1 The Early Jurassic palynostratigraphy of the Lusitanian Basin, western

2 Portugal

3

- 4 Vânia F. Correia^{a,b*}, James B. Riding^c, Luís V. Duarte^d, Paulo Fernandes^a, Zélia Pereira^b
- 5 a CIMA Centro de Investigação Marinha e Ambiental, Universidade do Algarve,
- 6 Campus de Gambelas, 8005-139 Faro, Portugal
- 7 bLNEG, Rua da Amieira, 4465-965 S. Mamede de Infesta, Portugal
- 9 NG12 5GG, UK
- 10 d MARE Marine and Environmental Sciences Centre, Faculty of Sciences and
- 11 Technology, Department of Earth Sciences, University of Coimbra, Rua Sílvio Lima,
- 12 *3030-790 Coimbra, Portugal*

13

**Corresponding author: E-mail address: vania.correia@lneg.pt (V.F. Correia)

15

16 Abstract

- 17 A comprehensive investigation of the Early Jurassic stratigraphical palynology of the
- Lusitanian Basin in western Portugal was undertaken, with most emphasis placed on
- dinoflagellate cysts. A total of 214 samples, from an upper Sinemurian to upper
- 20 Toarcian composite section based on six successions, were examined. The Sinemurian
- 21 material examined was barren of dinoflagellate cysts, however the Pliensbachian and
- Toarcian successions are characterised by relatively low diversities. *Luehndea spinosa*,
- 23 Mancodinium semitabulatum, Mendicodinium microscabratum, Nannoceratopsis
- 24 gracilis, Nannoceratopsis senex and Scriniocassis priscus were relatively common, and
- are biostratigraphically significant. *Luehndea spinosa* dominates the lowermost

Toarcian (*Dactylioceras polymorphum* ammonite Biozone), and is an index species. At the base of *Hildaites levisoni* ammonite Biozone, the effects of the Toarcian-Oceanic Anoxic Event (T-OAE) caused *Luehndea spinosa* to become extinct. At the same time, dinoflagellate cyst abundance and diversity markedly decreased. After the T-OAE, during the middle and late Toarcian, phytoplankton recovery was prolonged and slow in the Lusitanian Basin. The *Luehndea spinosa* and *Mendicodinium microscabratum* dinoflagellate cyst biozones were defined, both of which are subdivided into two dinoflagellate cyst subbiozones.

Keywords: biostratigraphy, palynomorphs, dinoflagellate cysts, Lower Jurassic,

Lusitanian Basin, Portugal.

1. Introduction

The Lusitanian Basin of central western Portugal is an important Mesozoic depocentre, and the calcareous microfossil biostratigraphy of the Lower Jurassic succession has been well studied recently (e.g., Perilli and Duarte, 2006; Oliveira et al., 2007a; Pinto, 2008; Reggiani et al., 2010; Henriques and Canales, 2013; Mattioli et al., 2013; Cabral et al., 2014, 2015; Henriques et al., 2014; Ferreira et al., 2015; Rita et al., 2016). By contrast, the Jurassic palynology of this significant sedimentary basin has received relatively little attention. Previous studies on the Jurassic palynobiotas of the Lusitanian Basin are Davies (1985), Mohr and Schmidt (1988), van Erve and Mohr (1988), Smelror et al. (1991), Bucefalo Palliani and Riding (1999a; 2003), Barrón and Azerêdo (2003), Oliveira et al. (2007b), Barrón et al. (2013) and Correia et al. (2017a,b). Davies (1985) is a reconnaissance biostratigraphical study, and Oliveira et al. (2007b) and Barrón et al. (2013) are mainly on pollen and spores. Correia et al.

(2017a,b) discussed the palynology of the uppermost Pliensbachian to middle Toarcian interval at Maria Pares, Peniche and Vale das Fontes.

The present contribution is a detailed study of the Lower Jurassic palynology of key Sinemurian, Pliensbachian and Toarcian reference sections in the Lusitanian Basin (e.g., Duarte, 2007; Duarte et al., 2014b), with emphasis on dinoflagellate cysts because they are of the greatest regional biostratigraphical significance (Riding and Thomas, 1992; Poulsen and Riding, 2003). Specifically, the main aims are to document the upper Sinemurian to upper Toarcian palynomorphs from São Pedro de Moel, Brenha, Peniche, Fonte Coberta, Maria Pares and Vale das Fontes (Fig. 1), and to erect a dinoflagellate cyst biozonation.

2. Geological background

The Lusitanian Basin is a marginal marine depocentre in central western Portugal, and is oriented NE–SW (Fig. 1). It is 300 km long and 150 km wide, with a maximum basin fill of 5 km (Kullberg et al., 2013). The origin and evolution of this sedimentary basin are related to the breakup of Pangaea and the opening of the North Atlantic Ocean. The fill is mainly Jurassic but ranges from Middle? –Upper Triassic to Upper Cretaceous, and comprises four first order sedimentary cycles (Wilson et al., 1989). A clear Atlantic influence is evident from the ammonite faunas throughout most of the Lower Jurassic succession of the Lusitanian Basin (Mouterde et al., 1979). However, mixed Boreal and Tethyan faunas in the upper Pliensbachian to Toarcian interval indicate intermittent communication between the two realms (Elmi et al., 1989; Terrinha et al., 2002).

Fig. 2. During the Early Jurassic, marine carbonate ramps formed rapidly in the

Lusitanian Basin (Soares et al., 1993; Azerêdo et al., 2003, 2014; Duarte, 2007). The 76 77 upper Sinemurian, especially in the western area, at Figueira da Foz, Peniche and São Pedro de Moel, mainly comprises marl-limestone couplets with ammonite-bearing black 78 79 shales of the Água de Madeiros Formation (Duarte et al., 2010, 2012). The type section is at São Pedro de Moel in the central western part of the basin (Fig 1; Duarte and 80 Soares, 2002; Duarte et al., 2014a,b). The overlying Pliensbachian and Toarcian 81 82 hemipelagic deposits are rich in benthic and nektonic faunas; these are the Vale das Fontes, Lemede, São Gião, base of Cabo Carvoeiro and Póvoa da Lomba formations 83 (Fig. 2; e.g., Duarte and Soares, 2002; Duarte et al., 2001, 2010, 2014b; Duarte, 2007). 84 85 The Vale das Fontes Formation is Pliensbachian in age, ranges from the *Uptonia* 86 jamesoni to Amaltheus margaritatus ammonite biozones and is subdivided into three informal members, the last one particularly enriched in organic mater (e.g., Silva et al., 87 88 2015; Silva and Duarte, 2015; Fig. 2). The succeeding Lemede Formation is upper Pliensbachian to lowermost Toarcian and spans the upper *Amaltheus margaritatus* to 89 90 the lower Dactylioceras polymorphum ammonite biozones. The Toarcian of the Lusitanian Basin largely comprises the São Gião Formation, that spans the 91 92 Dactylioceras polymorphum to the lower Dumortieria meneghinni ammonite biozones, 93 and is subdivided into five informal members (Fig. 2; Duarte and Soares, 2002; Duarte, 2007). The type section of the São Gião Formation is at Maria Pares in the northern part 94 of the Lusitanian Basin (Fig. 1). This locality exposes a continuous ammonite-bearing 95 upper Pliensbachian to Aalenian succession (Mouterde et al., 1964-65; Henriques, 1992, 96 1995). 97 At Peniche, in the southwest of the Lusitanian Basin, a thick succession of 98 Pliensbachian limestone-marl alternations overlain by the Toarcian Cabo Carvoeiro 99 Formation which comprises at the top ooidal limestone-siliciclastic interbeds (Wright 100

and Wilson, 1984; Duarte, 1997; Duarte et al., 2017). The type sections of the Vale das Fontes and Lemede formations are at Peniche, and this succession was recently formalised as the Toarcian Global Stratotype Section and Point (GSSP) (Rocha et al., 2016).

105

106

101

102

103

104

3. Material and methods

107 In this work, 214 samples collected from six Lower Jurassic successions in the Lusitanian Basin were analysed, involving the lithostratigraphical units described 108 above. The loclities are São Pedro de Moel, Brenha, Peniche, Fonte Coberta, Maria 109 110 Pares and Vale das Fontes (Figs. 1–9; Correia et al., 2017a,b). Twelve samples (prefixed PM) were collected from the upper Sinemurian Polyoeira Member of the 111 Água de Madeiros Formation at Polyoeira, which forms the lowest part of the São Pedro 112 113 de Moel composite section (Fig. 3). Herein, we refer to this section as "São Pedro de Moel", although the succession studied corresponds to the Polvoeira section of Duarte 114 115 et al. (2012, 2014a). At Brenha, 22 samples were taken from a Pliensbachian composite 116 section. The lower part of this section comprises the Vale das Fontes Formation 117 (samples prefixed Br), and the upper part is the Lemede Formation (samples prefixed 118 BrLem). The succession between these two formations is not continuous (Figs 2, 4). These two lithostratigraphical units and the Cabo Carvoeiro Formation were also 119 sampled at Peniche, where 72 samples (numbered P-34 to P38) were collected (Fig. 5; 120 Correia et al., 2017b). At Fonte Coberta, in the Rabaçal area, five samples (prefixed FC) 121 from the upper Pliensbachian Vale das Fontes and Lemede formations were collected 122 (Fig. 6). The section at Maria Pares comprises the lower, middle and upper Toarcian 123 São Gião and Póvoa da Lomba formations. Eighty-nine samples (numbered PZ1 to 124 PZ89) were collected (Figs. 7–9; Correia et al., 2017a). The type section of the São 125

Gião Formation is at Maria Pares, and the lower Toarcian was previously studied by Correia et al. (2017a). The latter authors also examined 14 samples (numbered PVF1 to PVF14) from the lower Toarcian part of the São Gião Formation at Vale das Fontes (Correia et al., 2017a, fig. 5).

The samples were all prepared using standard palynological techniques (Wood et al., 1996), but the organic residues were not oxidised. All the residues were sieved using a 15 µm mesh. The palynomorph concentrates were stained with Safranin to enhance the visibility of morphological features. When possible, a minimum of 300 palynomorphs were counted for each sample. The samples, aqueous residues, microscope slides and figured specimens are all curated in the collections of the LNEG (Portuguese Geological Survey), São Mamede de Infesta, Portugal.

4. Palynological results

139 4.1. Introduction

In this section, new reports on the Lower Jurassic palynofloras of the five sections studied are described. The data from 14 samples from the São Gião Formation at Vale das Fontes section were included in Correia et al. (2017a). The data presented by Correia et al. (2017a,b) on Maria Pares and Peniche are also considered here. Most emphasis is placed on the dinoflagellate cysts, due their biostratigraphical significance. Selected palynomorphs are figured in Figs. 10–12. The overall percentages of all taxa from each section are depicted in supplementary Tables 1–5, and the relative abundances of the six main palynomorph groups are plotted in supplementary Figures 1–5. The palynomorph taxa that were recorded herein, or mentioned in the text, are listed in the Appendix.

4.2. São Pedro de Moel

Twelve samples, PM1 to PM12, were studied from the upper Sinemurian Polvoeira Member of the Água de Madeiros Formation at São Pedro de Moel area. These horizons span the *Oxynoticeras oxynotum* and *Echioceras raricostatum* ammonite biozones (Figs. 2, 3). All the 12 samples proved productive, but the palynomorphs were generally poorly preserved and no dinoflagellate cysts were observed. The assemblages are low in diversity and are dominated (normally >95%) by the gymnosperm pollen *Classopollis classoides* (Fig. 12/6). The prasinophyte genus *Tasmanites* (Fig. 12/4) is present throughout, reaching 19% of the palynoflora in PM12. Other palynomorphs are present in low abundances and include acritarchs (*Micrhystridium* spp.), foraminiferal test linings, pollen (*Alisporites* spp. and *Cerebropollenites macroverrucosus*) and spores (*Cyathidites* spp. and *Kraeuselisporites reissingeri*) (supplementary Fig. 1; supplementary Table 1).

4.3. Brenha

The Lower Jurassic composite section at Brenha spans the Pliensbachian, and all five ammonite biozones are represented (Fig. 4). Twenty two samples (Br 1–20 and BrLem 1 and 2) were collected, and all except Br6 proved to be palynologically productive. The palynomorph assemblages are moderately well preserved, and exhibit higher diversites than the Sinemurian of São Pedro de Moel (supplementary Tables 1, 2).

Three dinoflagellate cyst species were encountered in the upper Pliensbachian; these are *Mancodinium semitabulatum*, *Nannoceratopsis gracilis* and *Nannoceratopsis senex* (Figs. 4, 10, 11). These species are present in both the *Amaltheus margaritatus* and the *Emaciaticeras emaciatum* ammonite biozones, corresponding to the MLOF

member of the Vale das Fontes Formation, and the middle part of the Lemede Formation. *Luehndea spinosa* was not found in this succession. Dinoflagellate cysts in samples Br14 to Br20, within the *Amaltheus margaritatus* ammonite Biozone, are present in very low proportions, dominantly less than 1% of the palynoflora. However, the relative proportions of dinoflagellate cysts increased markedly in the Lemede Formation (*Emaciaticeras emaciatum* ammonite Biozone). All three species are present in significant numbers in samples BrLem1 and BrLem2; they represent 22.5% of the overall palynoflora in the latter sample (supplementary Table 2).

Other marine palynomorphs present at Brenha comprise foraminiferal test linings, *Halosphaeropsis liassica*, indeterminate acritarchs and prasinophytes, *Micrhystridium* spp., and *Tasmanites* spp. Foraminiferal test linings were only present in the upper Pliensbachian succession. However overall, these miscellaneous marine palynomorphs, like the dinoflagellate cysts, are most common in the *Emaciaticeras emaciatum* ammonite Biozone. Clearly, samples BrLem1 and BrLem2 exhibit the greatest marine influence in this succession (supplementary Fig. 2; supplementary Table 2).

The pollen grain *Classopollis classoides* is the most abundant palynomorph species throughout, with relative abundances between 27.0% and 94.5%. The bisaccate pollen genus *Alisporites* is also sporadically common, and other pollen present, normally in low proportions, are *Araucariacites australis*, *Cerebropollenites macroverrucosus* and *Spheripollenites* spp. The spores *Cyathidites* spp. and *Kraeuselisporites reissingeri*, together with indeterminate forms, are present throughout the succession. *Leptolepidites rotundus* and *Lycopodiacidites rugulatus* were sporadically identified in the upper Pliensbachian samples (supplementary Table 2).

4.4. The Pliensbachian and lower Toarcian succession at Peniche

A total of 72 samples were collected from the lower Pliensbachian to lower Toarcian (*Tragophylloceras ibex* to *Hildaites levisoni* ammonite biozones) succession at Peniche (Fig. 1; supplementary Table 3). These were studied herein, and by Correia et al. (2017b). Twenty-seven samples, P-34 to P-8, were collected from the Pliensbachian Vale das Fontes and Lemede formations (Figs. 2, 5). Correia et al. (2017b) reported on 45 samples (P-7 to P38), from the overlying uppermost Lemede Formation and the lowermost Cabo Carvoeiro Formation (uppermost Pliensbachian–lower Toarcian). Fourteen samples from the upper Pliensbachian and lower Toarcian succession proved entirely devoid of palynomorphs (supplementary Table 3). The remaining 58 samples yielded reasonably abundant palynomorph assemblages which are moderately well preserved.

Eight forms of dinoflagellate cyst were recognised. The most stratigraphically extensive species are *Luehndea spinosa*, *Mancodinium semitabulatum*, *Nannoceratopsis gracilis* and *Nannoceratopsis senex*. *Mendicodiniuim microscabratum*, *Nannoceratopsis ambonis*, *Nannoceratopsis* sp. and *Scriniocassis weberi* occurred sporadically, and in low numbers (Figs. 5, 10, 11; supplementary Table 3). In the Pliensbachian part of this succession, between the upper *Prodactylioceras davoei* to lowermost *Emaciaticeras emaciatum* ammonite biozones (samples P-29 to P-13,) dinoflagellate cysts are especially sparse and comprise only *Luehndea spinosa*, *Mancodinium semitabulatum*, *Nannoceratopsis senex* and *Nannoceratopsis* sp. (supplementary Fig. 3). The latter form represents a single specimen found in sample P-20 in the *Amaltheus margaritatus* ammonite Biozone. It has two subequal antapical horns, and does not precisely conform to any of the formalised species of this genus (Fig. 10/4). The lowermost occurrence of *Mancodinium semitabulatum* is at the top of *Prodactylioceras davoei* ammonite

Biozone, in sample P-29, where it is relatively sparse. *Luehndea spinosa* is only present, again in very low proportions, in samples P-26 and P-23 from the *Amaltheus margaritatus* ammonite Biozone. Stratigraphically above these records, *Mancodinium semitabulatum*, reappeared in the *Emaciaticeras emaciatum* ammonite Biozone (samples P-12 to P-10) in significantly greater proportions, up to 5.9% of the overall palynoflora. A similar occurrence pattern was exhibited by *Nannoceratopsis senex*. This species is rare in the *Amaltheus margaritatus* ammonite Biozone (samples P-28 to P-21), and became more frequent in the *Emaciaticeras emaciatum* ammonite Biozone (samples P-12 and P-10).

Therefore, the consistent occurrence of relatively common *Mancodinium* semitabulatum is in sample P-12. From this horizon in the *Emaciaticeras emaciatum* ammonite Biozone to the top of *Dactylioceras polymorphum* ammonite Biozone (sample P14; see Table 3), dinoflagellate cysts are abundant to common. *Luehndea spinosa* has two prominent acmes in the *Emaciaticeras emaciatum* and *Dactylioceras polymorphum* ammonite biozones (Correia et al., 2017b). *Mancodinium semitabulatum* is also common at the *Emaciaticeras emaciatum-Dactylioceras polymorphum* ammonite Biozone transition. *Nannoceratopsis* spp. were also prominent in sample P6 in the *Dactylioceras polymorphum* ammonite Biozone (supplementary Table 3). In the Lusitanian Basin, the beginning of the Toarcian Oceanic Anoxic Event (T-OAE) corresponds to the base of *Hildaites levisoni* ammonite Biozone (Hesselbo et al., 2007; Suan et al., 2008; Pittet et al., 2014; Correia et al., 2017a,b). This anoxic event (samples P15 to P24) badly affected the dinoflagellates due to profound benthic palaeoenvironmental stress (Correia et al., 2017b), and the assemblages had not recovered at the level of sample P38 in the *Hildaites levisoni* ammonite Biozone. The

only survivors were sparse and sporadic *Mancodinium semitabulatum* and *Mendicodiniuim microscabratum* (supplementary Table 3).

Miscellaneous marine palynomorphs were recorded throughout this succession. They include acritarchs (indeterminate forms, Micrhystridium spp. and Polygonium jurassicum), foraminiferal test linings and prasinophytes (Cymatiosphaera sp. cf. C. pachytheca, Halosphaeropsis liassica, indeterminate forms and Tasmanites spp.). Generally, these occurrences are in small proportions (<1–2% of the palynoflora); foraminiferal test linings and *Tasmanites* spp are the most consistently observed (supplementary Fig. 3; supplementary Table 3). Foraminiferal test linings and Tasmanites spp. are sporadically relatively frequent between samples P-32 and P-26 (Tragophylloceras ibex to Amaltheus margaritatus ammonite biozones), and in the productive part of the *Emaciaticeras emaciatum* ammonite Biozone (samples P-12 to P-10) (supplementary Table 3). The interval between samples P-25 and P-7 is relatively sparse in miscellaneous microplankton. Unlike dinoflagellate cysts, miscellaneous microplankton are present in relatively moderate proportons in the T-OAE interval (samples P15 to P24). Foraminiferal test linings are most prominent in this interval, and these dominate the palynobiotas above the T-OAE. In sample P36, these palynomorphs attain 71.9% of the assemblage (supplementary Table 3).

All the palynologically productive samples yielded terrestrially-derived palynomorphs in substantial proportions. The pollen grains *Alisporites* spp.,

Araucariacites australis, Cerebropollenites macroverrucosus, Classopollis classoides,

Exesipollenites spp. and Spheripollenites spp. were recognised. Classopollis classoides is normally the most abundant palynomorph below sample P5 in the lowermost

Toarcian, with overall percentages up to 97.4% in sample P-21. The bisaccate genus

Alisporites was relatively frequent in the upper Pliensbachian. Most pollen declined at

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

the T-OAE, however *Exesipollenites* spp. and *Spheripollenites* spp. are more frequent in this succession than below the T-OAE (supplementary Table 3). Pteridophyte spores were recorded in relatively low numbers throughout the succession. *Cyathidites* spp., indeterminate spores, *Kraeuselisporites reissingeri* and *Leptolepidites* spp. were the most consistently present. Other forms were encountered rarely; these include *Concavisporites granulosus, Ischyosporites vaerigatus, Lycopodiacidites rugulatus* and *Plicifera delicata*. Unlike most pollen taxa, spores generally were slightly more frequent during the T-OAE and above it (supplementary Fig. 3; supplementary Table 3).

4.5. Fonte Coberta

Five palynologically productive samples, FC1 to FC5, were collected from the upper Pliensbachian section at Fonte Coberta, near Rabaçal in the northern part of the Lusitanian Basin (Fig. 1, supplementary Table 4). The samples are from the top of the Vale das Fontes and Lemede formations, and span the *Amaltheus margaritatus* and *Emaciaticeras emaciatum* ammonite biozones (Figs. 2, 6).

The palynomorphs from Fonte Coberta are of low diversity and are moderately well preserved. Three dinoflagellate cysts, *Luehndea spinosa*, *Mancodinium semitabulatum* and *Nannoceratopsis senex*, were identified (Figs. 6, 10). The latter occurred in low numbers throughout the succession. By contrast, *Mancodinium semitabulatum* and *Luehndea spinosa* are confined to the *Emaciaticeras emaciatum* ammonite Biozone. The former was recorded in low proportions, but *Luehndea spinosa* was the most abundant palynomorph in samples FC3 (85.2%) and FC5 (62.4%) (supplementary Fig. 4; supplementary Table 4). This abundance of *Luehndea spinosa* at the Pliensbachian-Toarcian transition in the Lusitanian Basin was also observed by Correia et al. (2017a,b).

Miscellaneous marine palynomorphs are present in relatively low numbers in all the samples except FC4. These comprise acritarchs (indeterminate forms and *Micrhystridium* spp.), foraminiferal test linings and prasinophytes (indeterminate forms and *Tasmanites* spp.). The most significant occurrence is the relatively high levels of foraminiferal test linings in the *Emaciaticeras emaciatum* ammonite Biozone (supplementary Table 4).

In samples FC1, FC2 and FC4, by the most abundant palynomorph was the pollen grain *Classopollis classoides*; it is also abundant in FC5. It represented >90% of the palynoflora in samples FC1 and FC4. There is an apparently inverse relationship between the abundances of *Classopollis classoides* and the dinoflagellate cyst *Luehndea spinosa* (supplementary Fig. 4; supplementary Table 4). Other pollen grains present in low proportions are *Alisporites* spp., *Araucariacites australis* and *Cerebropollenites macroverrucosus*. The spores recorded were *Cyathidites* spp., indeterminate forms and *Kraeuselisporites reissingeri* (supplementary Table 4).

4.6. The lower to upper Toarcian succession at Maria Pares

Eighty nine samples were taken from the lower, middle and upper Toarcian at Maria Pares, in the Rabaçal area of the eastern sector of the basin (Fig. 1, supplementary Table 5). This material is from the São Gião and Póvoa da Lomba formations, and the samples span the *Dactylioceras polymorphum* to the *Pleydellia aalensis* ammonite biozones (Figs. 2, 7–9). This material was studied herein, and also by Correia et al. (2017a) who reported on the lowermost 54 samples PZ-1 to PZ54 from the São Gião Formation (lower and middle Toarcian). The overlying 35 samples PZ55 to PZ89, from the middle and upper Toarcian were part of this study only. All but five of the samples proved palynologically productive, with moderately well presered palynobiotas. Three

samples from the upper Toarcian *Pleydellia aalensis* ammonite Biozone proved entirely devoid of palynomorphs (supplementary Table 5).

327 Thirteen dinoflagellate cyst forms were identified. These are: *Dapsilidinium*? 328 deflandrei; Luehndea spinosa; Mancodinium semitabulatum; ?Maturodinium 329 inornatum; Mendicodinium microscabratum; Mendicodinium spinosum subsp. spinosum; Mendicodinium sp.; Nannoceratopsis ambonis; Nannoceratopsis gracilis; 330 331 Nannoceratopsis senex; Scriniocassis priscus; Sentusidinium sp.; and Valvaeodinium sp. (Figs. 10, 11; supplementary Table 5). As in other sections, the most consistently 332 333 occurring dinoflagellate cyst throughout is Mancodinium semitabulatum, the range top 334 of which is in the *Dumortieria meneghinii* ammonite Biozone. *Luehndea spinosa* is 335 dominant in the upper part of the *Dactylioceras polymorphum* ammonite Biozone. 336 Mancodinium semitabulatum is also common in this ammonite biozone and around the 337 lower-middle Toarcian transition (samples PZ27 and PZ51; see supplementary Table 5). The range base of consistent *Mendicodinium microscabratum* and *Scriniocassis priscus* 338 339 is PZ554 in the *Hildoceras bifrons* ammonite Biozone. The stratigraphically highest 340 record of Scriniocassis priscus is in the Hammatoceras speciosum ammonite Biozone. The maximum abundance of *Mendicodinium microscabratum* is 27.3% in sample PZ56 341 342 in the *Hildoceras bifrons* ammonite Biozone, with the stratigraphically highest record in Hammatoceras speciosum ammonite Biozone. Nannoceratopsis spp. did not recover 343 following the T-OAE, but *Nannoceratopsis senex* is sporadically present in the 344 345 Dumortieria meneghinii and Pleydellia aalensis ammonite biozones. In the Pleydellia aalensis ammonite Biozone, Nannoceratopsis senex was the only dinoflagellate cyst 346 347 species present, with 10.3% of the overall palynoflora in sample PZ88. Dapsilidinium? deflandrei, ?Maturodinium inornatum, Mendicodinium spinosum subsp. spinosum, 348 Mendicodinium sp., Nannoceratopsis ambonis, Sentusidinium sp. and Valvaeodinium 349

325

sp. were extremely rare (supplementary Table 5). For example, only one and two specimens each respectively of *Dapsilidinium? deflandrei* (samples PZ57) and *?Maturodinium inornatum* (samples PZ58 and PZ77) were encountered (supplementary Table 5).

Other marine palynomorphs encountered throughout this succession were foraminiferal test linings, *Halosphaeropsis liassica*, indeterminate acritarchs and prasinophytes, *Micrhystridium* spp. and *Tasmanites* spp. These palynomorphs were dominated by acanthomorph acritarchs, foraminiferal test linings and prasinophytes. Indeterminate acritarchs and *Micrhystridium* spp. are normally most prevalent in the lower and lowermost middle Toarcian, and foraminiferal test linings and indeterminate prasinophytes are most abundant in the upper Toarcian samples (supplementary Fig. 5). Clumps of *Halosphaeropsis liassica* increased their abundance from the *Hildaites levisoni* ammonite Biozone (sample PZ9, 89.7%, see supplementary Table 5; supplementary Fig. 5).

All the palyniferous samples produced pollen-spore floras in significant numbers. The pollen comprises Alisporites spp., Araucariacites australis,

Callialasporites dampieri, Callialasporites turbatus, Cerebropollenites

macroverrucosus, Classopollis classoides, Classopollis sp., Cycadopites sp.

Exesipollenites spp., Inaperturopollenites sp., indeterminate forms and Spheripollenites

spp. The diversity is greatest in the uppermost middle and upper Toarcian, and the

dominant and consistent elements are Alisporites spp., Araucariacites australis and

Classopollis classoides (supplementary Table 5). The latter is present throughout, and is
the most abundant species, reaching a maximum of 50% of the palynoflora in sample

PZ85 (Dumortieria meneghinii ammonite Biozone). The range top of Araucariacites

australis, and the inception of Callialasporites spp., are in the middle Toarcian

(*Brodiela gradata* ammonite Biozone). The spores were relatively high in diversity, but only *Cyathidites* spp., indeterminate spores, *Ischyosporites variegatus* and *Leptolepidites spp.* were consistent and relatively frequent.

5. Discussion of the Lower Jurassic palynofloras of the Lusitanian Basin

5.1. Introduction

In this section, the palynological data outlined in section 4 are discussed and interpreted, primarily in terms of their biostratigraphical significance. A biostratigraphical scheme for the Pliensbachian and Toarcian of the Lusitanian Basin based on key dinoflagellate cysts bioevents is presented as Figure 13, and a formal biozonation is outlined in section 6.

5.2. Upper Sinemurian palynology

The upper Sinemurian succession at São Pedro de Moel proved entirely devoid of dinoflagellate cysts, confirming the findings of Duarte et al. (2012) and Poças Ribeiro et al. (2013). The late Sinemurian marker dinoflagellate cyst *Liasidium variabile* was not recovered. This distinctive species is characteristic of the upper Sinemurian of northwest Europe, and is a proven thermophilic taxon (Riding and Hubbard, 1999; Brittain et al., 2010; Riding et al., 2013). *Liasidium variabile* thrived, and *Classopollis classoides* was extremely abundant, during a brief palaeoenvironmental perturbation in the late Sinemurian (~194 Ma) of northwest Europe. This was characterised by a significant oceanic and atmospheric injection of isotopically-light carbon, global warming and organic shale deposition (Riding et al., 2013). Organic-rich facies, resulting from anoxic/dysoxic intervals, occurred during the late Sinemurian in the western sectors of the Lusitanian Basin (Duarte et al., 2010,

2012; Boussaha et al., 2014; Plancq et al., 2016). *Classopollis classoides* was extremely abundant in the upper Sinemurian of São Pedro de Moel, and this represents the acme for the entire successon examined (supplementary Tables 1–5). The absence of *Liasidium variabile* at São Pedro de Moel may indicate that this species had specific palaeoenvironmental preferences, and did not migrate south of ~30° latitude at this time (Riding et al., 2013, fig. 1).

5.3. Pliensbachian and Toarcian palynology

The five Pliensbachian and Toarcian successions studied herein, and by Correia et al. (2017a,b), are Brenha, Peniche, Fonte Coberta, Maria Pares and Vale das Fontes (Figs. 1–9); all these sections produced dinoflagellate cyst assemblages. Fifteen forms were recorded; these are: *Dapsilidinium? deflandrei*; *Luehndea spinosa*; *Mancodinium semitabulatum*; *?Maturodinium inornatum*; *Mendicodinium microscabratum*; *Mendicodinium spinosum* subsp. *spinosum*; *Mendicodinium* sp.; *Nannoceratopsis ambonis*; *Nannoceratopsis gracilis*; *Nannoceratopsis senex*; *Nannoceratopsis* sp.; *Scriniocassis priscus*; *Scriniocassis weberi*; *Sentusidinium* sp.; and *Valvaeodinium* sp. (supplementary Tables 1–5).

Other aquatic palynomorphs observed comprise acanthomorph acritarchs, foraminiferal test linings and prasinophytes (supplementary Tables 1–5; Correia et al., 2017a,b). Pollen and spores are also present in relatively high relative proportions. The gymnospermous pollen species *Classopollis classoides* is the most abundant terrestrially-derived palynomorph in the Lower Jurassic of the Lusitanian Basin. Other pollen taxa present in significant numbers are *Alisporites* spp., *Araucariacites australis* and *Cerebropollenites macroverrucosus*. The spores *Cyathidites* spp., *Ischyosporites*

variegatus, Leptolepidites spp. and Kraeuselisporites reissingeri were also frequently encountered throughout. The miscellaneous marine microplankton, pollen and spores are relatively conservative in their occurrences through this composite Sinemurian to Toarcian succession, and are consistent with an Early Jurassic age (Srivastava, 1987; 2011; Weiss, 1989; Ziaja, 2006; Quattrocchio et al., 2011; Bomfleur et al., 2014).

These relative low diversity dinoflagellate cyst assemblages are broadly typical of upper Pliensbachian to Toarcian successions throughout Europe and adjacent areas (Riding, 1984a; Riding et al., 1991; 1999; Koppelhus and Nielsen, 1994; Bucefalo Palliani and Riding, 1997a,b; 1999a; 2000; 2003; Baranyi et al., 2016). Furthermore, the dinoflagellate cyst association reported herein is consistent with previous research on the Lower Jurassic palynology of the Lusitanian Basin (Davies, 1985; Oliveira et al., 2007b; Barrón et al., 2013). For example, Davies (1985), Oliveira et al. (2007a) and Barrón et al. (2013) also recorded *Luehndea spinosa, Mancodinium semitabulatum*, *Mendicodinium* sp., *Nannoceratopsis senex*, *Nannoceratopsis gracilis*, *Nannoceratopsis* sp. *Scriniocassis weberi* and *Scriniocassis priscus* from this area.

The dinoflagellate cyst diversity in the upper Pliensbachian of the Lusitanian Basin is relatively low, with only *Luehndea spinosa*, *Mancodinium semitabulatum*, *Mendicodinium microscabratum*, *Nannoceratopsis senex*, *Nannoceratopsis gracilis* and *Nannoceratopsis* sp. present. In terms of abundances, dinoflagellate cysts are relatively rare in the *Amaltheus margaritatus* ammonite Biozone, but increased markedly within the *Emaciaticeras emaciatum* ammonite Biozone (supplementary Tables 2, 3). Both abundances and diversity increased in the earliest Toarcian *Dactylioceras polymorphum* ammonite Biozone. *Luehndea spinosa* dominates the palynofloras at the Pliensbachian—Toarcian transition (upper *Emaciaticeras emaciatum* and lower *Dactylioceras polymorphum* ammonite biozones), at Peniche, Fonte Coberta, Maria Pares and Vale

das Fontes (Fig. 6; supplementary Tables 3–5; Correia et al., 2017a,b). For example, this species attained a maximum of 96.2% of the overall palynoflora in sample P11 at Peniche (supplementary Table 3). At Peniche, Maria Pares and Vale das Fontes, the abundance curves of *Luehndea spinosa* in the *Dactylioceras polymorphum* ammonite Biozone exhibit a characteristic double peak signature (Correia et al., 2017a,b). These acmes may reflect pulses of an early Toarcian transgressive event prior to the start of the T-OAE in the lowermost *Hildaites levisoni* ammonite Biozone (Duarte et al., 2004, 2007; Pittet et al., 2014).

The Toarcian dinoflagellate cyst assemblages above the base of *Hildaites* levisoni ammonite Biozone are dominated by *Mancodinium semitabulatum* and *Mendicodinium* spp. During the Toarcian, *Dapsilidinium? deflandrei, ?Maturodinium inornatum, Mendicodinium spinosum* subsp. spinosum, Mendicodinium sp., *Nannoceratopsis ambonis, Scriniocassis priscus, Scriniocassis weberi, Sentusidinium* sp. and *Valvaeodinium* sp. had their inceptions (supplementary Tables 3, 5). Despite the somewhat moderate increase in diversity in the Toarcian, above the *Dactylioceras polymorphum* ammonite Biozone, overall dinoflagellate cyst abundances markedly reduced due to the palaeoenvironmental perturbations caused by the T-OAE and the recovery from this event (Correia et al., 2017a,b). Only *Mancodinium semitabulatum* is consistently relatively common. *Mendicodinium microscabratum* and *Nannoceratopsis senex* were only sporadically present in reasonable proportions, and other forms were extremely rare (supplementary Tables 3, 5).

Hence the recovery of dinoflagellates after the T-OAE at Maria Pares and Peniche was extremely slow and somewhat indistinct (supplementary Tables 3, 5). A good example is the reappearance of *Nannoceratopsis senex* following the T-OAE. In northwest Europe, this species was typically suppressed only for part of the *Harpoceras*

exaratum ammonite Subbiozone of the Harpoceras serpentinum ammonite Biozone in 474 475 the early Toarcian (Bucefalo Palliani and Riding, 2000, fig. 3; Bucefalo Palliani et al., 2002, figs. 3, 13). In northern Siberia, this species was apparently unaffected by the T-476 477 OAE (Riding et al., 1999, fig. 11). By contrast, in the Lusitanian Basin, Nannoceratopsis senex reappeared in the late Toarcian (Dumortieria meneghinnii 478 479 ammonite Biozone, supplementary Table 5). This slow dinoflagellate recovery in 480 southern Europe was also illustrated by Correia et al. (2017a, fig. 10). The apparently unaffected dinoflagellate cyst associations of the high northerly latitudes and a slow 481 482 recovery in southern Europe, with an intermediate region (northwest Europe) 483 intercalated between these, appears to be a coherent trend. Despite intense Early 484 Toarcian anoxia in northwest Europe, the palaeoenvironment in Italy and Portugal was far slower to recovery (Bucefalo Palliani et al., 2002; van de Schootbrugge et al., 2005; 485 486 Jenkyns et al., 2010; Correia et al., 2017a,b). This may have been linked to the reestablishment of marine circulation patterns at this time. 487 488 In northwest Europe and in the Boreal Realm, part of the dinoflagellate recovery following the T-OAE in the mid Toarcian to earliest Aalenian is a minor radiation of a 489 plexus of small genera placed in the Family Heterocapsaceae and termed the 490 491 'Parvocysta complex' (Riding, 1984a; Riding et al., 1991; 1999; Butler et al., 2005; Feist-Burkhardt and Pross, 2010). This association is absent throughout the Lusitanian 492 493 Basin, where the only significant dinoflagellate cyst inceptions in the middle Toarcian are those of Mendicodinium microscabratum and Scriniocassis priscus (Fig. 13). 494 Furthermore, typical Tethyan species, such as *Mendicodinium brunneum*, 495 Mendicodinium umbriense, Umbriadinium mediterraneense and Valvaeodinium 496 hirsutum are also absent in central western Portugal (Bucefalo Palliani and Riding, 497

1997a, c; 1999a,b; 2003; Bucefalo Palliani et al., 1997a).

5.4. Pliensbachian and Toarcian palynomorph biostratigraphy of the Lusitanian Basin

In this subsection, the biostratigraphical significance of the principal palynomorphs, with the emphasis on dinoflagellate cyst taxa, are discussed. *Dapsilidinium? deflandrei* was found in the *Hildoceras bifrons* ammonite Biozone at Maria Pares (supplementary Table 5). This species is very rare in the Middle Jurassic of northwest Europe (Valensi, 1947; Davey and Riley, 1978), and this is the first report from the Early Jurassic.

Luehndea spinosa ranges from the upper Pliensbachian to the lowermost

Toarcian (Amaltheus margaritatus to Dactylioceras polymorphum ammonite biozones) in the Lusitanian Basin (Fig. 13). This range is consistent with the extent of this distinctive and widespread species in Europe and elsewhere (Morgenroth, 1970; Riding, 1987; Bucefalo Palliani and Riding, 1997a,b; 2000; 2003; Bucefalo Palliani et al., 1997b). The range base of Luehndea spinosa in the Lusitanian Basin is represented by sparse and sporadic occurrences close to the base of the Amaltheus margaritatus ammonite Biozone at Peniche (Fig. 5; supplementary Table 3). These occurrences of Luehndea spinosa in the Amaltheus margaritatus ammonite Biozone, together with Mancodinium semitabulatum, Nannoceratopsis gracilis and Nannoceratopsis senex, confirms the late Pliensbachian age of the uppermost MLOF member of the Vale das Fontes Formation. Luehndea spinosa was not recorded in the coeval strata at Brenha (Fig. 4), possibly because the Brenha section is more proximal than Peniche (Fig. 1). Luehndea cirilliae is present in the upper Pliensbachian and lower Toarcian of Hungary (Baldanza et al., 1995; Bucefalo Palliani et al., 1997b; Baranyi et al., 2016). This

species was also reported in the Pliensbachian of Brenha by Bucefalo Palliani and 523 524 Riding (2003), but this taxon was not found in this study, or by Correia et al. (2017a,b). Mancodinum semitabulatum (Fig. 11/9-12) is present in the Pliensbachian-525 526 Toarcian successions at Brenha, Peniche, Fonte Coberta, Maria Pares and Vale das Fontes (supplementary Tables 2–5; Correia et al., 2017a). This species has a consistent 527 range of late Pliensbachian to early Bajocian (Riding, 1984b; Feist Burkhardt and Wille 528 529 1992; Riding and Thomas 1992; Wiggan et al., 2017). The stratigraphically lowest record of *Mancodinum semitabulatum* in the Lusitanian Basin is at the top of 530 Prodactylioceras davoei ammonite Biozone at Peniche (sample P-29, see Fig. 5; 531 532 supplementary Table 3). At Brenha, Mancodinum semitabulatum was identified at the base of the Amaltheus margaritatus ammonite Biozone, in the MLOF member of the 533 534 Vale das Fontes Formation (Fig. 4; supplementary Table 2). This species became much 535 more common and consistent in the uppermost Pliensbachian and lowermost Toarcian (Emaciaticeras emaciatum and Dactylioceras polymorphum ammonite biozones) 536 537 throughout the Lusitanian Basin (supplementary Tables 2, 3; Correia et al., 2017a,b). Mancodinum semitabulatum was significantly suppressed by the T-OAE, and is sparse 538 for the remainder of the Toarcian in the Lusitanian Basin, between the Hildaites levisoni 539 540 and the *Dumortieria meneghinii* ammonite biozones (Fig. 13; supplementary Table 5). Rare, questionable specimens of *Maturodinium inornatum* were observed in the middle 541 542 and upper Toarcian at Maria Pares (supplementary Table 5). This species was previously believed to be confined to the upper Pliensbachian (Morgenroth, 1979; Feist-543 Burkhardt and Wille, 1992). 544 At Peniche and Maria Pares, Mendicodinium microscabratum was recorded 545 between the *Hildaites levisoni* and the *Hammatoceras speciosum* ammonite biozones 546

(Fig. 13; supplementary Tables 3, 5). This is inconsistent with the range of

Mendicodinium spp., including Mendicodinium microscabratum, in the Dactylioceras polymorphum ammonite Biozone equivalent of central Italy reported by Bucefalo Palliani et al. (1997a). Thus, the records of Mendicodinium microscabratum in the middle and upper Toarcian in the Lusitanian Basin are the youngest known occurrences.

The oldest occurrences of the genus *Nannoceratopsis* in the Lusitanian Basin are the records of *Nannoceratopsis gracilis* and *Nannoceratopsis senex* at the base of the Amaltheus margaritatus ammonite Biozone at Brenha and Peniche (Figs. 4; 5). This range base is consistent with records from northwest Europe (Morgenroth, 1970; Woollam and Riding, 1983; Bucefalo Palliani and Riding, 2003; Poulsen and Riding, 2003). The range tops of consistent occurrences of Nannoceratopsis gracilis and Nannoceratopsis senex are in the lower Bajocian Stephanoceras humphriesianum ammonite Biozone (Poulsen and Riding, 2003, p. 124; Wiggan et al., 2017, table 2a). Nannoceratopsis ambonis is present in the Dactylioceras polymorphum ammonite Biozone at Maria Pares, Peniche and Vale das Fontes, and an isolated occurrence in the upper Toarcian (Hammatoceras speciosum ammonite Biozone) at Maria Pares (supplementary Tables 3, 5; Correia et al., 2017a). Nannoceratopsis gracilis and Nannoceratopsis senex occur consistently, and in relatively high proportions, throughout the *Dactylioceras polymorphum* ammonite Biozone at Maria Pares, Peniche and Vale das Fontes. The genus disappeared at the base of *Hildaites levisoni* ammonite Biozone in these three lower Toarcian successions (supplementary Tables 3, 5; Correia et al., 2017a). This event is interpreted to be a result of the palaeoenvironmental perturbations associated with the T-OAE in the Lusitanian Basin (e.g., Duarte et al., 2004; Hesselbo et al., 2007; Suan et al., 2008, 2010; Pittet et al., 2014; Correia et al., 2017a,b). Nannoceratopsis ambonis and Nannoceratopsis senex reappeared in the upper

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

Toarcian (*Hammatoceras speciosum* to *Pleydellia aalensis* ammonite biozones) at Maria Pares (supplementary Table 5).

The distinctive gonyaulacacean species *Scriniocassis weberi* and *Scriniocassis priscus* were encountered, normally in low proportions, in the Toarcian of the Lusitanian Basin (Fig. 13; supplementary Tables 3, 5). *Scriniocassis weberi* ranges throughout the late Pliensbachian to early Aalenian, and *Scriniocassis priscus* is confined to the middle Toarcian to Aalenian, in northwest Europe (Riding, 1984a,b; Prauss, 1989; Feist-Burkhardt, 1990; Feist-Burkhardt and Wille, 1992; Feist-Burkhardt and Pross, 2010). At Peniche, *Scriniocassis weberi* was found in small numbers in the middle part of the *Dactylioceras polymorphum* ammonite Biozone (supplementary Table 3; Correia et al., 2017b). By contrast, *Scriniocassis priscus* was sporadic, yet relatively common where present, between the Toarcian *Hildoceras bifrons* and *Hammatoceras speciosum* ammonite biozones at Maria Pares, and apparently can be used as a marker for this interval in the Lusitanian Basin (Fig. 13).

The pollen-spore floras are generally not as biostratigraphically important as the dinoflagellate cysts. However, there are several miospore datums in the Maria Pares section which are noteworthy. The range base of *Callialasporites* spp. is in the *Brodieia gradata* ammonite Biozone of the middle Toarcian (supplementary Table 5). This biovent is consistent with other reports that the inception of this distinctive pollen genus is in the latest early Toarcian (Riding et al., 1991). Apparently, the range top of the spore *Kraeuselisporites reissingeri* is in sample P33, within the *Hildaites levisoni* ammonite Biozone. This bioevent is broadly consistent with the findings of Morbey (1978, fig. 1). The distinctive spore *Kekryphalospora distincta* was encountered in sample PZ82 (*Dumortieria meneghinii* ammonite Biozone) at Maria Pares

596	(supplementary Table 5). This occurrence is well within the known range of late	
597	Pliens	bachian to early Bajocian (Fenton and Riding, 1987).
598		
599	6.	The Pliensbachian-Toarcian dinoflagellate cyst biozonation of the
600	Lusita	nnian Basin
601	6.1.	Introduction
602		Due their relatively short ranges, many Jurassic dinoflagellate cysts are reliable
603	stratig	raphical markers, and several biozonation schemes have been defined based on
604	them (Woollam and Riding, 1983; Helby et al., 1987; Riding and Thomas, 1992;
605	Poulse	en and Riding, 2003; Riding et al., 2010). A new dinoflagellate cyst biozonation
606	for the	e upper Pliensbachian to upper Toarcian of the Lusitanian Basin is summarised in
607	Fig. 1.	3, and compared with the schemes of Riding and Thomas (1992) and Poulsen and
608	Riding	g (2003).
609		
610	6.2.	The Luehndea spinosa dinoflagellate cyst Biozone
611	Defini	tion: The interval from the range bases of Luehndea spinosa, Nannoceratopsis
612	gracil	is and Nannoceratopsis senex, to the range top of Luehndea spinosa.
613	Age: I	Late Pliensbachian (base of Amaltheus margaritatus ammonite Biozone) to
614	earlies	st Toarcian (top of the <i>Dactylioceras polymorphum</i> ammonite Biozone).
615	Chara	cteristics: The dominance of <i>Luehndea spinosa</i> and the relatively consistent and
616	freque	ent presence of Mancodinium semitabulatum, Nannoceratopsis gracilis and
617	Nanna	oceratopsis senex. The inception of abundant Luehndea spinosa allows the
618	consis	tent subdivision of this biozone.
619	Comm	nents: The <i>Luehndea spinosa</i> dinoflagellate cyst Biozone of the Lusitanian Basin

is coeval with the Luehndea spinosa Total Range Biozone of Riding and Thomas (1992,

621	p. 20–21) and the <i>Luehndea spinosa</i> Biozone of Poulsen and Riding (2003), both of
622	northwest Europe (Fig. 13). All these three biozones are defined by the range base of
623	Luehndea spinosa and other taxa, such as Nannoceratopsis senex or Nannoceratopsis
624	gracilis at the base, to the range top of Luehndea spinosa at the top. The
625	Nannoceratopsis senex and Luehndea spinosa subbiozones are broadly equivalent to
626	subbiozones a and b of Riding and Thomas (1992), respectively (Fig. 13).
627	
628	6.2.1. The Nannoceratopsis senex dinoflagellate cyst Subbiozone
629	Definition: The interval from the range base of Luehndea spinosa, to the range base of
630	the abundant presence of this species.
631	Age: Late Pliensbachian (base of Amaltheus margaritatus ammonite Biozone) to latest
632	Pliensbachian (close to the top of the <i>Emaciaticeras emaciatum</i> ammonite Biozone.
633	Characteristics: Luehndea spinosa is typically present in relatively low abundances in
634	this Subbiozone.
635	
636	6.2.2. The Luehndea spinosa dinoflagellate cyst Subbiozone
637	Definition: The interval from the range base of the abundant presence of <i>Luehndea</i>
638	spinosa, to the range top of this species.
639	Age: Latest Pliensbachian (close to the top of the <i>Emaciaticeras emaciatum</i> ammonite
640	Biozone) to earliest Toarcian (top of the Dactylioceras polymorphum ammonite
641	Biozone).
642	Characteristics: Luehndea spinosa is consistently present, and largely in high
643	abundances.
644	

The Mendicodinium microscabratum dinoflagellate cyst Biozone

6.3.

Definition: The interval from the range top of *Luehndea spinosa*, to the apparent range top of *Mendicodinium microscabratum*.

Age: Early Toarcian (base of the *Hildaites levisoni* ammonite Biozone) to late Toarcian (top of the *Hammoteceras speciosum* ammonite Biozone).

Characteristics: This biozone typically exhibits low abundances and diversities of dinoflagellate cysts. *Mancodinium semitabulatum*, *Mendicodinium microscabratum* and *Scriniocassis priscus* may be present (Fig. 13).

Comments: This biozone is partially equivalent to the *Nannoceratopsis gracilis* Interval Biozone of Riding and Thomas (1992, p. 21–25), but the latter extends into the early Bajocian in northwest Europe. In the Lusitanian Basin, the top of this biozone is presently not well defined. *Nannoceratopsis gracilis* subbiozones a and b of Riding and Thomas (1992) are correlated with the *Mancodinium semitabulatum* and *Mendicodinium microscabratum* subbiozones herein respectively. Furthermore, the *Mancodinium semitabulatum* and *Mendicodinium microscabratum* subbiozones herein, correspond to the *Mancodinium semitabulatum* and *Parvocysta nasuta* biozones of Poulsen and Riding (2003).

This study represents the youngest record of *Mendicodinium microscabratum* in the the middle and upper Toarcian (Fig. 13). Bucefalo Palliani et al. (1997a) reported this species from the lower Toarcian of Italy. Other coeval sections, and younger strata, should be studied in the Lusitanian Basin and adjacent regions in order to confirm if the range top of this species is at the top of *Hammoteceras speciosum* ammonite Biozone.

Using the apparent range top of *Mendicodinium microscabratum*, and the reappearance of *Nannoceratopsis senex*, the base of another dinoflagellate cyst biozone could possibly be defined at, or close to, the base of the *Dumortieria meneghinnii* ammonite Biozone. Due the lack of information on the latest Toarcian of the Lusitanian

Basin, we opted not to erect another dinoflagellate cyst biozone until more information becomes available.

673

674

675

677

6.3.1. The Mancodinium semitabulatum dinoflagellate cyst Subbiozone

Definition: The interval from the range top of *Luehndea spinosa*, to the range base of

676 Scriniocassis priscus.

Age: Early Toarcian (base of the *Hildaites levisoni* ammonite Biozone) to middle

Toarcian (close to the top of the *Hildoceras bifrons* ammonite Biozone).

Characteristics: The only dinoflagellate cysts present are rare *Mancodinium*

semitabulatum and *Mendicodinium microscabratum*.

681

683

686

679

682 6.3.2. The Mendicodinium microscabratum dinoflagellate cyst Subbiozone

Definition: The interval from the range base of *Scriniocassis priscus*, to the apparent

range top of *Mendicodinium microscabratum*.

Age: Middle Toarcian (close to the top of the *Hildoceras bifrons* ammonite Biozone) to

late Toarcian (top of the *Hammoteceras speciosum* ammonite Biozone).

687 Characteristics: *Mendicodinium microscabratum* is the dominant dinoflagellate cyst

species in a very low diversity flora.

689

690

691

692

693

694

695

688

7. Conclusions

The Lower Jurassic palynology of the Lusitanian Basin of western Portugal was comprehensively investigated, with the principal emphasis on dinoflagellate cysts. A Sinemurian to Toarcian composite succession from six sections throughout this important depocentre was constructed. The Sinemurian proved entirely devoid of dinoflagellate cysts, but the overlying Pliensbachian and Toarcian succession is

characterised by relatively low dinoflagellate cyst diversity; fifteen taxa were encountered. Only seven genera were recorded with certainty, these are *Luehndea*, *Mancodinium*, *Mendicodinium*, *Nannoceratopsis*, *Scriniocassis*, *Sentusidinium* and *Valvaeodinium*.

The dinoflagellate cyst succession in the Lusitanian Basin is broadly consistent with other Lower Jurassic sedimentary basins in Europe. However, the reliable Upper Sinemurian dinoflagellate cyst *Liasidium variabile* appears not to have migrated south into the Lusitanian Basin from northwest Europe. *Luehndea spinosa* is the dominant palynomorph in the lowermost Toarcian (*Dactylioceras polymorphum* ammonite Biozone), and is the most age-diagnostic species. At the base of *Hildaites levisoni* ammonite Biozone, *Luehndea spinosa* became extinct, probably due to the effects of the T-OAE. Also at this time, dinoflagellate cyst abundance and diversity sharply decreased. The recovery of phytoplankton during the middle and late Toarcian was relatively slow, following the T-OAE.

Other palynomorph groups such as acanthomorph acritarchs, foraminiferal test linings, pollen and spores, and prasinophytes were also documented. The pollen species *Classopollis classoides* is the most common and abundant palynomorph throughout the Lower Jurassic strata of the Lusitanian Basin. The non-dinoflagellate cyst taxa encountered exhibit no discernible trend, or stratigraphical succession.

By contrast, the dinoflagellate cysts *Luehndea spinosa*, *Mancodinium* semitabulatum, *Mendicodinium microscabratum*, *Nannoceratopsis gracilis*, *Nannoceratopsis senex* and *Scriniocassis priscus* were relatively frequent and proved to have biostratigraphical significance. Two dinoflagellate cyst biozones were defined for the succession studied. These are the *Luehndea spinosa* and the *Mendicodinium microscabratum* biozones which are of late Pliensbachian–earliest Toarcian, and

721	earliest-late Toarcian age respectively. These two dinoflagellate cyst biozones are each
722	subdivided into two subbiozones.
723	
724	Acknowlegements
725	The contribution of Vânia F. Correia is part of her PhD scholarship
726	SFRH/BD/93950/2013, awarded by the Portuguese Foundation for Science and
727	Technology (FCT). James B. Riding publishes with the approval of the Executive
728	Director, British Geological Survey (NERC). Luís V. Duarte was supported by FCT,
729	through the strategic project UID/MAR/04292/2013 granted to the Marine and
730	Environmental Sciences Centre (MARE).
731	
732	Appendix
733	This is a list of all the palynomorphs which were recovered from the material
734	studied herein, or mentioned in the text, with full author citations. The seven species
735	listed which were not found in the material from the Lusitanian Basin are asterisked.
736	The taxa are listed alphabetically in four groups. References to the dinoflagellate cyst
737	author citations can be found in Williams et al. (2017). The recommendations of Correia
738	et al. (2017a, appendix 2) regarding the taxonomy of Nannoceratopsis senex are
739	followed herein.
740	Dinoflagellate cysts:
741	Dapsilidinium? deflandrei (Valensi, 1947) Lentin & Williams 1981
742	*Liasidium variabile Drugg 1978
743	*Luehndea cirilliae Bucefalo Palliani et al., 1997
744	Luehndea spinosa Morgenroth 1970
745	Mancodinium semitabulatum Morgenroth 1970

*Mendicodinium brunneum Bucefalo Palliani et al. 1997 746 747 Maturodinium inornatum Morgenroth 1970 748 Mendicodinium microscabratum Bucefalo Palliani et al. 1997 749 Mendicodinium spinosum Bucefalo Palliani et al. 1997 subsp. spinosum (autonym) *Mendicodinium umbriense Bucefalo Palliani et al. 1997 750 Nannoceratopsis ambonis Drugg 1978 751 752 Nannoceratopsis gracilis Alberti 1961 Nannoceratopsis senex van Helden 1977 753 Scriniocassis priscus (Gocht 1979) Below 1990 754 755 Scriniocassis weberi Gocht 1964 *Susadinium scrofoides Dörhöfer & Davies 1980 756 *Umbriadinium mediterraneense Bucefalo Palliani & Riding 1997 757 758 *Valvaeodinium hirsutum Bucefalo Palliani & Riding 1997 Miscellaneous microplankton: 759 760 Halosphaeropsis liassica Mädler 1968 Polygonium jurassicum Bucefalo Palliani et al. 1996 761 Pollen: 762 763 Araucariacites australis Cookson 1947 ex Couper 1958 Callialasporites dampieri (Balme 1957) Dev 1961 764 Callialasporites turbatus (Balme 1957) Schulz 1967 765 766 Cerebropollenites macroverrucosus (Thiergart 1949) Schulz 1967 Classopollis classoides (Pflug 1953) Pocock & Jansonius 1961 767 768 **Spores:** Ischyosporites variegatus (Couper 1958) Schulz 1967 769 Kekryphalospora distincta Fenton & Riding 1987 770

- Kraeuselisporites reissingeri (Harris 1957) Morbey 1975
 Lycopodiacidites rugulatus (Couper 1958) Schulz 1967
 Plicifera delicata (Bolchovitina 1953) Bolchovitina 1966
- 774

775

References

776

Azerêdo, A.C., Duarte, L.V., Henriques, M.H., Manuppella, G., 2003. Da dinâmica
 continental no Triássico aos mares do Jurássico Inferior e Médio. Cadernos de Geologia
 de Portugal, Instituto Geológico e Mineiro, Lisboa, 43 pp.

780

- Azerêdo, A.C., Duarte, L.V., Silva, R.L., 2014. Configuração sequencial em ciclos (2ª
- ordem) de fácies transgressivas-regressivas do Jurássico Inferior e Médio da Bacia
- Lusitânica (Portugal). Comunicações Geológicas 101 (Especial I), 383–386.

784

- 785 Baldanza, A., Bucefalo Palliani, R., Mattioli, E., 1995. Calcareous nannofossils and
- dinoflagellate cysts from Late Liassic of Hungary and comparison with central Italy
- assemblages. Paleopelagos 5, 161–174.

788

- Baranyi, V., Pálfy, J., Görög, A., Riding, J.B., Raucsik, B., 2016. Multiphase response
- of palynomorphs to the Toarcian Oceanic Anoxic Event (Early Jurassic) in the Réka
- 791 Valley section, Hungary. Review of Palaeobotany and Palynology 235, 51–70.

- 793 Barrón, E., Azerêdo, A.C., 2003. Palynology of the Jurassic (Callovian–Oxfordian)
- 794 succession from Pedrógão (Lusitanian Basin, Portugal). Palaeoecological and

- 795 palaeobiogeographical aspects. Neues Jahrbuch für Geologie und Paläontologie
- 796 Abhandlungen 227, 259–286.

797

- 798 Barrón, E., Comas-Rengifo, M.J., Duarte, L.V., 2013. Palynomorph succession of the
- 799 Upper Pliensbachian-Lower Toarcian of the Peniche section (Portugal). Comunicações
- 800 Geológicas 100 (Especial I), 55–61.

801

- Bomfleur, B., Schöner, R., Schneider, J.W., Viereck, L., Kerp, H., McKellar, J.L., 2014.
- From the Transantarctic Basin to the Ferrar Large Igneous Province: New
- palynostratigraphic age constraints for Triassic–Jurassic sedimentation
- and magmatism in East Antarctica. Review of Palaeobotany and Palynology 207, 18–
- 806 37.

807

- Boussaha, M., Pittet, B., Mattioli, E., Duarte, L.V., 2014. Spatial characterization of the
- late Sinemurian (Early Jurassic) palaeoenvironments in the Lusitanian Basin.
- Palaeogeography, Palaeoclimatology, Palaeoecology 409, 320–339.

811

- Brittain, J.M., Higgs, K.T., Riding, J.B., 2010. The palynology of the Pabay Shale
- Formation (Lower Jurassic) of SW Raasay, northern Scotland. Scottish Journal of
- 814 Geology 46, 67–75.

815

- 816 Bucefalo Palliani, R., Riding, J.B., 1997a. Lower Toarcian palynostratigraphy of
- Pozzale, central Italy. Palynology 21, 91–103.

Bucefalo Palliani, R., Riding, J.B., 1997b. The influence of palaeoenvironmental 819 820 change on dinoflagellate cyst distribution. An example from the Lower and Middle Jurassic of Quercy, southwest France. Bulletin des Centres de Recherches Exploration 821 822 Production Elf-Aquitaine 21, 107–123. 823 824 Bucefalo Palliani, R., Riding, J.B., 1997c. Umbriadinium mediterraneense gen. et sp. 825 nov. and Valvaeodinium hirsutum sp. nov.: two dinoflagellate cysts from the Lower 826 Jurassic of the Tethyan Realm. Palynology 21, 197–206. 827 Bucefalo Palliani, R., Riding, J.B., Torricelli, S., 1997a. The dinoflagellate cyst 828 Mendicodinium Morgenroth, 1970, emend. from the lower Toarcian (Jurassic) of central 829 Italy. Review of Palaeobotany and Palynology 96, 99–111. 830 831 Bucefalo Palliani, R., Riding, J.B., Torricelli, S., 1997b. The dinoflagellate cyst 832 833 Luehndea Morgenroth, 1970, emend. from the upper Pliensbachian (Lower Jurassic) of 834 Hungary. Review of Palaeobotany and Palynology 96, 113–120. 835 Bucefalo Palliani, R., Riding, J.B., 1999a. Early Jurassic (Pliensbachian–Toarcian) 836 dinoflagellate migrations and cyst paleoecology in the Boreal and Tethyan realms. 837 838 Micropaleontology 45, 201–214. 839 Bucefalo Palliani, R., Riding, J.B., 1999b. Relationships between the early Toarcian 840 anoxic event and organic-walled phytoplankton in central Italy. Marine 841

843

842

Micropaleontology 37, 101–116.

Bucefalo Palliani, R., Riding, J.B., 2000. A palynological investigation of the Lower

and lowermost Middle Jurassic strata (Sinemurian to Aalenian) from North Yorkshire,

UK. Proceedings of the Yorkshire Geological Society 53, 1–16.

847

Bucefalo Palliani, R., Mattioli, E., Riding, J.B., 2002. The response of marine

phytoplankton and sedimentary organic matter to the early Toarcian (Lower Jurassic)

oceanic anoxic event in northern England. Marine Micropaleontology 46, 223–245.

851

849

850

Bucefalo Palliani, R., Riding, J.B., 2003. Biostratigraphy, provincialism and evolution

of European Early Jurassic (Pliensbachian to early Toarcian) dinoflagellate cysts.

854 Palynology 27, 179–214.

855

Butler, N., Charnock, M.A., Hager, K.O., Watkins, C.A., 2005. The Ravenscar Group: a

coeval analogue for the Middle Jurassic reservoirs of the North Sea and offshore Mid-

Norway, in: Powell, A.J., Riding, J.B. (Eds.), Recent Developments in Applied

Biostratigraphy. The Micropalaeontological Society, Special Publications. The

Geological Society, London, U.K., pp. 43–53.

861

863

859

Cabral, M.C., Colin, J.P., Azerêdo, A.C., Silva, R.L., Duarte, L.V., 2015. Brackish and

marine ostracode assemblages from the Sinemurian of western Portugal, with

descriptions of new species. Micropaleontology 61 (1-2), 3–24.

865

866 Cabral, M.C., Lord, A., Boomer, I., Loureiro, I., Malz, H., 2014. *Tanycithere* new genus

and its significance for Jurassic ostracoda diversity. Journal of Palaeontology 88 (3),

868 519–530.

- 870 Comas-Rengifo, M.J., Duarte, L.V., Felix, F.F., Goy, A., Paredes, R., Silva, R. L.
- 871 (2016). Amaltheidae e Hildoceratidae (ammonitina) del Pliensbachiense Superior
- 872 (Cronozona Spinatum) en las cuencas septentrionales de la Península Ibérica, in:
- Meléndez, G., Núñez, A., Tomás, M. (Eds.), Actas de las XXXII Jornadas de la
- 874 Sociedad Española de Paleontología. Cuadernos del Museo Geominero nº 20. Instituto
- Geológico y Minero de España, Madrid, pp. 47-52.

876

- 877 Correia, V.F., Riding, J.B., Fernandes, P., Duarte, L.V., Pereira, Z. 2017a. The
- palynology of the lower and middle Toarcian (Lower Jurassic) in the northern
- Lusitanian Basin, western Portugal. Review of Palaeobotany and Palynology 237, 75–
- 880 95.

881

- 882 Correia, V.F., Riding, J.B., Fernandes, P., Duarte, L.V., Pereira, Z. 2017b. The
- palynological response to the Toarcian Oceanic Anoxic Event (Early Jurassic) at
- Peniche, Lusitanian Basin, western Portugal. Marine Micropaleontology, in review.

885

- Davey, R.J., Riley, L.A. 1978. Late and Middle Jurassic dinoflagellate cysts, in: Thusu,
- 887 B. (Ed.), Distribution of biostratigraphically dfiagnostic dinoflagellate cysts and
- miospores from the northwest European continental shelf and adjacent areas.
- Continental Shelf Institute Publication 100, pp. 51–45.

890

- Davies, E.H., 1985. The miospore and dinoflagellate cyst Oppel-Zonation of the Lias of
- 892 Portugal. Palynology 9, 105–132.

Duarte, L.V., 1995. O Toarciano da Bacia Lusitaniana. Estratigrafia e evolução sedimentogénica. Ph.D. thesis, Universidade de Coimbra, Portugal (unpublished), 349 pp.

897

898 Duarte, L.V., 1997. Facies analysis and sequential evolution of the Toarcian-Lower

Aalenian series in the Lusitanian Basin (Portugal). Comunicações do Instituto

Geológico e Mineiro 83, 65–94.

901

899

900

Duarte, L.V., 2007. Lithostratigraphy, sequence stratigraphy and depositional setting of

the Pliensbachian and Toarcian series in the Lusitanian Basin, Portugal, in: Rocha, R.B.

904 (Ed.), The Peniche section (Portugal). Contributions to the definition of the Toarcian

905 GSSP. International Subcommission on Jurassic Stratigraphy, ISBN 978-972-8893-14-

906 9, pp. 17–23.

907

908

909

910

Duarte, L.V., Krautter, M., Soares, A.F., 2001. Bioconstructions à spongiaires siliceux

dans le Lias terminal du Bassin Lusitanien (Portugal): stratigraphie, sédimentologie et

signification paléogéographique. Bulletin Société Géologique de France 172, 637–646.

911

913

912 Duarte, L.V., Soares, A.F., 2002. Litostratigrafia das séries margo-calcárias do Jurássico

inferior da Bacia Lusitânica (Portugal). Comunicações do Instituto Geológico e Mineiro

914 89, 135–154.

915

Duarte, L.V., Perilli, N., Dino, R., Rodrigues, R., Paredes, R., 2004. Lower to Middle

Toarcian from the Coimbra region (Lusitanian Basin, Portugal): sequence stratigraphy,

- calcareous nannofossils and stable-isotope evolution. Rivista Italiana di Paleontologia e
- 919 Stratigrafia 100, 115–127.

- Duarte, L.V., Oliveira, L.C., Rodrigues, R., 2007. Carbon isotopes as a sequence
- 922 stratigraphic tool: examples from the Lower and Middle Toarcian marly limestones of
- 923 Portugal. Boletín Geológico y Minero 118, 3–17.

924

- Duarte, L.V., Silva, R.L., Oliveira, L.C.V., Comas-Rengifo, M.J., Silva, F., 2010.
- 926 Organic-rich facies in the Sinemurian and Pliensbachian of the Lusitanian Basin,
- Portugal: total organic carbon distribution and relation to transgressive–regressive facies
- 928 cycles. Geologica Acta 8, 325–340.

929

- Duarte, L.V., Silva, R.L., Mendonça Filho, J.G., Poças Ribeiro, N., Chagas, R.B.A.,
- 2012. High resolution stratigraphy, palynofacies and source rock potential of the Água
- de Madeiros Formation (Lower Jurassic), Lusitanian Basin, Portugal. Journal of
- 933 Petroleum Geology 35 (2), 105–126.

934

- Duarte, L.V., Comas-Rengifo, M.J., Silva, R.L., Paredes, R., Goy, A., 2014a. Carbon
- 936 isotope stratigraphy and ammonite biochronostratigraphy across the Sinemurian-
- 937 Pliensbachian boundary in the western Iberian margin. Bulletin of Geosciences 89, 719–
- 938 738.

- Duarte, L. V., Silva, R. L., Mendonça Filho, J. G., Azerêdo, A. C., Cabral, M. C.,
- Comas-Rengifo, M. J., Correia, G., Ferreira, R., Loureiro, I. M., Paredes, R., Pereira,
- A., Ribeiro, N. P., 2014b. Advances in the Stratigraphy and Geochemistry of the

- Organic-Rich Lower Jurassic Series of the Lusitanian Basin (Portugal), in: Rocha, R.B.,
- Pais, J., Kullberg, J.C., Finney, S. (Eds.), STRATI 2013. Springer International
- 945 Publishing, pp. 841 846., doi: 10.1007/978-3-319-04364-7 158.

- Duarte, L.V, Silva, R.L., Félix, F., Comas-Rengifo. M.J., Rocha, R.B., Mattioli, E.,
- Paredes, R., Mendonça Filho, J. G., Cabral, M.C., 2017. The Jurassic of the Peniche
- Peninsula (Portugal): scientific, educational and science popularization relevance.
- 950 Revista de la Sociedad Geológica de España 30(1), in press.

951

- 952 Elmi, S., 2006. Pliensbachian/Toarcian boundary: the proposed GSSP of Peniche
- 953 (Portugal). Volumina Jurassica 4, 5–16.

954

- Elmi, S., Rocha, R.B., Mouterde, R., 1988. Sediméntation pelagique et encroûtements
- 956 crytalgaires: les calcaires grumeleux du Carixien portugais. Ciências da Terra 9, 69–90.

957

- Elmi, S., Goy, A., Mouterde, R., Rivas, P., Rocha, R., 1989. Correlaciones
- 959 bioestratigráficas en el Toarciense de la Peninsula Iberica. Cuadernos de Geologia
- 960 Iberica 13, 265–277.

961

- 962 Feist-Burkhardt, S., 1990. Dinoflagellate cyst assemblages from the Hausen coreholes
- 963 (Aalenian to early Bajocian), southwest Germany. Bulletin des Centres de Recherches
- 964 Exploration-Production Elf-Aquitaine 14, 611–633.

- 966 Feist-Burkhardt, S., Wille, W., 1992. Jurassic palynology in southwest Germany state
- of the art. Cahiers de Micropaléontologie N.S. 7, 141–156.

- 969 Feist-Burkhardt, S., Pross, J., 2010. Dinoflagellate cyst biostratigraphy of the
- 970 Opalinuston Formation (Middle Jurassic) in the Aalenian type area in southwest
- 971 Germany and north Switzerland. Lethaia 43, 10–31.

- 973 Fenton, J.P.G., Riding, J.B., 1987. Kekryphalospora distincta gen. et sp. nov., a trilete
- spore from the Lower and Middle Jurassic of north-west Europe. Pollen et Spores 29,
- 975 427–434.

976

- 977 Ferreira, J., Mattioli, E., Pittet, B., Cachão, M., Spangenberg, J.E., 2015. Palaeoecological
- 978 insights on Toarcian and lower Aalenian calcareous nannofossils from the Lusitanian
- 979 Basin (Portugal). Palaeogeography, Palaeoclimatology, Palaeoecology, 436, 245–262.

980

- Helby, R., Morgan, R., Partridge, A.D., 1987. A palynological zonation of the
- Australian Mesozoic. Memoir of the Association of Australasian Palaeontologists 4, 1–
- 983 94.

984

- 985 Henriques, M.H., 1992. Biostratigrafia e paleontologia (Ammonoidea) do Aaleniano em
- 986 Portugal (Sector Setentrional da Bacia Lusitaniana). Ph.D. thesis, Universidade de
- 987 Coimbra, Portugal (unpublished), 301 pp.

- Henriques, M.H., 1995. Les faunes d'ammonites de l'Aalénien Portugais: composition
- 990 et implications paléobiogéographiques, in: Gayet, M., Courtinat, B. (Eds.), First
- 991 European Palaeontological Congress, Lyon, 1993. Geobios, Mémoire Spécial 18, 229–
- 992 235.

- Henriques, M.H., Canales, M.L., 2013. Ammonite-benthic foraminifera turnovers
- 995 across the Lower-Middle Jurassic transition in the Lusitanian Basin (Portugal). Geobios
- 996 46, 395–408.

- 998 Henriques, M.H., Canales, M.L., Figueiredo, V., García-Frank, A., Hernández, L.,
- 999 Silva, S., Ureta, S., 2014. Biostratigrafia integrada (ammonoidea, foraminiferida) da
- passagem Jurássico Inferior-Médio na Península Ibérica: resultados preliminares.
- 1001 Comunicações Geológicas 101 (Especial I), 443–446.

1002

- Hesselbo, S.P., Jenkyns, H.C., Duarte, L.V., Oliveira, L.C.V., 2007. Carbon-isotope
- record of the Early Jurassic (Toarcian) Oceanic Anoxic Event from fossil wood and
- marine carbonate (Lusitanian Basin, Portugal). Earth and Planetary Science Letters 253,
- 1006 455–470.

1007

- Jenkyns, H.C., 2010. Geochemistry of oceanic anoxic events, Geochemistry Geophysics
- 1009 Geosystems 11, Q03004, doi:10.1029/2009GC002788.

1010

- Koppelhus, E.B., Nielsen, L.H., 1994. Palynostratigraphy and palaeoenvironments of
- the Lower to Middle Jurassic Bagå Formation of Bornholm, Denmark. Palynology 18,
- 1013 139–194.

- Kullberg, J.C., Rocha, R.B., Soares, A.F., Rey, J., Terrinha, P., Azerêdo, A.C.,
- 1016 Callapez, P., Duarte, L.V., Kullberg, M.C., Martins, L., Miranda, J.R., Alves, C., Mata,

- J., Madeira, J., Mateus, O., Moreira, M., Nogueira, C.R., 2013. A Bacia Lusitaniana:
- estratigrafia, paleogeografia e tectónica. Geologia de Portugal 2, 195–347.

- Mattioli, E., Plancq, J., Boussaha, M., Duarte, L.V., Pittet, B., 2013. Calcareous
- nannofossil biostratigraphy: new data from the Lower Jurassic of the Lusitanian Basin.
- 1022 Comunicações Geológicas 100 (Especial I), 69–76.

1023

- Mohr, B.A.R., Schmidt, D., 1988. The Oxfordian/Kimmeridgian boundary in the region
- of Porto de Mós (central Portugal): stratigraphy, facies and palynology. Neues Jahrbuch
- für Geologie und Paläontologie Abhandlungen 176, 245–267.

1027

- Morbey, S.J., 1978. Late Triassic and Early Jurassic subsurface palynostratigraphy in
- northwestern Europe. Palinologia número extraordinario 1, 355–365.

1030

- Morgenroth, P., 1970. Dinoflagellate cysts from the Lias Delta of Lühnde/Germany.
- Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 136, 345–359.

1033

- Mouterde, R., Ruget, C., Moitinho de Almeida, F., 1964-1965. Coupe du Lias au Sud de
- 1035 Condeixa. Comunicações dos Serviços Geológicas de Portugal 48, 61–91.

1036

- Mouterde, R., Rocha, R.B., Ruget, C., 1978. Stratigraphie et faune du Lias et de la base
- du Dogger au Nord du Mondego (Quaios et Brenha). Comunicações dos Serviços
- 1039 Geológicas de Portugal 63, 83–103.

- Mouterde, R., Rocha, R.B., Ruget, C., Tintan, H., 1979. Faciès, biostratigraphie et
- paléogéographie du Jurassique portugais. Ciências da Terra, Universidade Nova de
- 1043 Lisboa 5, 29–52.

- Oliveira, L.C.V., Duarte, L.V., Lemos, V.B., Comas-Rengifo, M.J., Perilli, N., 2007a.
- Bioestratigrafia de nanofósseis calcários e correlação com as zonas de amonites do
- 1047 Pliensbaquiano-Toarciano basal (Jurássico inferior) de Peniche (Bacia Lusitânica,
- 1048 Portugal), in: Carvalho, I.S., Cassab, R.C.T., Schwanke, C., Carvalho, M.A., Fernandes,
- 1049 A.C.S., Rodrigues, M.A.C., Carvalho, M.S.S., Arai, M., Oliveira, M.E.Q. (Eds.),
- Paleontologia: Cenários de Vida. Proceedings of XIX Congresso Brasileiro de
- Paleontologia, Búzios (Brazil), Editora Interciência, pp. 411–420.

1052

- Oliveira, L.C.V., Dino, R., Duarte, L.V., Perilli, N., 2007b. Calcareous nannofossils and
- palynomorphs from Pliensbachian-Toarcian boundary in Lusitanian Basin, Portugal.
- 1055 Revista Brasileira de Paleontologia 10, 5–16.

1056

- Paredes, R., Comas-Rengifo, M.J., Duarte, L.V., 2016. Passagem Pliensbaquiano-
- 1058 Toarciano: a diversidade de macroinvertebrados antes da extinção, in: Duarte, L.V.,
- Sêco, S. (Eds.), "O Jurássico da região de Penela: novos avanços no conhecimento
- 1060 estratigráfico", pp. 30-34. ISBN (digital): 978-989-97997-3-8.

1061

- Perilli, N., Duarte, L.V., 2006. Toarcian nannobiohorizons from Lusitanian Basin
- 1063 (Portugal) and their calibration against ammonite zones. Revista Italiana di
- 1064 Paleontologia e Stratigrafia 112, 417–434.

- 1066 Phelps, M., 1985. A refined ammonite biostratigraphy for the Middle and Upper
- 1067 Carixian (Ibex and Davoei zones, Lower Jurassic) in North-West Europe and
- stratigraphical details of the Carixian–Domerian boundary. Geobios 18, 321–362.

- 1070 Pinto, S., 2008. Ostracodos do Toarciano da Bacia Lusitânica (Peniche e Alvaiázare) -
- sistemática, aspectos biosestratigráficos, paleoecológicos e palaebiogeográficos. M.Sc.
- thesis, Universidade de Lisboa, Portugal (unpublished), 174 p.

1073

- Pittet, B., Suan, G., Lenoir, F., Duarte, L.V., Mattioli, E., 2014. Carbon isotope
- evidence for sedimentary discontinuities in the Lower Toarcian of the Lusitanian Basin
- 1076 (Portugal): Sea level change at the onset of the Oceanic Anoxic Event. Sedimentary
- 1077 Geology 303, 1–14.

1078

- Plancq, J., Mattioli, E., Pittet, B., Baudin, F., Duarte, L.V., Boussaha, M., Grossi, V.,
- 1080 2016. A calcareous nannofossil and organic geochemical study of marine
- palaeoenvironmental changes across the Sinemurian/Pliensbachian (early Jurassic, 191
- Ma) in Portugal. Palaeogeography, Palaeoclimatology, Palaeoecology 449, 1–12.

1083

- Poulsen, N.E., Riding, J.B., 2003. The Jurassic dinoflagellate cyst zonation of
- Subboreal Northwest Europe. Geological Survey of Denmark and Greenland Bulletin 1,
- 1086 115–144.

- Poças Ribeiro, N., Mendonça Filho, J.G., Duarte, L.V., Silva, R.L., Mendonça, J.O.,
- Silva, T.F., 2013. Palynofacies and organic geochemistry of the Sinemurian carbonate

deposits in the western Lusitanian Basin (Portugal): Coimbra and Água de Madeiros 1090 1091 formations. International Journal of Coal Geology 111, 37–52. 1092 1093 Prauss, M., 1989. Dinozysten-stratigraphie und Palynofazies im Oberen Lias und Dogger von NW-Deutschland. Palaeontographica Abteilung B 214, 1–124. 1094 1095 1096 Quattrocchio, M.E., Volkheimer, W., Borromei, A.M., Martínez, M.A., 2011. Changes of the palynobiotas in the Mesozoic and Cenozoic of Patagonia: a review. Biological 1097 Journal of the Linnean Society 103, 380-396. 1098 1099 Reggiani, L., Mattioli, E., Pittet, B., Duarte, L.V., Veiga de Oliveira, L.C., Comas-1100 1101 Rengifo, M.J., 2010. Pliensbachian (Early Jurassic) calcareous nannofossils from the 1102 Peniche section (Lusitanian Basin, Portugal): a clue for palaeoenvironmental reconstructions. Marine Micropaleontology 75 (1–4), 1–16. 1103 1104 1105 Riding, J.B., 1984a. A palynological investigation of Toarcian to early Aalenian strata from the Blea Wyke area, Ravenscar, North Yorkshire. Proceedings of the Yorkshire 1106 Geological Society 46, 109–122. 1107 1108 Riding, J.B., 1984b. Dinoflagellate cyst range-top biostratigraphy of the uppermost 1109 Triassic to lowermost Cretaceous of northwest Europe. Palynology 8, 195–210. 1110 1111 Riding, J.B., 1987. Dinoflagellate cyst stratigraphy of the Nettleton Bottom Borehole 1112 (Jurassic: Hettangian to Kimmeridgian), Lincolnshire, England. Proceedings of the 1113 Yorkshire Geological Society 46, 231–266. 1114

- Riding, J.B., Walton, W., Shaw, D., 1991. Toarcian to Bathonian (Jurassic) palynology
- of the Inner Hebrides, northwest Scotland. Palynology 15, 115–179.

- Riding, J.B., Thomas, J.E., 1992. Dinoflagellate cysts of the Jurassic System, in:
- Powell, A.J. (Ed.), A stratigraphic index of dinoflagellate cysts. British
- Micropalaeontological Society Publications Series. Chapman and Hall, London, pp. 7–
- 1122 97.
- Riding, J.B., Hubbard, R.N.L.B., 1999. Jurassic (Toarcian to Kimmeridgian)
- dinoflagellate cysts and paleoclimates. Palynology 23, 15–30.

1125

- Riding, J.B., Fedorova, V.A., Ilyina, V.I., 1999. Jurassic and lowermost Cretaceous
- dinoflagellate cysts biostratigraphy of the Russian Platform and north Siberia, Russia.
- American Association of Stratigraphic Palynologists Contributions Series 36, 179 pp.

1129

- Riding, J.B., Mantle, D.J., Backhouse, J., 2010. A review of the chronostratigraphical
- ages of Middle to Late Jurassic dinoflagellate cyst biozones of the North West Shelf of
- Australia. Review of Palaeobotany and Palynology 162, 543–575.

1133

- Riding, J.B., Leng, M.J., Kender, S., Hesselbo, S.P., Feist-Burkhardt, S., 2013. Isotopic
- and palynological evidence for a new Early Jurassic environmental perturbation.
- Palaeogeography, Palaeoclimatology, Palaeoecology 374, 16–27.

- 1138 Rita, P., Reolid, M., Duarte, L.V., 2016. Benthic foraminiferal assemblages record
- major environmental perturbations during the Late Pliensbachian-Early Toarcian

- interval in the Peniche GSSP, Portugal. Palaeogeography, Palaeoclimatology,
- 1141 Palaeoecology 454, 267–281.

- Rocha, R.B., Mattioli, E., Duarte, L.V., Pittet, B., Elmi, S., Mouterde, R., Cabral, M.C.,
- 1144 Comas-Rengifo, M.J., Gómez, J.J., Goy, A., Hesselbo, S.P., Jenkyns, H.C., Littler, K.,
- Mailliot, S., Oliveira, L.C.V., Osete, M.L., Perilli, N., Pinto, S., Ruget, C., Suan, G.,
- 2016. Toarcian Stage of Lower Jurassic defined by the Global Boundary Stratotype
- Section and Point (GSSP) at the Peniche section (Portugal). Episodes 39, 460–481.

1148

- Silva, F., Duarte, L.V., Oliveira, L.C.V., Comas-Rengifo, M.J., Rodrigues, R., 2006.
- 1150 Vale das Fontes Formation in the northern sector of the Lusitanian Basin (Portugal):
- 1151 Characterization and preliminary evaluation of the Total Organic Carbon. Actas do VII
- 1152 Congresso Nacional de Geologia, Évora, 669–672.

1153

- Silva, R.L., Duarte, L.V., Comas-Rengifo, M.J., Mendonça Filho, J.G., Azerêdo, A.C.,
- 2011. Update of the carbon and oxygen isotopic records of the Early–Late
- Pliensbachian (Early Jurassic, ~187 Ma): insights from the organic-rich hemipelagic
- series of the Lusitanian Basin (Portugal). Chemical Geology 283, 177–184.

1158

- Silva, R.L., Duarte, L. V., 2015. Organic matter production and preservation in the
- Lusitanian Basin (Portugal) and Pliensbachian climatic hot snaps. Global and Planetary
- 1161 Change 131, 24-34.

- Silva, R.L., Duarte, L.V., Comas-Rengifo, M.J., 2015. Carbon isotope
- chemostratigraphy of Lower Jurassic carbonate deposits, Lusitanian Basin (Portugal):

- Implications and limitations to the application in sequence stratigraphic studies, in:
- 1166 Ramkumar, M. (Ed.), Chemostratigraphy: concepts, techniques, and applications.
- 1167 Elsevier, pp. 341-371.

- Smelror, M., Århus, N., Meléndez, G.L.M., Lardies, M.D., 1991. A reconnaissance
- study of Bathonian to Oxfordian (Jurassic) dinoflagellates and acritarchs from the
- Zaragoza region (NE Spain) and Figueira da Foz (Portugal). Revista Española de
- 1172 Micropaleontología 23, 47–82.

1173

- Soares, A.F., Rocha, R.B., Elmi, S., Henriques, M.H., Mouterde, R., Almeras, Y.,
- Ruget, C., Marques, J., Duarte, L.V., Carapito, C., Kullberg, J.C., 1993. Le sous-bassin
- nord lusitanien (Portugal) du Trias au Jurassique moyen: histoire d'un "rift avorté".
- 1177 Comptes Rendus de l'Académie des Sciences de Paris 317, 1659–1666.

1178

- 1179 Srivastava, S.K., 1987. Jurassic spore-pollen assemblages from Normandy (France) and
- 1180 Germany. Geobios 20, 5–79.

1181

- Srivastava, S.K., 2011. Spore-pollen biostratigraphy of the English Jurassic.
- Palaeontographica Abteilung B 285, 113–201.

1184

- Suan, G., Mattioli, E., Pittet, B., Mailliot, S., Lécuyer, C., 2008. Evidence for major
- environmental perturbation prior to and during the Toarcian (Early Jurassic) oceanic
- anoxic event from the Lusitanian Basin, Portugal. Paleoceanography 23, PA1202,
- 1188 http://dx.doi.org/10.1029/2007PA001459.

- Suan, G., Mattioli, E., Pittet, B., Lécuyer, C., Suchéras-Marx, B., Duarte, L.V.,
- Philippe, M., Reggiani, L., Martineau, F., 2010. Secular environmental precursors to
- Early Toarcian (Jurassic) extreme climate changes. Earth Planetary Science Letters 290,
- 1193 448–458.

- 1195 Terrinha, P.A.G., Ribeiro, C., Kullberg, J.C., Lopes, C., Rocha, R.B., Ribeiro, A., 2002.
- 1196 Compressive episodes and faunal isolation during rifting in the Algarve and Lusitanian
- Basins, southwest Iberia. Journal of Geology 110, 101–113.

1198

- Valensi, L., 1947. Note préliminaire à une étude des microfossiles des silex jurassiques
- de la région de Poitiers. Comptes rendus hebdomadaires des séances de l'Académie des
- 1201 sciences 225, 816–818.

1202

- van de Schootbrugge, B., Bailey, T.R., Rosenthal, Y., Katz, M.E., Wright, J.D., Miller,
- 1204 K.G., Feist-Burkhardt, S., Falkowski, P.G., 2005. Early Jurassic climate change and the
- radiation of organic-walled phytoplankton in the Tethys Ocean. Paleobiology 31, 73–
- 1206 97.

1207

- 1208 Van Erve, A., Mohr, B., 1988. Palynological investigations of the Late Jurassic
- microflora from the vertebrate locality Guimarota coal mine (Leiria, Central Portugal).
- Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 4, 256–262.

1211

- Weiss, M., 1989. Die Sporenfloren aus Rät und Jura Südwest-Deutschlands und ihre
- Beziehung zur Ammoniten-Stratigraphie. Palaeontographica Abteilung B 215, 1–168.

- Wiggan, N.J., Riding, J.B., Franz, M., 2017. Resolving the Middle Jurassic
- dinoflagellate radiation: The palynology of the Bajocian of Swabia, southwest
- Germany. Review of Palaeobotany and Palynology 238, 55–87.

- Williams, G.L., Fensome, R.A., MacRae, R.A., 2017. The Lentin and Williams index of
- fossil dinoflagellates 2017 edition. American Association of Stratigraphic Palynologists,
- 1221 Contributions Series 48, 1097 p.

1222

- Wilson, R.C.L., Hiscott, R.N., Willis, M.G., Gradstein, F.M., 1989. The Lusitanian
- Basin of west-central Portugal: Mesozoic and Tertiary tectonic, stratigraphic and
- subsidence history. AAPG Memoir 46, 341–362.

1226

- Wood, G.D., Gabriel, A.M., Lawson, J.C., 1996. Palynological techniques processing
- and microscopy, in: Jansonius, J., McGregor, D.C., (Eds.), Palynology: Principles and
- 1229 Applications. American Association of Stratigraphic Palynologists Foundation, Dallas,
- 1230 1, pp. 29–50.

1231

- Woollam, R., Riding, J.B., 1983. Dinoflagellate cyst zonation of the English Jurassic.
- 1233 Institute of Geological Sciences Report 83/2, 42 pp.

1234

- Wright, V.P., Wilson, R.C.L., 1984. A carbonate sub-marine fan sequence from the
- Jurassic of Portugal. Journal of Sedimentary Petrology 54, 394-412.

- Ziaja, J., 2006. Lower Jurassic spores and pollen grains from Odrowaz, Mesozoic
- margin of the Holy Cross Mountains, Poland. Acta Palaeobotanica 46, 3–83.

Display material captions:

Fig. 1. The location and geological setting of the Lusitanian Basin of western Portugal, adapted from Duarte et al. (2010). The six successions studied herein are indicated by numbers 1 to 6. Successions 1 and 2 are the sections at Maria Pares (40° 3′ 10″N; 8° 27′ 25″W) and Fonte Coberta (40° 3′ 44″N; 8° 27′ 31″W) respectively; both are close to Rabaçal village. Sections 3 and 4 are Vale das Fontes (40° 12′ 10″N; 8° 51′ 31″W) and Brenha (40° 11′ 49″N; 8° 49′ 55″W) respectively; both are located north of Figueira da Foz. The São Pedro de Moel composite section (Polvoeira section: 39° 43′ 18″N, 9° 02′ 56″W) is near the village of São Pedro de Moel and is the section number 5. The Peniche section (39° 22′ 15″N; 9° 23′ 07″W) is number 6, close to the town of Peniche.

Fig. 2. The ammonite biostratigraphy and lithostratigraphy of the Lower Jurassic (upper Sinemurian to upper Toarcian) of the eastern and western sectors of the Lusitanian Basin, central-western Portugal, based on Duarte and Soares (2002), Duarte (2007) and Duarte et al. (2014a, 2014b). The light grey shading indicates the lithostratigraphical units studied in the present work, and the dark grey shading indicates material studied by Correia et al. (2017a,b).

Fig. 3. The stratigraphical log of the upper Sinemurian succession in the São Pedro de

Moel composite section (= the Polvoeira section of Duarte et al. (2012, 2014a)] adapted

from Duarte et al. (2014a), with the positions of the palynomorph samples PM1 to

PM12 indicated. No dinoflagellate cyst taxa were identified throughout this succession.

Fig. 4. The lithological log of the lower and upper Pliensbachian succession in the composite section at Brenha, adapted from Silva et al. (2006), with the positions of the palynomorph samples Br1 to Br20 indicated. The uppermost part of this section, the Lemede Formation (samples BrLem1 and BrLem2), was not described by Silva et al. (2006). The ammonite biozones are based on, and modified from, Mouterde et al. (1978) and Elmi et al. (1988). The dinoflagellate cyst occurrences are indicated by black dots.

Fig. 5. The stratigraphical log of the lower and upper Pliensbachian succession in the Peniche section, adapted from Phelps (1985), Duarte et al. (2010), Silva et al. (2011), Bárron et al. (2013) and Comas-Rengifo et al. (2016), with the positions of the palynomorph samples P-34 to P-8 indicated. The dinoflagellate cyst occurrences are indicated by black dots.

Fig. 6. A simplified lithological log of the upper Pliensbachian succession in the Fonte Coberta section. The positions of the palynomorph samples FC1 to FC5 are indicated. The ammonite biozones are based on, and modified from, Mouterde et al. (1964-1965) and Paredes et al. (2016). The dinoflagellate cyst occurrences are indicated by black dots.

Figs. 7. The lithological log of the middle Toarcian part of the São Gião Formation in the Maria Pares section, adapted from Duarte (1995), with the positions of the palynomorph samples PZ55 to PZ70 indicated. The ammonite biozones are based on, and modified from, Mouterde et al. (1964-1965) and Elmi et al. (1989). Standard bed

numbers 52–59b are given immediately to the left of the lithological ornament. The dinoflagellate cyst occurrences are indicated by black dots.

Fig. 8. The lithological log of the upper Toarcian part of the São Gião Formation in the Maria Pares section, adapted from Duarte (1995), with the positions of the palynomorph samples PZ71 to PZ81 indicated. The ammonite biozones are based on, and modified from, Mouterde et al. (1964-1965) and Elmi et al. (1989). MMLSB = Marls and Marly Limestones with Sponge Bioconstructions member. Standard bed numbers 60–69S are given immediately to the left of the lithological ornament. The dinoflagellate cyst occurrences are indicated by black dots.

Fig. 9. The lithological log of the upper Toarcian Póvoa da Lomba Formation in the Maria Pares section, adapted from Duarte (1995), with the positions of the palynomorph samples PZ82 to PZ89 indicated. The ammonite biozones are based on, and modified from, Mouterde et al. (1964-1965), Elmi et al. (1989) and Henriques (1992). MMLB = Marls and Marly Limestones with Brachiopods member. Standard bed numbers 70B1–750 are given immediately to the left of the lithological ornament. The dinoflagellate cyst occurrences are indicated by black dots.

Fig. 10. Selected dinoflagellate cysts from the Pliensbachian and Toarcian strata of the Lusitanian Basin, west central Portugal. All the specimens are housed in the collections of LNEG (Portuguese Geological Survey), S. Mamede de Infesta, Portugal. The sample numbers, slide numbers and the England Finder coordinates are quoted; all the scale bars represent $20~\mu m$.

- 1314 1. Luehndea spinosa Morgenroth 1970. Fonte Coberta section, upper Pliensbachian
- 1315 (Emaciaticeras emaciatum ammonite Biozone), sample FC5, slide 1, L25/4. Ventral
- view, high focus.
- 1317 2. Luehndea spinosa Morgenroth 1970. Fonte Coberta section, upper Pliensbachian
- 1318 (Emaciaticeras emaciatum ammonite Biozone), sample FC3, slide 1, T32/1. Ventral
- view, high focus. Note the epicystal archaeopyle.
- 1320 3. Luehndea spinosa Morgenroth 1970. Peniche section, upper Pliensbachian
- 1321 (*Amaltheus margaritatus* ammonite Biozone), sample P-26, slide 1, M35/1.
- 1322 4. *Nannoceratopsis* sp. Peniche section, upper Pliensbachian (*Amaltheus*
- margaritatus ammonite Biozone), sample P-20, slide 1, T35/4. Left lateral view. Note
- the two antapical horns of almost equal length.
- 1325 5. *Nannoceratopsis gracilis* Alberti 1961. Brenha section, upper Pliensbachian
- 1326 (Amaltheus margaritatus-Emaciaticeras emaciatum ammonite biozones), sample
- BrLem1, slide 1, G34/1. Right lateral view. Note the dorsal horn, which is larger than
- the ventral horn.
- 1329 6. *Nannoceratopsis senex* van Helden 1977. Brenha section, upper Pliensbachian
- 1330 (Amaltheus margaritatus-Emaciaticeras emaciatum ammonite biozones), sample
- BrLem1, slide 1, K41/2. Left lateral view. Note the single (dorsal) antapical horn, the
- subpentagonal lateral outline and the somewhat asymmetrical shape.
- 1333 7. Nannoceratopsis senex van Helden 1977. Fonte Coberta section, upper
- Pliensbachian (*Emaciaticeras emaciatum* ammonite Biozone), sample FC3, slide 1,
- L31/4. Left lateral view. Note the dorsal antapical horn and the subpentagonal lateral
- 1336 outline.
- Nannoceratopsis senex van Helden 1977. Brenha section, upper Pliensbachian
- 1338 (Amaltheus margaritatus ammonite Biozone), sample Br14, slide 1, G49/3. Left lateral

- view. Note the single antapical horn and the symmetrical and very rounded outline; the cingular archaeopyle is visible in the top right of the specimen.
- 1341 9. *Nannoceratopsis senex* van Helden 1977. Peniche section, upper Pliensbachian
- 1342 (Amaltheus margaritatus ammonite Biozone), sample P-25, slide 1, O48/4. Right lateral
- view. Note the single antapical horn and the symmetrical lateral outline; the cingular
- archaeopyle is visible in the top left of the specimen.
- 1345 10. *Nannoceratopsis senex* van Helden 1977. Maria Pares section, upper Toarcian
- 1346 (Dumortieria meneghinii ammonite Biozone), sample PZ82, slide 1, P41/3. Left lateral
- view. Note the single antapical horn and the asymmetrical lateral outline.
- 1348 11. Nannoceratopsis ambonis Drugg 1978. Maria Pares section, upper Toarcian
- 1349 (Hammatoceras speciosum ammonite Biozone), sample PZ81, slide 1, U62/2. Left
- lateral view. Note the prominent dark sagittal rim.
- 1351 12. *Nannoceratopsis ambonis* Drugg 1978. Maria Pares section, upper Toarcian
- 1352 (Hammatoceras speciosum ammonite Biozone), sample PZ81, slide 1, X63/1. Right
- lateral view. Note the prominent dark sagittal rim.
- 1354
- 1355 Fig. 11. Selected dinoflagellate cysts from the Pliensbachian and Toarcian strata of the
- Lusitanian Basin, west central Portugal. All the specimens are housed in the collections
- of LNEG (Portuguese Geological Survey), S. Mamede de Infesta, Portugal. The sample
- numbers, slide numbers and the England Finder coordinates are quoted; all the scale
- bars represent 20 μm.
- 1360 1. Valvaeodinium sp. Maria Pares section, middle Toarcian (Hildoceras bifrons
- ammonite Biozone), sample PZ57, slide 1, Q27/3. Note the relatively sparse cover of
- short, capitate processes and the combination (apical/intercalary) archaeopyle.

- 1363 2. Dapsilidium? deflandrei (Valensi 1947) Lentin & Williams 1981. Maria Pares
- section, middle Toarcian (*Hildoceras bifrons* ammonite Biozone), sample PZ57, slide 1,
- 1365 R70/3. Note the covering of short distally-blunt processes.
- 1366 3. Sentusidinium sp. Maria Pares section, upper Toarcian (Hammatoceras bonarelli
- ammonite Biozone), sample PZ71, slide 1, M52/2. Note the apical archaeopyle with
- deep accessory archaeopyle sutures.
- 4, 5. Scriniocassis priscus (Gocht 1979) Below 1990. Maria Pares section, upper
- Toarcian (*Hammatoceras speciosum* ammonite Biozone), sample PZ77, slide 1, C32. 4
- ventral view, high focus. 5 ventral view, low focus illustrating the dorsal surface.
- Note the rounded, subhexagonal cyst outline and the infrareticulate wall sculpture which
- is coarser near the sutures. The distinctive, strongly curved sutures surrounding the
- sulcus are evident in 4. In 5, the two plate (2" and 3") precingular archaeopyle, the
- large, middorsal 4''' plate and the sutural crests are clearly visible.
- 1376 6. Scriniocassis priscus (Gocht 1979) Below 1990. Maria Pares section, upper
- Toarcian (*Hammatoceras speciosum* ammonite Biozone), sample PZ79, slide 1, W43/2.
- Dorsal view, high focus. Note the two plate precingular archaeopyle and the sulcus.
- 7. *Mendicodinium microscabratum* Bucefalo Palliani et al. 1997. Maria Pares
- section, upper Toarcian (Hammatoceras speciosum ammonite Biozone), sample PZ79,
- slide 1, G49/2. Ventral view; note the epicystal archaeopyle and the microscabrate
- autophragm.
- 1383 8. *Mendicodinium* sp. Maria Pares section, upper Toarcian (*Hammatoceras*
- speciosum ammonite Biozone), sample PZ80, slide 1, H47/2. Oblique left lateral view.
- 1385 9. *?Maturodinium inornatum* Morgenroth 1970. Maria Pares section, upper
- Toarcian (*Hammatoceras speciosum* ammonite Biozone), sample PZ77, slide 1, X52/1.
- Note the hypocystal tabulation and the faint cingulum.

- 1388 10. *Mancodinium semitabulatum* Morgenroth 1970. Maria Pares section, upper
- Toarcian (*Dumortieria meneghinii* ammonite Biozone), sample PZ82, slide 1, X54/3.
- Note the well-preserved, partly separated, small epicystal plates which are involved in
- the formation of the 'disintegration' type archaeopyle, in which all the epicystal plates
- are individually lost.
- 1393 11. *Mancodinium semitabulatum* Morgenroth 1970. Brenha section, upper
- Pliensbachian (*Amaltheus margaritatus* ammonite Biozone), sample Br15, slide 1,
- 1395 T47/4. Ventral view, high focus. Note the presence of some of the small, partially
- 1396 detatched precingular plates.

- 1397 12. Mancodinium semitabulatum Morgenroth 1970. Peniche section, lower
- 1398 Pliensbachian (*Prodactylioceras davoei* ammonite Biozone), sample P-29, slide 1,
- 1399 O37/1. Ventral view, median focus. Note the anterior sulcal plate (the sulcal tongue).
- 1401 Fig. 12. Selected aquatic and terrestrially-derived palynomorphs from the Sinemurian to
- Toarcian strata of the Lusitanian Basin, west central Portugal. All the specimens are
- housed in the collections of LNEG (Portuguese Geological Survey), S. Mamede de
- 1404 Infesta, Portugal. The sample numbers, slide numbers and the England Finder
- coordinates are quoted; all the scale bars represent 20 μ m.
- 1406 1. *Micrhystridium* sp. (acanthomorph acritarch). Peniche section, lower
- 1407 Pliensbachian (*Tragophylloceras ibex* ammonite Biozone), sample P-34, slide 1, R37.
- 1408 2. *Micrhystridium* sp. (acanthomorph acritarch). Maria Pares section, upper
- Toarcian (*Hammatoceras speciosum* ammonite Biozone), sample PZ79, slide 1, G46/1.
- 1410 3. Acanthomorph acritarch indeterminate. Maria Pares section, upper Toarcian
- 1411 (Dumortieria meneghinii ammonite Biozone), sample PZ82, slide 1, N30.

- 1412 4. Tasmanites sp. (prasinophyte). São Pedro de Moel section, upper Sinemurian
- 1413 (Oxynoticeras oxynotum ammonite Biozone), sample PM2, slide 1, S33.
- 1414 5. *Kekryphalospora distincta* Fenton & Riding 1987 (spore). Maria Pares section,
- upper Toarcian (*Dumortieria meneghinii* ammonite Biozone), sample PZ82, slide 2,
- 1416 C36/1.
- 1417 6. Classopollis classoides (Pflug 1953) Pocock & Jansonius 1961 (pollen). São
- 1418 Pedro de Moel section, upper Sinemurian (Oxynoticeras oxynotum ammonite Biozone),
- 1419 sample PM2, slide 1, Q36.
- 1420 7. *Cerebropollenites macroverrucosus* (Thiergart 1949) Schulz 1967 (pollen).
- Brenha section, upper Pliensbachian (Amaltheus margaritatus ammonite Biozone),
- 1422 sample Br14, slide 1, E54.
- 1423 8. Alisporites sp. (pollen). Brenha section, upper Pliensbachian (Amaltheus
- *margaritatus* ammonite Biozone), sample Br17, slide 1, V46/2.
- 1425 9. Exesipollenites sp. (pollen). Maria Pares section, middle Toarcian (Hildoceras
- bifrons ammonite Biozone), sample PZ57, slide 1, M35/2.
- 1427 10. Spheripollenites sp. (a tetrad of pollen grains). Maria Pares section, middle
- Toarcian (*Hildoceras bifrons* ammonite Biozone), sample PZ58, slide 1, L51/1.
- 1429 11. Callialasporites dampieri (Balme 1957) Dev 1961 (pollen). Maria Pares section,
- upper Toarcian (*Hammatoceras speciosum* ammonite Biozone), sample PZ81, slide 3,
- 1431 K29/4.
- 1432 12. Callialasporites turbatus (Balme 1957) Schulz 1967 (pollen). Maria Pares
- section, upper Toarcian (*Hammatoceras speciosum* ammonite Biozone), sample PZ81,
- 1434 slide 3, N54.

Fig. 13. A composite dinoflagellate cyst range chart for the Lower Jurassic of the Lusitanian Basin based on selected bioevents. The database supporting this chart are the those herein, and those in Correia et al. (2017a,b). The proposed dinoflagellate cyst biozonation is also depicted on the right, and is compared to two northwest European zonal schemes (Riding and Thomas, 1992 and Poulsen and Riding, 2003).

Online supplementary data:

Figures 1–5:

Supplementary Fig. 1. The relative abundances, expressed as percentages, of the five main palynomorph groups recorded from the upper Sinemurian (*Oxynoticeras oxynotum* and *Echioceras raricostatum* ammonite biozones) succession of the São Pedro de Moel section (samples PM1 to PM12). Note the overwhelming dominance of pollen.

Supplementary Fig. 2. The relative abundances, expressed as percentages, of the six main palynomorph groups recorded from the Pliensbachian (*Uptonia jamesoni* to *Emaciaticeras emaciatum* ammonite biozones) succession of the Brenha section (samples Br1 to Br20 and BrLem1 and BrLem2). Note the overall dominance of pollen.

Supplementary Fig. 3. The relative abundances, expressed as percentages, of the six main palynomorph groups recorded from the Pliensbachian (*Tragophylloceras ibex* to *Emaciaticeras emaciatum* ammonite biozones) succession of the Peniche section (samples P-34 to P-10). Note the overwhelming dominance of gymnosperm pollen.

Supplementary Fig. 4. The relative abundances, expressed as percentages, of the six main palynomorph groups recorded from the upper Pliensbachian (*Amaltheus margaritatus* and *Emaciaticeras emaciatum* ammonite biozones) succession of the Fonte Coberta section (samples FC1 to FC5). Note the dominance of dinoflagellate cysts and gymnosperm pollen.

Supplementary Fig. 5. The relative abundances, expressed as percentages, of the six main palynomorph groups recorded from the middle and upper Toarcian (*Hildoceras bifrons* to *Pleydellia aalensis* ammonite biozones) succession of the Maria Pares section (samples PZ56 to PZ88). Note the dominance of gymnosperm pollen and prasinophytes.

Tables 1–5:

Supplementary Table 1. The palynomorph assemblages from the upper Sinemurian succession of the São Pedro de Moel section (12 samples, numbered PM1 to PM12), subdivided into five groups. The numbers in the cells represent percentages of the specified taxon within the overall palynoflora; blank spaces indicate the absence of the respective form.

Supplementary Table 2. The palynomorph assemblages from the lower and upper Pliensbachian succession of the Brenha section (22 samples, numbered Br1 to Br20, BrLem1 and BrLem2), subdivided into six groups. The numbers in the cells represent percentages of the specified taxon within the overall palynoflora; blank spaces indicate the absence of the respective form. Sample Br6 proved palynologically barren.

Supplementary Table 3. The palynomorph assemblages from the lower Pliensbachian to lower Toarcian succession of the Peniche section (72 samples, numbered P-34 to P-1, and P1 to P38), subdivided into six groups. Note that the new material herein is represented by samples P-34 to P-8, and indicated by the light shading. Samples P-7 to P38 (no shading) were previously studied by Correia et al. (2017b). The numbers in the cells represent percentages of the specified taxon within the overall palynoflora; blank spaces indicate the absence of the respective form. The fourteen barren sample numbers are asterisked.

Supplementary Table 4. The palynomorph assemblages from the upper Pliensbachian succession of the Fonte Coberta section (five samples, numbered FC1 to FC5), subdivided into six groups. The numbers in the cells represent percentages of the specified taxon within the overall palynoflora; blank spaces indicate the absence of the respective form.

Supplementary Table 5. The palynomorph assemblages from the lower, middle and upper Toarcian succession of the Maria Pares section (89 samples, numbered PZ1 to PZ89), subdivided into six groups. Note that the new material herein is represented by samples PZ55 to PZ89, and indicated by the light shading. The underlying samples PZ1 to PZ54 (no shading) were previously studied by Correia et al. (2017a). The numbers in the cells represent percentages of the specified taxon within the overall palynoflora; blank spaces indicate the absence of the respective form. The five barren sample numbers are asterisked.