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Abstract 21 

Small populations with unusual characteristics subject to extreme conditions provide opportunities for exploring 22 

adaptability in the face of environmental changes. Two sets of data have been examined to determine how 23 

unusual is the population of Hipparchia semele on the Great Orme’s Head, North Wales, compared with other 24 

sites in the UK. The population on the Great Orme is shown to have unique features, including significantly 25 

reduced wing expanse and wing ocellation and extreme flight period characteristics. Analyses of flight period 26 

data from the UK Butterfly Monitoring Scheme (UKBMS) using over a hundred sites reveals that, although the 27 

Great Orme population is one of a number of sites from the Channel Islands to northern Scotland with an early 28 

mean flight period, it has by far the earliest flight period and longest flight period of all populations - the latter 29 

raising the mean flight period date. Furthermore the unique characteristics of H. semele on the Orme may well 30 

be underestimated, inasmuch as sampling of individuals for the phenotype study is incomplete, including only 31 

the area along the North Wales coast into Cheshire, while the UKBMS transect is restricted to the south-west 32 

portion of the headland. Unique populations are often accorded focused conservation effort; especially potential 33 

flagship species in decline as in the case of British H. semele. As the Great Orme population presents a rare 34 

opportunity for studying adaptations in an extreme local environment, particularly considering current 35 

projections for climate changes, we advocate further research and attention being given to this unusual 36 

population. 37 

 38 

Keywords  Adaptation · Climate · Flight period · Phenology · Phenotype · Wing expanse · Wing ocellation. 39 

 40 

 41 

  42 
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Introduction 43 

Considering the plight of species in current modern landscapes subject to the exponential rise in human 44 

pressures, conserving individual populations has become an expensive undertaking. Even so, there is a powerful 45 

argument for special treatment for species and populations with unusual traits and genotypes. Spatially restricted 46 

populations form potentially valuable targets as evolutionary model systems, especially when they display 47 

unusual or rare phenotypes and genetic markers. They allow us to investigate adaptational bounds and the 48 

reasons underlying evolutionary changes. In butterflies phenotypic changes can be very rapid as, for instance, 49 

changes in wing patterns in introduced populations (e.g., Plebejus argus; Dennis, 1977) and populations 50 

experiencing range expansions (e.g.,  Japanese Zizeeria maha; Otaki et al. 2010). The fact that evolutionary 51 

changes can be rapid is an important counter to both stressful conditions (e.g., habitat loss) and a boon for 52 

evolutionary opportunities presented by expanding resource opportunities (Hoffmann and Sgro, 2011; Hill et al. 53 

2011; Parmesan et al. 2015). Small unusual populations then, provide valuable testing grounds for adaptability 54 

in the face of change; butterfly species with highly varied responses in phenology and wing phenotypes to 55 

environmental gradients are particularly useful organisms for such research.  56 

Unusual populations of two butterfly species (the silver-studded blue, Plebejus argus; and the grayling, 57 

Hipparchia semele) occupy the Great Orme in North Wales, an isolated peninsula and fossil island (Dennis and 58 

Hardy, 2018); both were described as subspecies by Thompson (1941; 1944). They were further described by 59 

Dennis (1977) and argued to be the product of current (Holocene) environmental selection regimes rather than 60 

the product of glacial refugia, the latter reconstruction suggested by Beirne (1947). It is clear that both 61 

populations consist of smaller individuals, and that they emerge earlier than those of the same species elsewhere 62 

along the North Wales coastline. P. argus has been studied intensively by C.D. Thomas and his research team, 63 

and consequently details of the life history and changes in the distribution of the species on the headland have 64 

been greatly enhanced (Thomas 1985a, b; Thomas et al. 1999, 2002; Dennis 2004; Dennis and Sparks, 2006).  65 

A question still remains as to the flight emergence features of the population of H. semele on the Great 66 

Orme, particularly how early and extended it is compared to those of populations occurring along the North 67 

Wales coastline. Dennis (1977) was unable to study the butterfly during the earliest part of its flight period 68 

(early June) between 1968 and 1972, but he was aware that the butterfly lingered on the Orme into August. The 69 

objective of the current study is to examine the flight period of the population of H. semele on the Great Orme 70 
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and compare it with populations elsewhere in the U.K. At the same time, the phenotype of the Great Orme 71 

population is compared with those of populations elsewhere along the North Wales coastline. 72 

The grayling butterfly on Great Orme’s Head provides a valuable study system for several reasons. It is 73 

an unusual species from the vantage of phenology, as in other respects (i.e., basking mode and defences against 74 

predators, Dapporto et al. 2019). H. semele is only one of two species flying earlier in the west (Roy and Asher 75 

2003) and only one of three species not flying later in the cooler parts of its range (Roy et al. 2015). Roy et al. 76 

(ibid) also showed that for most species, the rates of flight period delay per degree Celsius over space were less 77 

than rates of delay over time (in cooler years), suggesting local adaptation in phenology. Thus H. semele on the 78 

Great Orme is an ideal candidate for testing local adaptation of phenology to climate variables; the headland is 79 

on the west side of the UK mainland, projects north into the Irish Sea and is surrounded by sea on all sides but 80 

for the narrow tombolo of Llandudno.  81 

 82 

Methods 83 

Wing expanse and wing spot size assessment 84 

The study species H. semele is a widespread European species, but regarded as in the high risk category in the 85 

face of projected climatic changes (Settele et al. 2008). It is currently undergoing rapid decline in the UK (1976 86 

to 2014; occurrence change: -62%; abundance change: -58%) and is a Biodiversity Action Plan Priority species 87 

(Fox et al. 2015). It occupies dry or rapidly draining largely coastal biotopes (steep limestone slopes, crags and 88 

sand dunes) in the UK (Table 1) and feeds on fine grasses, overwintering in the third larval instar. It is a prime 89 

model species for the study of mate location behaviour and bird predation in relationship to wing features such 90 

as marginal ocellation (Tinbergen, 1972; Dapporto et al. 2019). 91 

Data for wing expanse (mid thorax to wing apex x 2 (mm)) and wing ocelli size (inter-neural 92 

measurement of the dorsal and ventral apical and anal wing ocelli (mm)) were obtained from 1968 to 1973 93 

(Dennis 1977) and included 820 individuals from 15 populations in North Wales and Cheshire (Table 1, see Fig. 94 

1 for sites). Differences between populations were calculated using ANOVA; both features were normally 95 

distributed and untransformed. Wing expanse for the Great Orme population was also investigated for change 96 

over the flight period (days; day 1 = June 1st). 97 
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 98 

Assessment of flight period 99 

Flight periods were assessed from daily counts of butterflies obtained from the UK Butterfly Monitoring 100 

Scheme (UKBMS).  The detailed methodology of the UKBMS is described by Pollard and Yates (1993).  101 

Briefly, at each site, a fixed route (transect) is walked in each of 26 recording weeks from 1 April (week 1) to 29 102 

September (week 26), provided that weather conditions meet set criteria and volunteers are able to carry out a 103 

transect walk.  Each transect is divided into sections (15 on the Great Orme transect) distinguished by biotope. 104 

All butterflies seen within fixed limits are recorded for each section and summed for the transect. We used 105 

weekly count data for the period 1976-2012.  Initial data on H. semele were available from 318 sites (a site is 106 

regarded as a named location having a distinct transect route and location code) distributed across the UK, 107 

including the Great Orme. These data were filtered as noted below for suitable cover of recording weeks, 108 

number of years and period (years) of observations (sites in Fig. 2).  109 

 110 

Calculation of flight period measures 111 

Several measures were obtained to investigate the timing of the flight period, including the week of first 112 

appearance (variable WEEKmin) and final week (variable WEEKmax) of the flight period in any year, the 113 

length of the flight period (variable WEEKrange: maximum – minimum weeks), the mean flight week (variable 114 

WEEKmean) and accompanying statistics for variation, or span, of flight period (standard error for the 115 

calculation of the coefficient of variation, variable WEEKcv). The mean date of the flight period at any location 116 

and year was also measured as the weighted mean date of counts over weeks (variables wWKmean and its 117 

measure of variation, variable wWKcv); this gives an estimation of the date of mean abundance in the adult 118 

flight period (Brakefield 1987).  To ensure a robust measure of flight dates, the data were filtered to ensure that 119 

at least 5 years’ data were available for at least 5 weeks in each year for any given site. This reduced the number 120 

of sites with sufficient data to 111.  121 

Correlations are either Pearson r or Spearman rs, the former used where frequency distributions are known to 122 

approximate a normal distribution. Sites were compared using the General Regression Module (Main effects 123 

ANOVA, forwards stepwise entry) and principal components analysis (PCA) in STATISTICA 64 version 9.1 124 

(Statsoft Inc., Tulsa, OK, USA). Each flight period variable was entered against site and year of transect record 125 
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(forwards stepwise solution). A post-hoc Newman-Keuls test was applied to determine the homogeneity of site 126 

data for the Great Orme with other sites. All variables were tested for normality of frequency distributions. For 127 

the PCA, sites were examined in a reduced space for flight period mean (wWKmean), flight period range 128 

(wWKcv), flight period earliest week (WEEKmin), flight period last week (WEEKmax), and flight period range 129 

(WEEKrange); grid east and grid north were entered as supplementary variables. 130 

The UKBMS data do not necessarily cover the same period of years, which may well affect summary 131 

measures of flight period. Moreover, later years may display features related to climatic change. Consecutive 132 

data for the Great Orme cover the period from 1999 to 2012. Subsequently, for more stringent tests of the 133 

position of the Great Orme for flight data, we compared UKBMS sites which have at least 10 years of data post-134 

dating 1998 (41 sites). 135 

 136 

Results 137 

Wing expanse and wing spot size 138 

Wing spot size was found to correlate significantly with wing expanse (Pearson r = 0.89, P < 0.0001; see Dennis 139 

1977; Dapporto et al. 2019). Sites differed significantly for wing expanse (males: F14,466 = 33.7, P < 0.0001; 140 

females F14,344 = 38.3; P < 0.0001). In both sexes, a Bonferroni post hoc test revealed that the Great Orme 141 

samples were smallest in wing expanse and differed from those of all other populations tested (P < 0.0001). At 142 

the other extreme (populations with the largest wing expanse) three sand dune populations were homogenous 143 

(Prestatyn Sands, Aberffraw and Morfa Harlech; P > 0.18); the remaining populations formed a single residual 144 

homogeneous unit. 145 

 Wing expanse of the Great Orme population increased over the flight period (days) (Spearman rs: 146 

males 0.39, n = 72, P < 0.001; females 0.25, n = 58, P = 0.06). The correlation for females is not quite 147 

significant, perhaps owing to the samples concentrating in the earlier part of the female flight period; when 148 

divided about a break in the frequency distribution for days (40 days from June 1), the later butterflies were 149 

found to be significantly larger than the earlier butterflies (t56 = 2.18, n = 35 and 13; P < 0.05). Differences in 150 

cohorts of emerging butterflies may occur within the first month of emergences; for instance, males differ for 151 

wing expanse when divided about the mode of the sampled individuals (day 25) (t70 = 2.84, n = 28, 44; P < 152 

0.01). 153 
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 154 

Flight period 155 

Sites also differ significantly for mean flight period (WEEKmean, F110,1322 = 9.80, P < 0.0001; wWKmean, 156 

F110,1322  = 11.20, P < 0.0001). The Great Orme falls into the group of sites having the lowest means (on par with 157 

the Orme), including 25 and 22 sites respectively. 158 

Sites also differ for all other flight season variables. Using the entire dataset including all sites with a minimum 159 

of 5 years of complete runs of data through the flight period, sites differ significantly for the first appearance of 160 

the flight season (WEEKmin, F110,1322  = 9.60, P < 0.0001). A post hoc homogeneity test revealed the Great 161 

Orme to be unique, distinct from all other sites, and having the earliest flight date (WEEKmin, 10.07). Apart 162 

from the Great Orme, sites with the earliest flight dates are those on the Lancashire Morecambe Bay limestones 163 

(Arnside 12.31) and on Alderney in the Channel Islands (Trois Vaux 12.80), two to three weeks later (Fig. 3). 164 

Early emerging individuals are expected to occur and have been reported at a number of other sites (e.g., Pitts 165 

Wood Inclosure in the New Forest, Hampshire), but these are unusually early for those sites and result in an 166 

aberrant (very high, implicating negative values) coefficient of variation in flight period. 167 

Sites differ for final week of the flight period (WEEKmax, F110,1132  = 10.1, P < 0.0001) and for measures of 168 

variation (WEEKrange, F110,1132   = 10.68, P < 0.0001; WEEKcv, F110,1132   = 6.11, P < 0.0001; wWKcv, F110,1132   169 

= 3.00, P < 0.0001). For the final week of the flight period, the Great Orme belongs to a group of 20 sites with 170 

late flight periods. For measures of coefficient of variation, it is unique in having the widest span of flight 171 

periods for the unweighted measure (WEEKcv; Fig. 4) and it belongs to a small group of just three sites for the 172 

weighted measure (wWKcv), the other two located in Morecambe Bay.  173 

A more stringent test of relationships is attained by restricting analysis (ANOVA) to sites with 10 or more years 174 

of data post 1998. Very similar results were obtained (WEEKmean, F40,468 = 15.24; wWKmean, F40,468 = 20.42; 175 

WEEKmin, F40,468 = 12.7; WEEKmax, F40,468 = 13.46; WEEKrange, F40,468 = 12.47; WEEKcv, F40,468 = 8.00; 176 

wWKcv, F40,468 = 3.35; all P < 0.0001). In these analyses, the Great Orme was unique in post hoc Newman-177 

Keuls tests (single group member of an extreme condition) in having the earliest flight period and the longest 178 

flight period (wWKcv, WEEKcv and WEEKrange). For mean flight period it was in the group with earliest 179 

flight periods (5th of 11 sites for WEEKmean; 2nd of 7 sites for wWKmean) and in the group for the latest flight 180 

period (7th of 10 sites). 181 
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 When sites with data for 5 or more years (n = 111) are examined there is a low correlation between 182 

number of years of data and final week of flight period and length of flight period (WEEKmax, Spearman rs = 183 

0.22, P = 0.02; WEEKrange, rs = 0.26, P = 0.01), but not with first week (WEEKmin), mean flight period week 184 

(WEEKmean) or the alternative measure of length of flight period (wWKcv) (P > 0.43). There is no significant 185 

correlation for any of the flight period variables with numbers of years of data when only sites with 10 or more 186 

years of data are included (n = 64, rs, P = 0.06 to 0.72). 187 

  188 

Relationship of flight period variables with geography 189 

Flight period is affected by geography; relationships were sought first using sites from all periods with 5 years 190 

of suitable data. There is no relationship of extent of flight period (wWKcv, WEEKrange) with grid north or 191 

east. Mean flight period (wWKmean) is earlier further north (r = -0.31, P = 0.001) and to the west (r = 0.33, P < 192 

0.001) of the British Isles. So, too, is the final date for flight period (WEEKmax with north, r = -0.26, P < 0.01; 193 

WEEKmax with east, r = 0.25, P < 0.01). The earliest date for flight period is similarly affected but to a lesser 194 

extent (WEEKmin with north, r = -0.19, P = 0.05 [Spearman rs = -0.23, P < 0.05]; WEEKmin with east, r = 195 

0.22, P < 0.05). In a multiple regression (stepwise entry) of earliest flight time (WEEKmin) with both grid east 196 

and grid north, only east was significant (F1,109 = 5.65, P < 0.05) and the Great Orme is a distinct outlier from 197 

the regression line (standardised residual = -3.77). In similar regressions for mean flight period (wWKmean) 198 

and latest flight period date (WEEKmax), both north and east proved to be significant predictors (wWKmean, 199 

F2,108 = 10.70, P < 0.0001; WEEKmax, F2,108 = 6.36; P < 0.05); in neither case was the Great Orme an outlier. 200 

Grid east correlates with grid north for sites (r = -0.22, P < 0.05). 201 

Relationships were then tested using sites with 10 or more years of data for the period post 1998. All 202 

flight period variables, except length of flight period (WEEKcv, wWKcv, WEEKrange, P > 0.32), are correlated 203 

significantly with geography (grid north and grid east). Mean flight period becomes earlier in the north 204 

(WEEKmean, r = -0.44, P < 0.01; wWKmean, r = -0.46, P < 0.01) and west of Britain (WEEKmean, r = 0.45, P 205 

< 0.01; wWKmean, r = 0.43, P < 0.01). First week of the flight period is earlier further north (WEEKmin with 206 

north, r = -0.34, P < 0.05) and tends to be earlier further west (WEEKmin with east, r = 0.26, P = 0.09). 207 

Maximum date (final week) of flight period increases eastwards (WEEKmax with north, r = 0.43, P < 0.01) and 208 

tends to decrease northwards (WEEKmax with north, r = -0.30, P = 0.05). A regression analysis (stepwise entry) 209 

of earliest flight period against grid north and grid east produced a significant relationship for grid north only 210 
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(F1,39 = 5.04, P < 0.05); the Great Orme is an outlier from the regression line. In a regression analysis for mean 211 

flight period, both grid north and grid east are significant (F2,38 = 9.98, P < 0.001; there are no outliers); 212 

regressions for all length of flight period variables failed. Morecambe Bay sites tend to form a string of negative 213 

residuals from the regression line, as illustrated for mean flight period when regressed against grid north and 214 

grid east (Fig. 5). 215 

 216 

Overall relationship of sites to flight period variables 217 

The position of the Great Orme, and other sites for H. semele, in relation to flight period variables and 218 

geography is illustrated in a principal components analysis for all sites with five or more years of data, in which 219 

flight variables are treated as active variables and grid north and grid east as supplementary to the analysis (Fig. 220 

6). The first two vectors returned eigenvalues > 1 (axis 1, 54.4% of variance; axis 2, 39.0% of variance), 221 

accounting for 93.4% of the variance, and distinguish the first week of the flight period and length of flight 222 

period (WEEKmin, wWKcv, WEEKrange) from mean flight period timing and the last week of the flight period 223 

(wWKmean, WEEKmax) (Table 2). Sites from different regions tend to cluster. However, the Great Orme is a 224 

distinct outlier from the cloud of points for the remaining British sites. 225 

 226 

Distribution and abundance on the Orme 227 

The grayling butterfly is not abundant over the entirety of the Great Orme but is concentrated on the scars, 228 

screes and short steep grass slopes on the southern and western sides in seven 1km squares (Fig. 7). 229 

Occasionally the population can become very large as in 2005 and 2010, providing large numbers of potential 230 

migrants for surrounding locations. However, from years which return low UKBMS counts, it is clear that the 231 

butterfly is not always abundant on the Great Orme. 232 

 233 

Discussion 234 

The present study confirms the distinctive characteristics of the Great Orme population of H. semele (Thompson 235 

1944; Dennis 1977), especially the highly unusual wing features (small size of wings and wing ocelli) and flight 236 
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period characteristics (early emergence) of the population. The Great Orme population is also distinct in wing 237 

spot characteristics when these are standardised on wing expanse (Dapporto et al. 2019). The present study also 238 

demonstrates that the population is highly unusual, perhaps unique, among those currently included in the 239 

UKBMS by consistently having the earliest flight period and greatest length of flight period throughout Great 240 

Britain, Northern Ireland, the Isle of Man and the Channel Islands. Corresponding with the long flight period is 241 

evidence that phenotypic characteristics change through the flight season; wing expanse increases significantly 242 

during the latter part of the flight period. 243 

 The immediate question is: are these adaptations expected for a coastal site in this westerly and 244 

northerly position, bearing in mind the observations arising from work by Roy and Asher (2003) and Roy et al. 245 

(2015)?  The evidence is that they are. Clearly, the factors involved extend beyond simply the substrate 246 

(Carboniferous limestone) as the populations found south of the Great Orme and in the vicinity of Morecambe 247 

Bay, although displaying features approaching those found in the Great Orme population, are nothing like so 248 

extreme. In fact, the reasons for this unusual population have long been considered by RLHD to be founded in 249 

the unique and extreme characteristics of the local climate (high radiation levels, mild winters, excessive wind 250 

speeds, desiccated host plants) of the Orme’s Head, and its joint effect both on larval feeding times and rates and 251 

the capacity of adults to fly (see Maclean et al. 2017). These factors have now been explicitly modelled in 252 

Dennis and Hardy (2018, Appendix 15). It is considered that the Great Orme population being so large may well 253 

have persisted since arrival in the early Holocene and evolved its unusual characteristics during the mid-254 

Holocene period of higher temperatures. If this is the case, then higher temperatures projected for climatic 255 

change (Settele et al. 2009) should not pose a threat, especially as there are slopes contrasting markedly in slope 256 

angle, aspect and cover that the butterfly can occupy on the Great Orme. 257 

Even so, the characteristics of the Orme population may be even more unusual than so far disclosed. It 258 

is likely that both the length of the flight period and the significance of changes in phenotype of Great Orme H. 259 

semele are underestimated in this study. First, sampling of individuals for assessing phenotype has been biased 260 

to the earlier part (from the third week of June), but not the earliest part, of the flight period (Dennis 1977). 261 

Secondly, the position of the UKBMS transect on the Great Orme (largely covering SH 7682, SH 7782 and the 262 

southernmost part of SH 7683; see Fig. 5), though taking in the full elevation from sea level to the summit, is 263 

restricted to the southern and south-western aspects; south-eastern, western and north-western slopes are not 264 

surveyed, nor are the relatively level areas of mine waste at Mynydd Isaf (SH 776831) or the limestone 265 
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pavements at the distal end of the peninsula (SH 756838), which the species also occupies later in the season 266 

(Dennis and Bardell 1996). Thus, later cohorts of individuals on the Great Orme may be missed by the current 267 

transect.  The implication is that the Great Orme population is unique among those found on British mainland 268 

for early emergence, length of flight period and wing phenotypes (especially wing size and wing ocelli) 269 

(Dapporto et al. 2019). 270 

The distinctions in wing phenotype for the Great Orme population are long known to have a genetic 271 

basis (Dennis 1977); the wing and flight period transformations have been modelled on contemporary site 272 

factors (Dennis 1977, 1992; see Dennis and Hardy 2018, Appendix 15). A key feature is the demonstration that 273 

individuals from the sand dune populations of the butterfly elsewhere in North Wales (Prestatyn; Aberffraw, 274 

Harlech) are much larger than those found on limestones or other substrates (Dennis 1977). However, the size 275 

(wing expanse) of individuals in populations on the sand dunes adjacent to the Great Orme, on Llandudno Sands 276 

(SH 7781) and Conwy Morfa (SH 7779), is much less than that of individuals on sand dunes elsewhere; in fact 277 

the reduction in size of individuals from Llandudno Sands and Conwy Morfa is similar to that of the Great Orme 278 

population when it, in turn, is compared with populations on nearby limestone slopes of the Creuddyn Peninsula 279 

(i.e., SH 7981, 7980), to which the Orme belongs, south of Llandudno (Dennis 1977). Moreover, it has been 280 

suggested that the increase in size of individuals throughout the extended flight period may well conceal the 281 

presence of a later emerging distinct population on the Great Orme (Dennis 1977), arising from migrants that 282 

were (or still are) able to occupy the headland once the vegetation was opened up outside the sparsely clad scars 283 

and screes following human settlement by farming and mining activity (since the Neolithic) (Bannerman and 284 

Bannerman 2001). The genetic integrity of the early and later emerging individuals could well be maintained by 285 

ecological differences leading to temporal isolation (Dennis 1971; see Boumans et al. 2017). 286 

The knowledge that there has been exchange of individuals between the Great Orme and adjacent 287 

populations is of long standing (Dennis 1977). The current study, in conjunction with improved knowledge of 288 

the ability of all butterflies to transfer to offshore islands, many isolated from the mainland (Dennis et al. 1998; 289 

Dennis and Hardy 2018), raises the prospect that more distant locations have been influenced by movements of 290 

individuals from the Great Orme (see Dapporto et al. 2019). Bearing in mind that the Orme population can at 291 

times be very large, this outcome should not be discounted (Tilley and Dennis 2017). The populations of H. 292 

semele from the Morecambe Bay area also feature tendencies to early emergences, long flight periods and small 293 

individuals (Dennis, unpublished data); this is most evident in the residual string of Morecambe Bay sites when 294 
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flight characteristics (i.e, first appearance, mean flight period, length of flight period) are related to grid north 295 

(Fig. 5). A further point of importance is that the sites in Morecambe Bay and surrounds (Whitbarrow Scar; 296 

Hutton Roof, Holme Fell) are on the same substrate as the Great Orme (Carboniferous limestone) and share 297 

many of the same topographic and substrate attributes of the Orme. But, then, populations found on other 298 

outcrops of Carboniferous limestone on the Creuddyn Peninsula immediately south of the Orme and Llandudno 299 

differ substantially from the Great Orme population in wing features and phenology (Dennis 1977). The Great 300 

Orme is unusual from other sites in being highly exposed to strong prevailing winds, salt spray and high 301 

radiation levels (Dennis and Hardy 2018). 302 

In time, with developing techniques in molecular biology, it will become possible to track down the 303 

precise genetic distinctions in the Orme population of H. semele. When this butterfly is thoroughly studied, it 304 

would be a valuable exercise to examine the relationship of H. semele populations around Morecambe Bay and 305 

the Isle of Man to that on the Great Orme and Creuddyn Peninsula. An interesting aspect of the flight period that 306 

fits a contemporary ecological model for the Orme population (Dennis and Hardy 2018) is the observation made 307 

in this paper of earlier flight periods in the north and west of Britain (Roy and Asher 2003), a feature that 308 

coincides with smaller individuals northwards in Britain (Dennis, unpublished data). Smaller individuals tend to 309 

have shorter development times which could facilitate earlier emergences. This is likely to be linked to the 310 

grayling’s distinctive coastal distribution over much of Britain and overwintering larvae being able to start 311 

feeding earlier in the higher minimum temperatures of coastal environments (see Dennis 1992). 312 

 313 

Conclusions  314 

The present study supports the notion of a unique population of H. semele on Great Orme’s Head, a 315 

uniqueness that we suggest extends to genome composition; in this sense it conforms to an ‘evolutionary 316 

significant unit’ (ESU) (Casacci et al. 2014). Moreover, there are indications in this population of sympatric 317 

evolutionary development, providing valuable insights into incipient speciation. Such populations are 318 

irreplaceable as genetic reserves and deserve special attention; research to disclose genome uniqueness and 319 

resource dependency to facilitate long-term management. The headland has now become a priority for 320 

conservation as it is a hot spot for butterfly species in Northern Britain, a key site for rare plants and animals and 321 

with outstanding geological and archaeological features. Flagship species provide a focus for conservation 322 

efforts (Simberloff 1998; Thomas-Walters and Raihani 2017). H. semele and Plebejus argus are flagship species 323 
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for the butterfly fauna on the Great Orme (Dennis and Hardy 2018). The population of Great Orme’s Head H. 324 

semele is accompanied by other unique (e.g., Great Orme Berry, Cotoneaster cambricus; Dickoré and Kasperek 325 

2010) or rare (e.g., Silky Wave, Idaea dilutaria; Anon 2016 and Horehound Plume-moth, Wheeleria 326 

spilodactylus; Menéndez and Thomas 2000) components. We advocate the need for a detailed study of the 327 

grayling butterfly on this headland and surrounding coastal locations for this butterfly, especially as the species 328 

is undergoing serious national decline as mentioned earlier (Fox et al. 2015). 329 
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Tables 420 

 421 

Table 1 Sample locations for Hipparchia semele in Wales and adjoining parts of England for the measurements 422 

of wing expanse and ocelli between 1968 and 1973 423 

Location OS grid reference Substrate Biotope Males Females Total 

Great Orme SH 76481 

82868 

Limestone Grassland/scree 

grazed 

72 58 130 

Creuddyn Lst SH 79876 

80839 

Limestone Grassland/scree 

grazed 

46 28 74 

Conway Morfa SH 77254 

79219 

Sand dune Marram grass, 

dune 

31 21 52 

Llandudno Sands SH 77347 

81141 

Sand dune Marram grass, 

dune 

13 5 18 

Conwy Mt SH 75984 

77882 

Volcanic Grass/heath, 

grazed 

17 15 32 

Allt Wen SH 74639 

77160 

Volcanic Grass/heath, 

grazed 

59 30 89 

Aber Valley SH 69919 

73794 

Shale Grassland/scree 

grazed 

29 51 80 

Aberffraw SH 35738 

68257 

Sand dune Marram grass, 

dune 

52 37 89 

Morfa Harlech SH 56987 

31761 

Sand dune Marram grass, 

dune 

14 15 29 

Bwrdd Arthur SH 58415 

81416 

Limestone Grassland/scree 

grazed 

24 7 31 

Trearddur Bay SH 25407 

78633 

Metamorphic 

schist 

Grass/heath, 

grazed 

12 6 18 
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Rhyd y Foel SH 91404 

77660 

Limestone Grassland/scree 

grazed 

32 15 47 

Moel Hiraddog SJ 06303 78156 Limestone Grassland/scree 

grazed 

34 27 61 

Warren, Prestatyn SJ 09589 84438 Sand dune Marram grass, 

dune 

36 34 70 

Marford Quarry SJ 35669 55997 Fluvio-glacial 

outwash 

Grassland/broom 

scrub; quarry 

10 10 20 

 Samples from two locations on Creuddyn Peninsula south of Llandudno town; reference given for largest 424 

sample  425 
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 426 

Table 2 Component loadings (correlations between original variables and components) for a principal 427 

components analysis of flight period variables for Hipparchia semele (sites used have 5 or more years of 428 

suitable UKBMS data). Communalities give cumulative explained variance for axes, in this case the first two 429 

axes. High loadings (>50% variance) are marked in bold font 430 

 431 

Active variables Axis 1 Axis 2 Communalities 

    

Flight period mean (wWKmean) 0.53 -0.83 0.97 

Flight period range (wWKcv) -0.89 -0.04 0.79 

Flight period earliest week (WEEKmin) 0.94 -0.29 0.96 

Flight period last week (WEEKmax) -0.26 -0.96 0.99 

Flight period range (WEEKrange) -0.84 -0.51 0.96 

Supplementary variables    

Grid east 0.12 -0.30 0.11 

Grid north -0.07 0.30 0.09 

 432 

  433 
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Figures 434 

 435 

Fig. 1 The distribution of sample sites for wing morphology data collected in North Wales between 1968 and 436 

1973. Sites: black, limestone; white, sand dunes; grey stipple, other geology (igneous, metamorphic and other 437 

sediments). 438 

Fig. 2 Distribution of UKBMS sites used for determining flight period characteristics in Hipparchia semele over 439 

the UK mainland (open symbols, sites with 5 or more years of data (n=111); closed symbols, sites with 10 or 440 

more years of data postdating 1998 (n=41)). Owing to the overlap of sites not all are evident on the map. 441 

Fig. 3 Box plot of flight period (first week; mean ± 2 standard errors) of Hipparchia semele over sites with 442 

suitable records (> 5 years of data; see text). Names of sites on the X axis have been ordered from south (left) to 443 

north (right) and only each second location labelled to assist clarity. 444 

Fig. 4 Box plot of flight period (coefficient of variation; (mean ± 2 standard errors) of Hipparchia semele over 445 

sites with suitable records (over 5 years of data; see text). Names of sites on the X axis have been ordered from 446 

south (left) to north (right) and only each second location labelled to assist clarity. 447 

Fig. 5 The relationship of flight period (mean flight period, WEEKmean) with grid north and grid east for sites 448 

having 10 or more years of data post-dating 1998 (F2,38 = 9.98, P < 0.001, grid north beta -0.40, grid east beta 449 

0.37; R2 = 34.3%). Observed versus predicted dates shown. The string of marked dots (largely negative 450 

residuals) in the middle of the graph includes sites from the Carboniferous limestone around Morecambe Bay, 451 

Lancashire (blue: open circles, at the coast; closed, >5km inland); blue square, Great Orme. 452 

Fig. 6 Principal components plot of flight period characteristics of grayling populations with > 5 years of 453 

records. Axis 1, 54.4% of variance; axis 2, 39.0% of variance. The Great Orme is an outlier on Axis 1 which 454 

accounts for earliest flight period date and length of flight period (see Table 2). Morecambe surrounds include 455 

more inland sites on the Carboniferous limestone to the north at Whitbarrow Scar (SD 4587) and to the east 456 

Hutton Roof (SD 5479). 457 

Fig. 7 Distribution of Hipparchia semele on the Great Orme’s Head during 1995 and 1996. 1km grid squares 458 

shown. (Modified from Dennis and Bardell 1996).  459 
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