern, D.G.. 2019 Daily bathymetric surveys document how stratigraphy is built and its extreme incompleteness in submarine channels. Earth and Planetary Science Letters, 515. 231-247. https://doi.org/10.1016/j.epsl.2019.03.033

Before downloading, please read NORA policies.
[img]
Preview
Text
EPSL)D-18-01248R1_revised.pdf

Download (322kB) | Preview
[img]
Preview
Text
1-s2.0-S0012821X19301815-main.pdf
Available under License Creative Commons Attribution 4.0.

Download (6MB) | Preview

Abstract/Summary

Turbidity currents are powerful flows of sediment that pose a hazard to critical seafloor infrastructure and transport globally important amounts of sediment to the deep sea. Due to challenges of direct monitoring, we typically rely on their deposits to reconstruct past turbidity currents. Understanding these flows is complicated because successive flows can rework or erase previous deposits. Hence, depositional environments dominated by turbidity currents, such as submarine channels, only partially record their deposits. But precisely how incomplete these deposits are, is unclear. Here we use the most extensive repeat bathymetric mapping yet of any turbidity current system, to reveal the stratigraphic evolution of three submarine channels. We re-analyze 93 daily repeat surveys performed over four months at the Squamish submarine delta, British Columbia in 2011, during which time >100 turbidity currents were monitored. Turbidity currents deposit and rework sediments into upstream-migrating bedforms, ensuring low rates of preservation (median 11%), even on the terminal lobes. Large delta-lip collapses (up to 150,000 m3) are relatively well preserved, however, due to their rapidly emplaced volumes, which shield underlying channel deposits from erosion over the surveyed timescale. The biggest gaps in the depositional record relate to infrequent powerful flows that cause significant erosion, particularly at the channel-lobe transition zone where no deposits during our monitoring period are preserved. Our analysis of repeat surveys demonstrates how incomplete the stratigraphy of submarine channels can be, even over just 4 months, and provides a new approach to better understand how the stratigraphic record is built and preserved in a wider range of marine settings.

Item Type: Publication - Article
Digital Object Identifier (DOI): https://doi.org/10.1016/j.epsl.2019.03.033
ISSN: 0012821X
Date made live: 13 May 2019 15:00 +0 (UTC)
URI: http://nora.nerc.ac.uk/id/eprint/523292

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...