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 16 

Abstract 17 

Reflection and transmission of normally-incident internal waves propagating across a 18 

geostrophic front, like the Kuroshio or Gulf Stream, are investigated using a modified linear 19 

internal-wave equation. A transformation from depth to buoyancy coordinates converts the 20 

equation to a canonical partial differential equation, sharing properties with conventional 21 

internal-wave theory in the absence of a front. The equation type is determined by a parameter Δ, 22 

which is a function of horizontal and vertical gradients of buoyancy, the intrinsic frequency of 23 

the wave and the effective inertial frequency, which incorporates the horizontal shear of 24 

background geostrophic flow. In the northern hemisphere, positive vorticity of the front may 25 

produce Δ≤0, i.e., a “forbidden zone”, in which wave solutions are not permitted. Thus, Δ=0 is a 26 

virtual boundary that causes wave reflection and refraction, although waves may tunnel through 27 

forbidden zones that are weak or narrow. The slope of the surface and bottom boundaries in 28 

buoyancy coordinates (or the slope of the virtual boundary if a forbidden zone is present) 29 

determine wave reflection and transmission. The reflection coefficient for normally-incident 30 

internal waves depends on rotation, isopycnal slope, topographic slope and incident mode 31 

number. The scattering rate to high vertical modes allows a bulk estimate of the mixing rate, 32 

although the impact of internal-waves driven mixing on the geostrophic front is neglected. 33 

  34 
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1. Introduction 35 

Conventional internal-wave theories assume that background vertical stratification (−∂B/∂z, 36 

where B is the buoyancy) is horizontally uniform. However, this assumption is not always valid 37 

in the ocean (Fig. 1). Horizontal density gradients are associated with oceanic processes 38 

dominated by the geostrophic balance. Intensified jets exist along the western boundaries (e.g., 39 

the Kuroshio in the North Pacific Ocean and Gulf Stream in the North Atlantic Ocean), forming 40 

a horizontal density gradient that we refer to as a “geostrophic front”. Here, we examine internal-41 

wave propagation through horizontal density gradients (−∂B/∂x) at geostrophic fronts, which act 42 

like sloping topography. 43 

Mooers (1975) established a theory for internal-wave propagation inside a geostrophic front. 44 

Internal-wave characteristics are distorted by the front due to vertical geostrophic shear. The 45 

effective inertial frequency (Mooers 1975; Kunze 1985) is modified by the relative vorticity of 46 

the geostrophic front 47 

 ( , ) ( ),f

V
x z f f

x



 


  (1) 48 

where f is the Coriolis frequency and V the background baroclinic current. Cyclonic 49 

(anticyclonic) background vorticity increases (decreases) the lower frequency bound of internal 50 

waves (Magaard 1968; Mooers 1975; Kunze 1985). Positive vorticity can reflect incoming 51 

internal waves, while negative vorticity can enhance wave propagation downward along a 52 

chimney-like channel. The group velocity is nearly zero at the base of the front core (i.e., at the 53 

chimney mouth), so inertial internal waves are trapped and amplified. Observations of trapped 54 

and downward-propagating near-inertial internal waves exist in the North Pacific Subtropical 55 

Front (Kunze and Sanford 1984), Gulf Stream warm-core rings (Lueck and Osborn 1986; Kunze 56 
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1986; Kunze et al. 1995), the Gulf Stream (Thomas et al. 2016) and other regions (Whalen et al. 57 

2012; Meyer et al. 2015). Internal-wave trapping may enhance local mixing and affect the 58 

evolution and fate of the geostrophic front (Kunze et al. 1995; Thomas et al. 2016). 59 

Thermocline tilting at a geostrophic front also affects the generation and propagation of internal 60 

tides, which are generated by barotropic tides over sloping topography. For example, the 61 

Kuroshio’s presence in Luzon Strait produces internal tides with different amplitudes in the 62 

South China Sea and Philippines Sea (Buijsman et al. 2010; Li 2014). In an idealized model, 63 

Chuang and Wang (1981) find that thermocline shoaling towards a continental shelf suppresses 64 

scattering of incident low-mode internal waves to higher modes and inhibits internal-tide 65 

generation. In the East China Sea, positive vorticity on the western side of the Kuroshio blocks 66 

offshore internal-tide propagation and traps these waves between the shelf break and Kuroshio. 67 

As a result, trapped internal-wave beams produce intensified velocity shear (Rainville and Pinkel 68 

2004; Kaneko et al. 2012). Evolving geostrophic fronts and mesoscale eddies also refract 69 

horizontally propagating internal tides (Lamb and Shore 1992; Rainville and Pinkel 2006; Zaron 70 

and Egbert 2014; Dunphy and Lamb 2014; Kelly and Lermusiaux 2016), producing intermittent 71 

internal tides at fixed locations, even when internal-tide generation is steady (Nash et al. 2012). 72 

3D mesoscale eddies also affect internal-wave propagation by shifting the effective inertial 73 

frequency, which depends on the kinetic energy of eddies, local buoyancy frequency, and 74 

vertical wavenumber of internal waves (Young and Ben-Jelloul 1997). 75 

Waves reflect, refract, or scatter where the properties of their carrier medium change. 76 

Horizontally varying stratification alters the internal-wave speed in the same manner as sloping 77 

topography. Scattering due to these speed-changes can produce high-mode internal waves that 78 
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contribute to local mixing, which in turn alters the evolution of the background geostrophic flow 79 

(Nikurashin and Ferrari 2013; Wagner and Young 2016).  80 

Most previous studies examined near-inertial internal waves that are generated by wind at the sea 81 

surface and propagate downwards (Kunze 1985; Whitt and Thomas 2013; Thomas 2017). Here, 82 

we examine internal tides, which are generated by sloping topography and propagate long 83 

distances as low vertical modes. We focus on how they reflect and scatter as they cross 84 

geostrophic fronts. In section 2, we apply Mooers’ (1975) theory to the settings considered by 85 

Chuang and Wang (1981). By transforming the internal-wave equation to buoyancy coordinates, 86 

we establish a direct analog to classical internal-wave theory. Parameters determining reflection 87 

and transmission are analyzed for single-mode incident internal waves in section 3 and for 88 

incident rays in section 4. Results from the Kuroshio region are described in section 5. 89 

Conclusions and discussion are presented in section 6. 90 

 91 

2. Analysis 92 

2.1 Stability of fronts 93 

We consider a geostrophic front in an incompressible, inviscid and non-diffusive fluid on an f-94 

plane. The Cartesian coordinates are the across-front (x), along-front (y) and vertical (z) 95 

positions. The idealized geometry is uniform in y (i.e. 2D) and has a flat bottom and uniform 96 

stratification far from the front.  The density 97 

 
1 1

0( , , ) 1 ( , ) ( , , )x z t g B x z g b x z t          (2) 98 
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includes a background geostrophic buoyancy B and a buoyancy disturbance b caused by internal 99 

waves. Here, ρ0 is a constant. The front is stationary, so the background buoyancy is time-100 

independent. The vertical buoyancy frequency is 101 

 
2 B

N
z





  (3) 102 

and the horizontal buoyancy gradient  103 

 
2 .

B
M

x





  (4) 104 

M2 and N2 can be quantified from in situ observations. M2 is associated with an along-front 105 

geostrophic shear via the thermal wind balance. This shear is integrated to yield geostrophic 106 

velocity 107 

 
2

,
gg

z

z HH

M
V dz V

f 
    (5) 108 

where, f is the Coriolis frequency, and Hg a reference depth where V is known (or assumed 109 

known). Hg is called the “level of no motion” only when V(Hg)=0. The ratio between the 110 

horizontal and vertical buoyancy frequency 111 

 

2

2

M
S

N
    (6) 112 

is the isopycnal slope ∂ξ/∂x where ξ is the vertical isopycnal displacement. Note that M2 can be 113 

either positive or negative, depending on the direction of isopycnal shoaling. World Ocean Atlas 114 

climatology (Locarnini et al. 2006) provides a global estimate of maximum |S| in the top 115 

100−1000 m (Fig. 1). Large values of |S| coincide with vertical shears in thermal-wind balance, 116 
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e.g., |S|~O(10-3) in the Kuroshio and O(10-2) in the Gulf Stream, although the climatology may 117 

underestimate actual slopes due to averaging and coarse resolution (0.25°×0.25°). 118 

The front is assumed to be dominated by geostrophic balance, implying that the Rossby number 119 

 

2

1,xV M
Ro O

f fN

 
  

 
  (7) 120 

so that the absolute vorticity ζ = f+Vx is always positive in the north hemisphere (f > 0). In this 121 

case, a stable front requires the balanced Richardson number (Thomas et al. 2013) 122 

 

22 2 2

2 4
.B

z

N f N f f
Ri O

V M SN 

   
      

  
  (8) 123 

RiB indicates the relative importance of buoyancy and shear in the background flow. RiB > f/ζ 124 

causes the potential vorticity to be of opposite sign of the Coriolis frequency f, leading to inertial 125 

or symmetric instability. RiB will be used to indicate the stability of fronts in the following 126 

analysis. Note that incident internal waves may create instability, turbulence and mixing, even 127 

when the background front is initially stable. 128 

2.2 Equation for internal waves 129 

Internal waves normally incident on a 2D geostrophic front B(x, z) are an idealized analog to 130 

internal tides propagating across the Kuroshio or Gulf Stream. Normal incidence is a 131 

consequence of the 2D idealization. The complexity of realistic 3D flows is not considered. The 132 

linearized internal-wave equations within a 2D geostrophic front B(x, z) are 133 

 

2 2

0,

0,

0,

0,

0,

t x

t x z

t z

t

x z

u fv p

v fu uV wV

w p b

b uM wN

u w

  

   

  

  

 

  (9) 134 
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where (u, v, w) denotes wave velocity in (x, y, z) direction and p=P/ ρ0 is the reduced pressure 135 

perturbation (Gill 1982). Introducing a streamfunction ψ, reduces (9) to a single equation 136 

(Mooers 1975) 137 

 2 2 22 0.xxtt zztt xx f zz xzN M            (10) 138 

Then, writing the solution as 139 

 0 ( , ) ,i tU H x z e       (11) 140 

where U0 and ω are the amplitude and frequency of internal waves, respectively, and H the water 141 

depth, the internal-wave equation becomes 142 

 

2 22

2 2 2 2

2
0.

f

xx xz zz

M

N N

 
  

 


  

 
  (12) 143 

Internal-wave dynamics are influenced by isopycnal slopes S=−M2/N2 (vertical shears through 144 

thermal wind), planetary and relative vorticities (through σf), the intrinsic wave frequency ω and 145 

vertical wavenumber. The boundary conditions  146 

 0 at 0 and ( ). z z h x      (13) 147 

correspond to a rigid-lid and impermeable bottom. Here, h represents the bottom topography. 148 

The partial differential equation (PDE) (12) can be hyperbolic, parabolic or elliptic depending on 149 

the parameter 150 

 

4 2 2 2 2

2 4 2 2 2 2 2 2

( )( )

( )( ) if  is -independent.

f

g

M N

S N N f SN H M z

  

 

    

    
  (14) 151 

Kunze (1985) found that positive vorticity can reflect internal waves when ω< σf. Here, Δ 152 

determines reflection, rather than the relative vorticity, because wave solutions are not allowed 153 
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by (12) if Δ is negative. For convenience, we refer to the region with Δ<0 as the “forbidden 154 

zone” and the contour Δ=0 as a “virtual boundary”. According to (14), Δ is a function of 155 

horizontal and vertical gradients of buoyancy, intrinsic frequency of incident internal waves and 156 

background geostrophic shears. Typical conditions in the Kuroshio and Gulf Stream (|S| taken 157 

from Fig. 1, N=0.005 s-1, f=10-4 s-1 and Vx=±10-5 s-1) yield Δ>0 for M2 frequency (ω=1.4×10-4 s-1) 158 

so that (12) is hyperbolic (i.e., it permits wave solutions). However, if the local front vorticity Vx 159 

exceeds about 10-4 s-1, a forbidden zone appears, leading to evanescent solutions for (12). 160 

Propagation across the geostrophic front is inhibited, although wave tunneling can occur if the 161 

forbidden zone is weak or narrow (Bender and Orszag 1978). Negative Δ can also appear at low 162 

latitudes if a front has large vorticity (Kunze 1985; Rainville and Pinkel 2004; Thomas et al. 163 

2016).  164 

Using (9), the phase-averaged energy flux J=(Jx, Jz) is  165 

 2 2
2 * * 2 2 * *0 0 ( ) ( )( )

4

x z

z z x x

J P

U H
M N

i




      





      

  (15) 166 

and 167 

 2 2
2 2 * * 2 * *0 0 ( )( ) ( ) .

4

z x

f z z x x

J P

U H
M

i




       



 

      

  (16) 168 

Angle brackets represent phase averages and asterisks complex conjugates. For horizontally 169 

uniform stratification (M2=0), these formulae revert to conventional expressions (Pétrélis et al. 170 

2006). In the absence of external forcing or dissipation, the phase-averaged energy-flux 171 

divergence of monochromatic internal wave is zero, i.e., 172 
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 0. J   (17) 173 

In the following analysis, we assume that stratification is horizontally uniform (M2=0) in the far 174 

field, so that an incident mode-m internal wave with amplitude Am 175 

 
( )

sin ,mi k x t

i m

m z
A e

H


 

    (18) 176 

has vertically-averaged energy flux 177 

 

2 2
1 2

0 .
2

i m m

f
J k A







   (19) 178 

where km is the wavenumber and an overbar represents a vertical average. The reflection 179 

coefficient R and transmission coefficient X are ratios of the vertically averaged reflected energy 180 

flux rJ  and transmitted energy flux tJ  to the total incident energy flux iJ , respectively, i.e.,  181 

  and .tr

i i

JJ
R X

J J
    (20) 182 

Equation (12) is solved following Lindzen and Kuo (1969) and validated through comparison 183 

with simulations using the MITgcm model (Marshall et al. 1997). 184 

2.3 A front example 185 

Here, we analyze an idealized front 186 

 
2 2 2sech ,

x
M sN

W

 
   

 
  (21) 187 

corresponding to the density profile 188 

 1 2

0 1 tanh .
x

g N H z sW
W

     
      

   
  (22) 189 
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The nominal vertical buoyancy frequency is constant, N=5×10-3 s-1. The maximum isopycnal 190 

slope is |s| and the width of front W. In the MITgcm simulation (Fig. 2), s=−0.01and RiB=4, 191 

satisfying the stability condition (8), so the background front is stable. Incident mode-one M2 192 

internal waves with amplitude U0=0.10 m s-1 propagate into the domain from the left boundary. 193 

Wave currents are small, so wave-wave advection is negligible and the simulation is 194 

approximately linear. Other parameters and configurations used in the simulations are listed in 195 

Table 1. Normalized wave velocities u/U0 at t=360.7 hr are consistent between the direct solution 196 

of (12) and MITgcm (Fig. 2). Two internal wave beams are generated, collinear to the slope of 197 

characteristics  198 

 
2

2 2

M

N




   



  (23) 199 

derived from (12) .  200 

Reflected and transmitted internal waves are separated using a Fourier transform, which converts 201 

the streamfunction φ from the space domain (x, z) to the wavenumber domain (k, m). Separate 202 

inverse Fourier transforms for positive and negative k isolate waves propagating in opposite 203 

directions (Fig. 3), which can be viewed in depth or buoyancy coordinates (buoyancy 204 

coordinates are discussed in section 2.5). At the front, wave transmission X=97.1% is much 205 

larger than reflection R=2.9%. In general, reflection is weak for incident waves with long 206 

wavelengths in the absence of forbidden zones. 207 

2.4 Neglected dynamics 208 

The derivation of (12) employs several approximations to produce a tractable system with a 209 

reduced parameter space. Here, we review the effects of each approximation. The theory 210 
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formally requires a front with small Rossby number and large Richardson number to ensure a 211 

stable and steady geostrophic flow.  212 

Ignored nonlinear effects can cause internal wave steepening or breaking (Farmer 1978) and 213 

feedbacks between internal waves and the front (Nagai et al. 2015). In addition, viscosity is 214 

neglected so highly sheared internal waves propagate freely without dissipation. 215 

Equation (12) describes 2D dynamics, so interactions between internal waves and 3D 216 

background conditions are not retained. Mesoscale eddies or meanders produce 3D advection, 217 

dispersion and refraction (Lighthill 1978; Olbers 1981; Klein et al. 2003), resulting in 218 

convergence or divergence of internal-wave energy (Rainville and Pinkel 2006; Dunphy and 219 

Lamb 2014; Duda et al. 2018). Doppler-shifting is omitted because the idealized geostrophic 220 

flow is perpendicular to wave propagation. Rough and complex 3D bathymetric features, such as 221 

ridges or canyons, are omitted. The smooth 2D topography may underestimate internal-tide 222 

generation (Osborne et al. 2011) and fail to reproduced observed internal tides (Martini et al. 223 

2011; Nash et al. 2012). 224 

Although many wave/mean flow interactions are more complicated than those included in our 225 

model (Peters 1983), the model is simple enough that individual parameters can be 226 

systematically varied to quantify low-mode internal wave scattering over a broad range of 227 

idealized fronts. The model can provide numerically-efficient order-of-magnitude estimates of 228 

scattering across many different regions in the ocean. The model may retain some accuracy even 229 

when the formal requirements of small Rossby number, large Richardson number and linear 230 

internal waves are violated. Therefore, the results reported here could provide a useful 231 

complement to less tractable but more realistic 3D nonlinear models of internal waves interacting 232 

with unstable submesoscale fronts, provided that the neglected processes do not dominate. 233 
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2.5 Relation to the conventional internal wave equation 234 

In horizontally uniform stratification, the wave equation takes the canonical hyperbolic form. For 235 

horizontally varying stratification the wave equation (12), in the hydrostatic limit, becomes 236 

 

2 22

2 2

2
0.

f

xx xz zz

M

N N

 
  


     (24) 237 

This equation can be rewritten in buoyancy coordinates (x’, B), where 238 

 '  and ( , ),x x B B x z    (25) 239 

so that the cross-derivative term disappears, 240 

 

 
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2 ' 2 2
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2 ' 22 4
2 2 2

2 2 4
2 .

x x f BB

f

Bx z z

N

M M
M M N

N N N
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 


 

  
      
   

  (26) 241 

In buoyancy coordinates, the effective Coriolis frequency is  242 

 '2

'( ),f xf f V     (27) 243 

where 244 

 
4

' 2
.x x

M
V V

fN
   (28) 245 

The boundary conditions become 246 

 0 at ( ') and ( '),s bB B x B B x      (29) 247 

where Bb and Bs represent the bottom and surface, respectively. The sign of  248 

 2 '2 2' ( ) ,f N      (30) 249 
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which appears on the LHS of (26), determines whether (26) is hyperbolic, parabolic or elliptic. If 250 

Δ '<0, (26) is hyperbolic and normal modes and modal wave speeds can be calculated from a 251 

plane-wave solution. Although, analytical modal solutions are typically impossible when the 252 

coefficients of (26) are functions of (x’, B). If M2 and N2 are constant, (26) becomes 253 

  2 ' 2 2

' ' 0,x x f BBN        (31) 254 

which has the same format as the conventional internal-wave equation. Thus, conclusions and 255 

methods from conventional internal-wave analysis apply to flows with horizontally varying 256 

stratification in buoyancy coordinates. For instance, (31) is a standard hyperbolic equation if 257 

Δ’>0, so it may be solved using normal-mode decomposition (Kelly et al. 2013) or Green’s 258 

functions (Robinson 1969; Pétrélis et al. 2006; Balmforth and Peacock 2009). The 259 

transformation also indicates that a tilted thermocline can be mimicked in a laboratory by 260 

implementing appropriate surface and bottom boundaries (i.e., frontal effects can be replicated 261 

using topographic bumps in the same way that the beta effect can be replicated using a sloping 262 

bottom). Where M2 and N2 are not constant, (26) can be efficiently solved using the method 263 

provided by Lindzen and Kuo (1969). 264 

The coordinate transformation (25) reveals equivalent effects of horizontally varying 265 

stratification and bottom topography. The wavefield in (x, z) coordinates shown in Fig. 2 is 266 

transformed to the buoyancy coordinates (x’, B), shown in Fig. 3. In the buoyancy coordinates, 267 

the bottom and surface boundaries become 268 

 
2 2' '

tanh  and ( tanh ),b s

x x
B N sW B N H sW

W W
     (32) 269 
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respectively. That is to say, even though the surface and bottom boundary are flat in the (x, z) 270 

coordinates, they are not in the (x’, B) coordinates. In conventional internal wave theory, beams 271 

are emitted from the critical slope, at which the characteristics of internal waves are parallel to 272 

the bottom and surface boundaries, or from the maximum slope if no critical slope is present. In 273 

a geostrophic front, the effective slope ratios between the buoyancy coordinate boundaries and 274 

the internal wave characteristics are 275 

 

2 '2

2 '2

1 at the bottom and

1 at the surface.

bx

b f

sx

s f

B M

N

B M

N

  

  

  


  


  (33) 276 

Critical effective slopes thus indicate locations where beams originate in a geostrophic front. 277 

E.g., the boundaries in Fig. 3 do not have critical points, but a reflected (transmitted) beam 278 

radiates from the maximum surface (bottom) slope near the center of the front. 279 

 280 

3. Single-mode propagation 281 

Here, we investigate the propagation of a single-mode internal wave across a geostrophic front. 282 

Solutions to (12) are obtained for incident internal waves with M2 tidal frequency (ω=1.4×10-4 s-283 

1) in a mid-latitude band (f=10-4 s-1). The background front is defined by (22), in which the 284 

horizontal buoyancy gradient, M2, varies with x, but is constant with depth. The background 285 

velocity (34) also depends on the choice of Hg and V(Hg). Here, we arbitrarily set V(Hg)=0 m s-1 286 

and examine flows where 𝐻𝑔 ∈ [−𝐻, 0]. I.e., we only examine results for geostrophic flows that 287 

have a level of no motion, even though (12) applies equally to flows without a level of no motion 288 

(e.g., Antarctic Circumpolar Current; Damerell et al. 2013). Initial solutions consider a flat 289 
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bottom, but subsequent solutions include varying topography to illustrate the equivalent effects 290 

of horizontally varying stratification and topography. Similarly, initial solutions consider a 291 

mode-one incident wave, but later solutions examine high-mode incident waves. 292 

3.1 Critical slopes and forbidden zones 293 

The effective Coriolis frequency (σf) and background stratification (M2, N2) determine the sign of 294 

Δ according to (14). Wave solutions are not allowed by (12) for Δ≤0. The effective Coriolis 295 

frequency depends, in part, on the horizontal geostrophic shear, which in requires the absolute 296 

geostrophic velocity (not just thermal wind). Since we arbitrarily set V(Hg)=0 m s-1, here, the 297 

reference level (Hg) becomes the level of no motion, which we tune to control the sign of Δ. 298 

Most geostrophic flows are wind driven and, therefore, surface intensified with a level of no 299 

motion in mid-depth. However, bottom intensified geostrophic currents are also observed (e.g., 300 

Bishop et al. 2012), which may correspond to higher levels of no motion.  301 

Some levels of no motion produce an area with Δ<0 (i.e., a forbidden zone). For the front 302 

considered here [V(Hg)=0 m s-1 and (22) with s=−0.01 and W=25 km], reflection and 303 

transmission coefficients vary greatly with Hg (Fig. 4). If 590 < Hg <1410 m, there are no 304 

forbidden zones and reflection at the front is weak (Fig. 5b). If Hg < 590 m or Hg > 1410 m, a 305 

forbidden zone exists near the bottom (Fig. 5a is for Hg = 0 m) or surface (Fig. 5c is for Hg = 306 

2000 m). If Hg < 725 m or Hg > 1275 m, critical effective slopes (35) appear and create beam-307 

like scattering. Thus, three regimes can be distinguished for the solutions.  308 

Regime I: 0 < Hg < 590 m and 1410 < Hg <2000 m 309 

A forbidden zone appears and intersects either the bottom or surface boundary where the slope is 310 

critical. Inside the forbidden zone (Δ<0) waves are evanescent, so internal-wave transmission is 311 
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impeded. If Hg = 0 m, a ridge-like forbidden zone near the bottom causes significant reflection at 312 

its pinnacle (Fig. 5d). A relatively weak reflected beam also originates from the maximum 313 

(subcritical) surface slope. Wave transmission is reduced due to blocking by the forbidden zone, 314 

although a transmitted rightward-propagating beam is emitted from the right critical point. If Hg 315 

= 2000 m, a canyon-like forbidden zone near the surface reflects waves in a highly focused ray 316 

that originates from its trough (Fig. 5f). The reflected beam is more diffuse when Hg = 0 m than 317 

Hg = 2000 m, because the ridge-like forbidden zone for Hg = 0 m blocks a greater vertical extent 318 

of the water column occupied by the incident mode-one wave. Thus, low modes contribute more 319 

to the reflected wave field (e.g., Klymak et al. 2013). Because internal wave rays cannot 320 

penetrate the forbidden zone or the surface boundary, no transmitted ray forms at the critical 321 

points when Hg = 2000 m (Fig. 5i). 322 

Regime II: 590 < Hg <725 m and 1275 < Hg < 1410 m 323 

Critical slopes occur on either the surface or bottom boundary, but there are no forbidden zones, 324 

so reflection is weaker than in Regime I. Scattering occurs near the critical slope. If critical 325 

slopes occur on the bottom boundary, a transmitted ray is emitted from the bottom and a 326 

reflected ray from the maximum (subcritical) surface slope.  327 

Regime III: 725 < Hg < 1275 m 328 

Both surface and bottom boundaries are subcritical and there are no forbidden zones, so wave 329 

reflection is very weak. Scattering is similar to the cases in Regime II, but the emitted rays are 330 

weaker and originate from the maximum (subcritical) slopes (Fig. 3). This Hg regime is most 331 

typical of the Kuroshio or Gulf Stream. 332 
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In summary, forbidden zones significantly affect wave reflection and transmission. Total 333 

transmission (reflection) increases (decreases) with Hg for Hg < 1000 m and then decreases 334 

(increases) for Hg > 1000 m (Fig. 4a). The transmitted energy flux of a mode-one wave is 335 

symmetric with respect to Hg = 1000 m (Fig. 4b), and only determined by the minimum effective 336 

vertical thickness of the waveguide. For example, for Hg = 0 m and 2000 m, the vertical scales of 337 

forbidden zone are equal, so the effective vertical thicknesses of the waveguides are the same.  338 

High-mode energy fluxes are asymmetric with respect to Hg. A level of no motion at the surface 339 

causes stronger reflection than at the bottom. If the level of no motion is near the surface, the 340 

rightward-shoaling surface boundary and forbidden zone reflect high-mode waves (Fig. 5d). 341 

High-mode wave transmission increases with Hg (Fig. 4c) because the slope ratio between the 342 

bottom boundary and upward-transmitted ray increases with Hg.  343 

3.2 Effect of isopycnal slope 344 

Here we investigate internal-wave reflection and transmission across fronts with different 345 

horizontal buoyancy gradients. Solutions are presented for incident mode-one internal waves at 346 

the M2 tidal frequency, and a front with V(Hg)=0 m s-1 and Hg = 2000 m. In this case, the bottom 347 

boundary is always subcritical, i.e., 348 

 
2 ,

b
bx B B

B M 


     (36) 349 

However, the surface boundary has critical slopes and a forbidden zone for large |s|. We choose a 350 

front width W = 25 km, so 𝑠 ∈ [−0.05,0.05] determines the isopycnal slope. Note that |s| ≥ 0.02 351 

may not be realistic in the ocean where climatology indicates |S|~ O(10-5-10-2) (Fig.1) 352 

A large horizontal buoyancy gradient M2 enhances interaction between internal waves and the 353 

buoyancy-coordinated boundaries, i.e., transmitted energy flux decreases and reflected energy 354 
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flux increases with increasing isopycnal slope (Fig. 6). Since we set V=0 at the bottom, the 355 

surface buoyancy boundary dominates the interaction with internal waves. Reflection and 356 

transmission coefficients are asymmetric for s such that reflected waves are stronger for 357 

rightward shoaling stratification (∂ξ/∂x>0) than for leftward shoaling (∂ξ/∂x<0). E.g., for small s 358 

(i.e., no forbidden zone or critical slopes), internal waves encountering a downward sloping 359 

surface boundary experience stronger reflection than those encountering an upward sloping 360 

surface boundary because the downward sloping surface boundary directly blocks internal-wave 361 

propagation. This situation is analogous to internal waves propagating across a continental shelf, 362 

in which reflection for shoreward propagating internal waves is stronger than for seaward 363 

propagating waves (Chapman and Hendershott 1981).  364 

A forbidden zone appears for s<0 but not for s>0. If a forbidden zone exists, the virtual boundary 365 

increases the contact slope for interaction between internal waves and the surface boundary. For 366 

s=0.01, energetic reflected beams emanate from the surface forbidden zone (Fig. 7).  367 

In summary, the shoaling direction of the surface buoyancy boundary and locations of the 368 

forbidden zone produce asymmetric total reflection and transmission coefficients (Fig. 6a). 369 

Transmission of mode-one internal waves is related to the ratio between their vertical 370 

wavelength and thickness of waveguide channel, which can be less than the water depth due to a 371 

forbidden zone. Energy transmission in mode-1 alone is symmetric in s (Fig. 6b), but higher-372 

mode transmission is asymmetric. There is almost no high-mode transmission for s>0, while 373 

high-mode transmission is significant for s<0 because the incident wave scatters off the bottom 374 

buoyancy boundary, which shoals to the right.  375 

High-mode reflection increases with horizontal buoyancy gradients (Fig. 6d). For s>0, the beam 376 

reflected from the surface or forbidden zone propagates downward and arrives at the tilted 377 
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bottom buoyancy boundary, which causes secondary scattering and enhances energy transfer to 378 

high modes. No further scattering takes place for s<0 because the bottom buoyancy boundary is 379 

flat where the downward reflected beam hits. For s<0, the reflected energy flux in each mode 380 

increases with |s|. For s>0, the reflected energy flux in each mode is maximum at a value of s that 381 

increases with mode number. 382 

An offshore propagating mode-one wave that crosses a western boundary current is likely to 383 

scatter into high-mode waves that are transmitted, while an onshore-propagating mode-one wave 384 

is likely to scatter into high-mode waves that are reflected (Fig. 6d). For the latter case, the 385 

energy flux of transmitted high-mode waves is nearly zero.  386 

In the East China Sea, the continental shelf and Kuroshio may form an attractor so that part of 387 

offshore propagating internal-wave energy is trapped between them, thus enhancing local mixing 388 

as observed by Rainville and Pinkel (2004). 389 

3.3 High-mode incident waves  390 

Reflection coefficients can increase or decrease with incident-mode number, depending on s 391 

(Fig. 8a), when the front is defined by (22) with a width of W = 25 km. In the far field, the 392 

bottom is flat and stratification uniform (i.e., N2=const. and M2=0), so horizontal and vertical 393 

wavelengths of the incident internal waves are inversely proportional to mode number m, i.e., 394 
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  (37) 395 

respectively. For s=±0.005 (RiB=16), the surface and bottom buoyancy boundaries are subcritical 396 

and no forbidden zone exists. Reflection decreases with increasing mode number because 397 

incident waves with λm
(H) < 2W (equivalent to m>4) cannot sense the horizontal buoyancy 398 
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gradient M2 (so the reflection coefficient is nearly zero). For s=±0.01, a forbidden zone, with 399 

vertical thickness HΔ = 591 m, forms near the surface and blocks part of the waveguide, 400 

reflecting high-mode internal waves. Reflection increases with mode number until λm
(V) ≤ 2HΔ 401 

(equivalent to m>3), at which reflection becomes constant with mode number. For all modes, 402 

reflection for s=+0.01 is greater than for s=−0.01 due to additional reflection from the surface 403 

buoyancy boundary (section 3.2). In summary, if Δ > 0 (e.g., s=±0.005), high-mode reflection 404 

decreases with mode number, because their horizontal wavelengths are short compared to the 405 

width of the front. However, if Δ < 0 (e.g., s=±0.01), high-mode waves with short vertical 406 

wavelength are partially blocked by the forbidden zone, and reflection increases with mode 407 

number. 408 

The forbidden zone also creates a ``shadow’’ in its lee by blocking internal-wave rays (Fig. 8b-409 

d). For mode-8 internal waves, a shadow appears on the top where the high-mode internal waves 410 

are blocked by the forbidden zone. A second shadow appears near the bottom right of the front 411 

because the bottom buoyancy boundary is tilted (Fig. 8d), which causes transmitted waves to 412 

propagate upwards. 413 

3.4 Interaction between stratification and topography 414 

Both horizontal buoyancy gradients and sloping topography reflect internal waves. Their joint 415 

effects are discussed in this section. The bottom topography is  416 

 (1 tanh ),
x

h H sW
W

      (38) 417 

in which the coefficient β indicates the ratio between bottom and isopycnal slopes. If β=1, the 418 

bottom topography is collinear with the isopycnals defined in (22). Incident mode-one waves are 419 

prescribed, propagating from left to right. When βs>0 (βs<0), the setup is analogous to onshore 420 
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(offshore) wave propagation across a shelf break. The sea surface η is assumed to be parallel to 421 

the stratification, i.e., 422 

 (1 tanh ),
x

sW
W

     (39) 423 

so that the surface is flat in buoyancy coordinates. The geostrophic velocity is V(Hg)=0 m s-1 at 424 

Hg=0 m. Although this profile is not observed in the ocean, it is convenient here because it 425 

eliminates interactions between internal waves and stratification near the surface, so reflection 426 

and transmission are determined solely by the bottom slope (Fig. 9). Because of the front, 427 

scattering transfers energy to high modes even when the boundary is flat, and scattered waves 428 

propagate as reflected and transmitted beams. Because no critical slope occurs for s=±0.005, 429 

beams originate where the topographic slope is closest to the internal-wave propagation angle 430 

(i.e., the steepest slope). In other cases, beams originate from critical slopes or the trough of a 431 

canyon-like forbidden zone (e.g., for s=±0.01 and Hg=1000 m, shown in Fig. 7). 432 

In general, reflection ensures continuous velocity and density (or pressure) where wave speed, 433 

horizontal wavenumbers, or vertical modal structures change (or pressure, Kelly et al. 2013). 434 

Normal modes can be calculated in buoyancy coordinates using (26), allowing us to compare 435 

eigenspeed variations with and without a horizontal buoyancy gradient. When there is no 436 

horizontal buoyancy gradient, the surface and bottom topography in Cartesian coordinates are  437 

 sW    (40) 438 

and 439 

 (1 ) tanh
x

h H sW
W

 
 

     
 

. (41) 440 
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Thus, the topography and horizontal buoyancy gradients produce identical boundaries when 441 

viewed in buoyancy coordinates. E.g., if s=±0.005, mode-one eigenspeeds vary across the 442 

geostrophic front and bottom topography (Fig. 10a and 10b). For the topography given by (41), 443 

horizontal variation of speed is larger with a horizontal buoyancy gradient than without, 444 

implying that a geostrophic front impedes internal-wave propagation. The joint effects of 445 

topography and horizontal buoyancy gradients on reflection coefficients (Fig. 10c for s=±0.005 446 

and Fig. 10d for s=±0.01) differ from the isolated effects of a horizontal buoyancy gradient (Fig. 447 

10e and 10f). Thus, a geostrophic front enhances interactions between internal waves and 448 

topography. E.g., reflection is nearly zero if the bottom boundary is flat and there is no front 449 

[β=1 in (41), note that trivial reflection arises from a sloping boundary defined by (40)], but 450 

reflection always occurs when there is a front because eigenspeeds vary across the front. 451 

Scattering is only avoided in a special case where the stratification and topography are both 452 

linear functions of x and parallel to each other. Normal-mode analysis is not applicable when 453 

s=±0.01 because a forbidden zone does not permit wave solutions. 454 

Overall, the idealized results here indicate that internal-wave scattering at a shelf break is greatly 455 

increased by the presence of a shelf-break front. These dynamics may affect global estimates of 456 

slope reflectivity (Hall et al. 2013; Klymak et al. 2016) because fronts are commonly observed 457 

on continental shelves (Flagg and Beardsley 1978; Houghton et al. 1988), and can be surface 458 

intensified (Flagg et al. 2006), bottom intensified (Walker et al. 2013), or vertically 459 

unidirectional (Barth et al. 2004). 460 

4. Ray Propagation and Wave Tunneling 461 
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Internal-wave rays emanate from critical slopes on topographic features. These rays may 462 

subsequently encounter a geostrophic front associated with a boundary current, e.g., the 463 

Kuroshio in Luzon Strait. Here we examine an idealized ray 464 

 20exp ( ) ,
z z

iA


 
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 
  (42) 465 

propagating into the domain from the left boundary and crossing a geostrophic front. Here, z0 466 

indicates the initial location of the ray and δ its width. With this definition, two rays are 467 

generated: one propagating upwards and the other downwards. 468 

For a weak front with no forbidden zone, the ray path bends as it propagates through the front, 469 

but energy is transmitted. If a forbidden zone is present, strong reflection from the virtual 470 

boundary Δ=0 occurs (Fig. 11), and a reflected ray propagates along a characteristic. Wave 471 

solutions are not allowed in the forbidden zone, but an attenuated ray penetrates the forbidden 472 

zone due to wave tunneling (Bender and Orszag 1978). This attenuated ray extends to the lee 473 

side of the forbidden zone and continues to propagate rightwards when it emerges in an area with 474 

Δ>0. Tunneling effects were also examined by Sutherland and Yewchuk (2004), but tunneling at 475 

a front has not been observed in the ocean.  476 

 477 

5. Application in Luzon Strait 478 

Luzon Strait is a site of energetic internal-tide generation. The Kuroshio flows through the region 479 

forming westward shoaling stratification in geostrophic balance (Fig. 12). A meandering 480 

Kuroshio can modulate internal-tide generation and scattering at the two ridges in Luzon Strait 481 

(Fig. 1a). The eastern Lan-Yu Ridge generates stronger internal tides than the western Heng-482 
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Chun Ridge because it is shallower, but the Heng-Chun Ridge also plays a significant role in 483 

internal-tide generation. Depending on the phase of the internal tides arriving from Lan-Yu 484 

Ridge, local internal tide generation by Heng-Chun Ridge may be enhanced or reduced (Li et al. 485 

2016), modulating internal tides propagating into the South China Sea. These propagating 486 

internal tides may break in the deep basin and produce large-amplitude internal solitary waves 487 

(Farmer et al. 2009). Heng-Chun Ridge can also reflect westward-propagating internal tides 488 

generated at Lan-Yu Ridge and scatters them to high modes that fuel local mixing (Buijsman et 489 

al. 2012). In this section, the latter effect will be examine in the presence of a horizontal 490 

buoyancy gradient associated with Kuroshio. 491 

Observed background stratification is approximated by analytical functions 492 
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to avoid numerical instability. The corresponding geostrophic velocity is  496 
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Here, V0 represents the maximum geostrophic velocity, and x1, D and W the center, depth and 498 

width of the front. N0
2 is fitted using a 15-order polynomial function to averaged buoyancy 499 

frequency profile (Fig. 12d) acquired from the CTD casts conducted during two cruises in 2005 500 

and 2007 in the Nonlinear Internal Wave Initiative experiment (Farmer et al. 2009). Locations of 501 
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the CTD casts are scattered, and we do not have direct stratification measurements across Luzon 502 

Strait. However, we can compare our inferred profiles with the reanalysis dataset from a global 503 

HYCOM simulation. We choose V(Hg) = 0 m s-1, Hg = 3500 m, D = 300 m and W = 50 km to 504 

obtain the horizontal distribution of background stratification and geostrophic flow (Fig. 12e), in 505 

agreement with the HYCOM data (Fig. 12b). The bottom topography is a Gaussian function 506 

centered at x0 507 
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  (46) 508 

for Heng-Chun Ridge with total depth H0 = 3500 m, ridge height hr = 1800 m and width Wr = 20 509 

km (see the schematic of wave propagation in Fig. 13a). 510 

Both Heng-Chun Ridge and the Kuroshio reflect the westward-propagating internal waves 511 

generated at Lan-Yu Ridge. For realistic stratification (43), reflection by the bottom boundary is 512 

much greater than by the horizontal buoyancy gradient M2, because if the topography were 513 

eliminated, there would be no critical slope or forbidden zone due to the horizontal buoyancy 514 

gradient alone. If both topography and a horizontal buoyancy gradient are present, total 515 

reflectivity depends on the separation of the ridge and front. A higher ratio of the surface 516 

buoyancy slope to the internal wave characteristic produces a more reflective front; therefore, 517 

reflection is more significant for K1 internal waves than M2. In addition, interactions between the 518 

M2 internal wave ray and sloping surface boundary makes the M2 analysis complicated than K1. 519 

Here, we only examine reflection coefficients for K1 internal waves. Standing waves form 520 

between the ridge and front if their separation distance is a multiple of the half the mode-j 521 

wavelength, 0.5λj. Therefore, mode-one reflection varies sinusoidally with separation distance 522 
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over half a mode-one wavelength (Fig. 13a). Reflected or transmitted energy in higher modes 523 

varies analogously according to each mode’s wavelength. 524 

An idealized model can explain the above sensitivity. As illustrated in Fig. 13b, the domain has 525 

two regions with dissimilar stratification that meet at x1. The stratification in each region is given 526 

by (43) as ∆x=(x1−x0)→±∞. Bottom topography is represented by a top-hat ridge with the same 527 

height hr and width Wr in (46) also centered at x0. This model is solved numerically by matching 528 

horizontal velocity and pressure at the interfaces with discontinuous stratification and bottom 529 

topography (Kelly et al. 2013). Mode-one reflectivity for K1 internal waves incident from the 530 

east boundary depends on the separation between the ridge and front (Figs. 14b). If the front is 531 

on the left side of the ridge (∆x>0), the mode-one reflection coefficient reaches a minimum when 532 

their separation is an integer multiple of half wavelength of mode-one internal waves. If the front 533 

is on the right (∆x<0), reflection reaches a maximum. The exact magnitude and phase of the 534 

reflection coefficients in the idealized model differs from the solutions to (12) because the ridge 535 

and front shapes have been simplified.  536 

  537 

6. Summary and Discussion 538 

Reflection and scattering occur where internal waves propagate across horizontally varying 539 

topography or stratification. In most regions, horizontal buoyancy gradients are weak (Fig. 1b), 540 

so topographic effects dominate. However, in regions with strong geostrophic fronts, such as the 541 

Kuroshio or Gulf Stream, horizontal buoyancy gradients and shear cannot be ignored. 542 

2D internal wave propagation across a geostrophic front depends on the absolute geostrophic 543 

velocity (not just shear), isopycnal slope, topographic slope and incident wave mode. It is 544 



28 
 

difficult to state the effects of these parameters in any unique region, but realistic solutions can 545 

be rapidly obtained by numerically solving the modified internal wave equation (12), where Δ 546 

defined in (14) determines the type of PDE. In buoyancy coordinates, (12) appears as a canonical 547 

PDE in conventional internal wave theory (Turner 1973), but with a new critical condition when 548 

the boundary slope is parallel to the wave characteristics. In this reference frame, horizontal 549 

buoyancy gradients produce effects analogous to bottom topography, providing a new way to 550 

interpret internal-wave propagation through a geostrophic front. That is, previous studies of 551 

internal-tide-topography interactions (e.g., Chapman and Hendershott 1981, Klymak et al 2013, 552 

Kelly et al 2013) now help explain how low-mode internal waves are scattered by horizontal 553 

buoyancy gradients, even where the bottom is flat in Cartesian coordinates. The equations in 554 

buoyancy coordinates also show that a western boundary current, like the Kuroshio, can interact 555 

with distant ridges to produce resonances similar to a double-ridge system (Li 2014).  556 

Solutions to (12) are sensitive to regions of negative Δ (i.e., forbidden zones), which act like a 557 

barrier, blocking internal wave propagation and causing reflection. Strong scattering appears 558 

around Δ=0 or at critical points on the boundaries.  559 

Low-mode internal waves can scatter from tilted isopycnals to produce high-mode waves. Wave-560 

wave interactions and other nonlinear processes (McComas and Bretherton 1977; McComas and 561 

Muller 1981; reviewed by Sarkar and Scotti 2016) can dissipate high-mode waves and contribute 562 

to diapycnal mixing (St. Laurent et al. 2011; van Haren and Gostiaux 2012; Klymak et al. 2013; 563 

Hennon et al. 2014) that affects the overturning circulation (Nikurashin and Ferrari 2013; 564 

Wagner and Young 2016; Kunze 2017b). Strong interactions between fronts and internal waves 565 

can even drive energy loss from both features (Thomas 2017). Thus, internal wave scattering at 566 

geostrophic fronts may provide a pathway to energy dissipation in the global ocean.  567 
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We estimate a dissipation rate from solutions to (12) using the recipe introduced by Klymak et 568 

al. (2013), which quantifies energy flux into locally trapped high-mode internal waves in terms 569 

of the least mode number κ such that the Froude number 570 

 1,
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where Uκ is the maximum horizontal velocity attributable to the first κ modes 572 
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Wave modes m<κ escape from the front, but higher modes are trapped and dissipate locally.  574 

Hence the total across-front dissipation D is the vertically-integrated energy flux in reflected and 575 

transmitted waves with mode-number m>κ 576 
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 578 

Here, Jm is the energy flux of mode-m internal waves and the superscripts r and t represent 579 

reflected and transmitted waves, respectively. The cutoff mode number κ may be different for 580 

reflected and transmitted waves, implying that the dissipation is asymmetric on each side of the 581 

front. We computed D for isopycnal slopes s = ±0.01 (Fig. 15) using the model configuration in 582 

section 3.2. The bottom is flat (H=2000 m), so high modes only arise by scattering at the front. 583 

The cutoff mode number decreases as the incident wave amplitude increases (from U0 = 0.1 – 1 584 

m s-1), causing D to increases from 10-2 – 103 W m-1. This corresponds to an average dissipation 585 

rate of 10-13 to 10-8 W kg-1 if we divide D by reference density (1000 kg m-3), the depth of the 586 

front (2000 m), and the width of the front (50 km). This rate is smaller than the dissipation rate in 587 
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Luzon Strait (10-8 – 10-6 W kg-1; Yang et al. 2016; Alford et al. 2011), but comparable to the 588 

background dissipation rate in ocean (10-9 W kg-1; Waterhouse et al. 2014; Kunze et al. 2017a). 589 

High resolution numerical models and/or in situ observations are needed to validate our 590 

estimates and determine the importance of feedbacks between internal–wave driven mixing and 591 

geostrophic flows.  592 
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TABLE 1 777 

Parameters in the MITgcm 778 

Parameters Notation Value 

Horizontal eddy viscosity coefficient Ah 1.0×10-5 m2 s-1 

Vertical eddy viscosity coefficient Av 1.0×10-5 m2 s-1 

Horizontal diffusion coefficient Kh 0 m2 s-1 

Vertical diffusion coefficient Kv 0 m2 s-1 

Horizontal grid size Δx 493 m 

Vertical grid size Δz 10 m 

Time step Δt 2.5 s 

Gravitational acceleration g 9.8 m s-2 

Domain width L 4038 km 

Domain depth H 2000 m 

Reference salinity Sr
 

        35 psu 

 779 

 780 

  781 
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Figure Captions 782 

Figure 1: Global distribution of maximum isopycnal slope |S| in the upper 100-1000 m, calculated 783 

using the climatological temperature and salinity from World Ocean Atlas (Locarnini et al. 2006, 784 

spatial resolution: 0.25°×0.25°). Isopycnal slope S changes with depth and also depends on the scale 785 

on which gradients are calculated (i.e., 0.25°×0.25° here). Only maximum |S| are shown in 786 

logarithmic scale. Stratification in the upper 100 m is not used in order to avoid extraordinarily 787 

large values in the mixed layer where the buoyancy frequency N2 is nearly zero. 788 

 789 

Figure 2: Snapshots of (a) the analytic solution of (12) and (b) the numerical simulation using 790 

the MITgcm for rightward-propagating mode-one internal waves with M2 tidal frequency 791 

incident on a front at x=0. The difference between (a) and (b) is shown in (c). In both cases, the 792 

isopycnal slope s=−0.1, thermal-wind reference level Hg = 1000 m, vertical buoyancy frequency 793 

N = 5×10-3 s-1 and front width W = 25 km. Configuration of the MITgcm is given in Table 1. 794 

White contours are isopycnals at 1 kg m-3 intervals; normalized instantaneous velocity u of 795 

internal waves is in red and blue colors. Black contours in (b) are isopycnals disturbed by 796 

internal waves.  797 

 798 

Figure 3: Rightward mode-one internal waves incident on a front at x=0. The total (top), 799 

reflected (middle) and transmitted (bottom) wave fields are plotted in the z (left) and buoyancy B 800 

(right) coordinates, respectively. Parameters of the internal waves and front are the same as Fig. 801 

2a. 802 

 803 
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 Figure 4: (a) Reflection and transmission coefficients for different selection of reference level 804 

Hg in the thermal wind calculation. (b) The energy flux ratio between the reflected and 805 

transmitted mode 1 waves and the incident waves. (a) and (b) are similar because most reflection 806 

and transmission are in mode-one. (c) The energy flux ratio between the reflected and 807 

transmitted high-mode waves and the incident waves. Black for the reflected waves and gray for 808 

transmitted. Ji represents the energy flux of incident waves. Jr represents the energy flux of 809 

reflected or transmitted waves when the internal waves propagate across a geostrophic front. Jr1 810 

is the energy flux for the mode-one waves. I, II and III indicate regimes defined in section 3.1. In 811 

this figure, front parameters s = −0.01, N = 5×10-3 s-1 and W = 25 km. 812 

 813 

Figure 5: Wave fields (color) in buoyancy coordinates for M2 internal waves propagating across 814 

a geostrophic front. Top, middle and bottom panels show total, reflected and transmitted wave 815 

fields, respectively. Left, middle and right panels represent thermal-wind reference levels Hg=0 816 

m, 1000 m and 2000 m, respectively. Black dashed lines show the ray paths. Black solid 817 

contours highlight Δ=0. Black dash-dot contours are the geostrophic flow V with 0.5 m s-1 818 

intervals and green solid curves indicate the reference level where V=0. Black crosses indicate 819 

the critical points on the bottom or surface boundaries. In this figure, s = −0.01, N = 5×10-3 s-1 820 

and W = 25 km. 821 

 822 

Figure 6: Energy flux ratio of reflected (black) and transmitted waves (gray) to the incident 823 

waves, as a function of isopycnal slopes s, for (a) total, (b) mode 1, (c) mode 2 and (d) high-824 
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mode waves. In this figure, the other front parameters Hg = 2000 m, N = 5×10-3 s-1 and W = 25 825 

km. 826 

 827 

Figure 7: Wave fields for isopycnal slope s=-0.01 (left) and s=0.01 (right). Solid black contours 828 

highlight Δ=0. Black crosses indicate the critical points on the surface boundary. The front 829 

parameters are the same as Fig. 6. 830 

 831 

Figure 8: (a) shows reflection coefficients as a function of mode numbers for different isopycnal 832 

slopes s=±0.005 and ±0.01 with M2 tidal frequency. (b), (c) and (d) show the total, reflected and 833 

transmitted wave fields for the incident mode-8 M2 internal waves, respectively. Bold black 834 

curves indicate the virtual boundary Δ=0 and black crosses the critical slopes. Other front 835 

parameters Hg = 2000 m, N = 5×10-3 s-1 and W = 25 km. 836 

 837 

Figure 9: Wave fields for different topographic slope β and isopycnal slope s in Cartesian (the 838 

1st and 3rd rows) and buoyancy coordinates (the 2nd and 4th rows). Density is only shown in the 839 

Cartesian coordinates as black contours and ignored in the buoyancy coordinates. Red and blue 840 

colors indicate the normalized horizontal velocity u of internal waves. Other front parameters Hg 841 

= 2000 m, N = 5×10-3 s-1 and W = 25 km. 842 

 843 

Figure 10: (a) and (b) show phase speed of mode-one M2 internal waves across the front for 844 

isopycnal slopes s=±0.005, respectively. The bottom topography is defined in formula (38). β is 845 
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the ratio of bottom to isopycnal slope. (c) and (d) are reflection coefficients Jr/Ji as a function of 846 

β for s=±0.005 and s=±0.01. In (e) and (f), although horizontally uniform stratification is 847 

assumed, reflection coefficients are computed using the same bottom topography as in (c) and 848 

(d). Front parameters are the same as Fig. 9. 849 

 850 

Figure 11: Wave field u/U0 for an internal-wave beam propagating across a geostrophic front in 851 

the buoyancy coordinates. The incident ray originates from the black triangle on the west 852 

boundary. Bold black curves indicate the virtual boundary Δ=0 and black crosses the critical 853 

slopes. Three dashed lines are superimposed on the wave field to highlight ray propagation. The 854 

green and black rays propagate across the front, but the gray one reflects from the virtual 855 

boundary. Front parameters are s = −0.01, Hg = 2000 m, N = 5×10-3 s-1 and W = 25 km. 856 

 857 

Figure 12: (a) Temperature at 500 m depth (color) and current velocity at surface on 5 August 858 

2007 in the HYCOM model. (b) Temperature (white contours) superimposed on meridional 859 

velocity (color, m s-1) for the upper 1000 m from HYCOM. Bottom topography averaged 860 

between 20°N and 21°N is shaded in gray. (c) and (d) show density and buoyancy frequency 861 

squared profiles, in which the red curves are averaged from CTD casts and the blue ones 862 

approximated using polynomial curve fitting. (e) Fitted temperature (contours) and meridional 863 

velocity (color, m s-1) using (43) and (44). 864 

 865 

Figure 13: Schematics for models applied in Luzon Strait. Incident waves come from the east. 866 

The top is for (12) and the bottom is for the simplified model. Arrows in the bottom panel 867 
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indicate directions of wave propagation. x0 and x1 indicate the locations of the ridge and front, 868 

respectively. 869 

 870 

Figure 14: Reflection coefficients for K1 mode-one internal tides propagating across Heng-Chun 871 

Ridge computed using (12) (a) and using the simplified model (b). ∆x=x1-x0 is the separation 872 

between the front and ridge shown in Fig. 13b. Data in (b) for ∆x≤10 km are missing due to 873 

overlap between the ridge and interface between two stratifications, which cannot be resolved by 874 

the simplified model. 875 

 876 

Figure 15: (a) Cutoff mode numbers κ and (b) dissipation for different amplitude U0 of incident 877 

mode-one M2 internal waves with isopycnal slopes s=±0.01.  878 

 879 

 880 

  881 
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Figures 882 

 883 

 884 

Figure 1: (a) Geographical locations and bathymetry of the East and South China Sea. (b) 885 

Global distribution of maximum isopycnal slope |S| in the upper 100-1000 m, calculated using the 886 

climatological temperature and salinity from World Ocean Atlas (Locarnini et al. 2006, spatial 887 

resolution: 0.25°×0.25°). Isopycnal slope S changes with depth and is sensitive to the scale on 888 

which gradients are calculated. Only maximum |S| are shown in logarithmic scale. Stratification 889 

in the upper 100 m is not used to avoid extremely large values in the mixed layer where the 890 

buoyancy frequency N2 is nearly zero. 891 

 892 

 893 
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 894 

Figure 2: Snapshots of (a) an analytic solution of (12) and (b) the numerical simulation using the 895 

MITgcm for rightward-propagating mode-one internal waves with M2 tidal frequency incident 896 

on a front at x=0. The difference between (a) and (b) is shown in (c). In both cases, the maximum 897 

isopycnal slope s = −0.01, level of no motion Hg = 1000 m, vertical buoyancy frequency N = 898 

5×10-3 s-1 and front width W = 25 km. The configuration for the MITgcm is given in Table 1. 899 

White contours are isopycnals at 1 kg m-3 intervals; normalized instantaneous velocity u of 900 

internal waves is in red and blue. Black contours in (b) are isopycnals disturbed by internal 901 

waves.  902 
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 903 

 904 

Figure 3: Rightward mode-one internal waves incident on a front at x=0. The total (top), 905 

reflected (middle) and transmitted (bottom) wave fields are plotted in the z (left) and buoyancy B 906 

(right) coordinates, respectively. Parameters of the internal waves and front are the same as Fig. 907 

2a. 908 

 909 
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 910 

 911 

Figure 4: (a) Reflection and transmission coefficients for different levels of no motion Hg. (b) 912 

The energy-flux ratios between the reflected/transmitted mode-1 waves and the incident waves. 913 

(a) and (b) are similar because most reflection and transmission are in mode-one. (c) The energy 914 

flux ratio between the reflected/transmitted high-mode waves and the incident waves. Black for 915 

the reflected waves and gray for transmitted. Ji represents the energy flux of incident waves and 916 

Jr the energy flux of reflected waves. Jr1 is the energy flux for the mode-1 waves. I, II and III 917 

indicate the regimes defined in section 3.1. In this figure, front parameters s = −0.01, N = 5×10-3 918 

s-1 and W = 25 km. 919 

 920 

 921 
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  922 

Figure 5: Wave fields (color) in buoyancy coordinates for mode-1 M2 internal waves 923 

propagating across a geostrophic front. Top, middle and bottom panels show total, reflected and 924 

transmitted wave fields, respectively. Left, middle and right panels correspond to levels of no 925 

motion Hg=0 m, 1000 m and 2000 m, respectively. Black dashed lines show the ray paths. Black 926 

solid contours demark Δ=0. In the top row, black dash-dot contours are the geostrophic flow V 927 

with 0.5 m s-1 intervals and green solid curves indicate the reference level where V=0. Black 928 

crosses indicate the critical points on the bottom or surface boundaries. In this figure, s = −0.01, 929 

N = 5×10-3 s-1 and W = 25 km. 930 

 931 

  932 
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 933 

 934 

Figure 6: Energy flux ratios of reflected (black) and transmitted waves (gray) to the incident 935 

waves, as a function of isopycnal slope s, for (a) total, (b) mode-1, (c) mode-2 and (d) high-mode 936 

waves for Hg = 2000 m, N = 5×10-3 s-1 and W = 25 km. 937 
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 938 

Figure 7: Wave fields for isopycnal slope s=-0.01 (left) and s=0.01 (right). Solid black contours 939 

demark Δ=0. Black crosses indicate the critical points on the surface boundary. Front parameters 940 

are the same as Fig. 6. 941 

 942 
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943 

Figure 8: (a) M2 reflection coefficients as a function of mode numbers for isopycnal slopes 944 

s=±0.005 and ±0.01. (b), (c) and (d) show the total, reflected and transmitted wave fields, 945 

respectively, for incident mode-8 M2 internal waves for Hg = 2000 m, N = 5×10-3 s-1 and W = 25 946 

km. Bold black curves indicate the virtual boundary Δ=0 and black crosses the critical slopes.. 947 

 948 

  949 
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 950 

Figure 9: Wave fields for different topographic slope β and isopycnal slope s in Cartesian (rows 951 

1 and 3) and buoyancy coordinates (rows 2 and 4) for Hg = 2000 m, N = 5×10-3 s-1 and W = 25 952 

km. Black contours indicate isopycnals in theCartesian coordinates. Red and blue indicate the 953 

normalized horizontal velocity u of internal waves. 954 

 955 

 956 
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 957 

Figure 10: (a) and (b) show phase speed of mode-one M2 internal waves across the front for 958 

isopycnal slopes s=±0.005, respectively. Bottom topography is defined in (38). β is the ratio of 959 

bottom to isopycnal slope. (c) and (d) are reflection coefficients Jr/Ji as a function of β for 960 

s=±0.005 and s=±0.01. In (e) and (f), reflection coefficients are computed using the same bottom 961 

topography as in (c) and (d) but with horizontally uniform stratification. Front parameters are the 962 

same as Fig. 9. 963 
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 964 

Figure 11: Horizontal velocity, u/U0, for an internal-wave beam propagation across a 965 

geostrophic front for s = −0.01, Hg = 2000 m, N = 5×10-3 s-1 and W = 25 km in buoyancy 966 

coordinates. The incident ray originates from the black triangle on the west boundary. Bold black 967 

curves indicate Δ=0 and black crosses the critical slopes. Three lines are superimposed to 968 

highlight ray propagation. Green and black dashed rays propagate across the front, but the black 969 

solid one reflects from the virtual boundary. 970 
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 974 

Figure 12: (a) Temperature at 500 m depth (color) and current velocity at surface on 5 August 975 

2007 in the HYCOM model. (b) Temperature (white contours) superimposed on meridional 976 

velocity (color, m s-1) for the upper 1000 m in HYCOM. Bottom topography averaged between 977 

20°N and 21°N is shadedin gray, representing Heng-Chun Ridge. (c) and (d) show density and 978 

buoyancy frequency squared profiles, in which the red curves are averaged from CTD casts and 979 

the blue ones approximated using polynomial curve fitting. (e) Fitted temperature (contours) and 980 

meridional velocity (color, m s-1) using (43) and (44). 981 
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 985 

Figure 13: Schematics for models applied in Luzon Strait. Bottom topography is shaded in gray 986 

representing Heng-Chun Ridge. Incident waves come from the east. The top is for (12) and the 987 

bottom is for the simplified model. Arrows indicate directions of wave propagation. x0 and x1 988 

indicate the locations of the ridge and front, respectively. 989 
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 993 

 994 

Figure 14: Reflection coefficients for K1 mode-one internal tides propagating across the 995 

westerly Heng-Chun Ridge computed using (12) (a) and using the simplified model (b). ∆x=x1-x0 996 

is the separation between the front and ridge shown in Fig. 13b. Data in (b) for ∆x≤10 km are 997 

missing due to overlap between the ridge and interface between two stratifications, which cannot 998 

be resolved by the simplified model. 999 
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 1000 

Figure 15: (a) Cutoff mode numbers κ and (b) dissipation for different amplitude U0 of incident 1001 

mode-one M2 internal waves with isopycnal slopes s=±0.01.  1002 
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