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HIGHLIGHTS  

 RUSLE and GIS methods were used to evaluate soil erosion and nutrient losses 

 Land-use in the catchment was changed from crop to kiwifruit orchards since 1990  

 The orchards significantly reduced soil erosion 

 More available phosphorus was lost from the orchards 

 

GRAPHICALABSTRACT 

 

 

Abstract: China has been facing rapid land-use changes since 1980s. For example, more and 



more arable lands have been converted to orchards in China’s Loess Plateau (640,000 km2) to 

produce high-value fruits, such as kiwifruits and apples. Over-fertilisation is very common in 

China’s orchards. It is urgent and timely to assess the effects of land-use change on soil 

erosion and nutrient losses to support sustainable land-use and environmental management in 

China. The case study area Yujia River Catchment, where many arable lands growing wheat 

and maize (1957–1989) have been converted to kiwifruit orchards (1990–2013), is a typical 

hilly region at the northern foot of the Qinling Mountains in Shaanxi. The Revised Universal 

Soil Loss Equation (RUSLE) model, geographical information systems (GIS) and Remote 

Sensing were adopted to evaluate the effects of land-use change on soil erosion and nutrient 

losses in the catchment. The results show that the total soil erosion in the Yujia River 

Catchment during 1957–2013 was 10.90 × 105 t, equivalent to 0.36 cm thick topsoil lost 

annually. This is in line with the sediments in the reservoir at the catchment outlet. In the 

study area, arable land is the major source of soil erosion and its erosion modulus is 9.6 times 

that of the orchards. The historical land-use change from arable land to orchards since 1990 

has reduced the soil-erosion intensity from a strong level to the medium one. The arable lands 

covering 28% of the catchment have contributed 81.3% of the total loss of organic matter and 

80.4% of the total nitrogen loss respectively. However, the loss of available phosphorus 

mainly occurred in the orchards, representing 66.7% of the total available phosphorus loss in 

the catchment. The soil-erosion modulus of the arable land is highly sensitive to the land 

slope. The results of this study are useful in planning the land-use change and in finding 

measures to reduce the risks of soil erosion and non-point-source pollution in the catchment, 

such as changing sloping lands to terraces, contour cropping, and comprehensive nutrient 

management.  

Keywords: soil erosion; RUSLE; GIS; land-use change; soil nutrient loss  

1. Introduction 

The increasingly limited land resource is vital for human survival. However, it is 

threatened by soil erosion, which causes both loss of the fertile topsoil and reduction of the 

soil quality. Moreover, the losses of nitrogen and phosphorus due to soil erosion can lead to 

agricultural non-point-source water pollution (Di Stefano et al., 2016; Hancock et al., 2015; 



Tanyas et al.,2015) and hence environmental problems e.g. eutrophication. As a whole, 

Earth’s land masses are experiencing considerable erosive soil losses. China is one of the 

countries suffering the most serious soil erosion in the world (Wang et al., 2012; MWR and 

NBS, 2013). Approximately 37.6% of the land in China is degraded by soil erosion (Gao et al., 

2016; Zhang et al., 2012). For example, the Loess Plateau (640,000 km2) in northwest China, 

which is among the world's highest soil erosion rates, generates about 1.6 billion tons of 

sediment clogging the Yellow River annually and posing a serious downstream flood risk 

(Gao et al., 2016; Zhang et al., 2012).  

The intensity of soil erosion and non-point-source water pollution are closely linked to 

the land-uses (Ferreiraa et al.,2015; Häring et al., 2014; Leh et al., 2013; Li et al., 2016). 

Many studies have shown that land-use or vegetation change have a big impact on soil 

erosion (Diyabalanage et al., 2017; Ganasri et al., 2015; Zhang et al., 2017). The structure of 

China’s agriculture has substantially changed in recent years. In particular, driven by the 

economic development and life-quality improvements in China, large areas of conventional 

cereal production have been converted to crops with a high economic value, such as kiwifruit 

and apple trees. (Qiu et al., 2010; Wei et al., 2015; Yu et al., 2014). Consequently, the overall 

agricultural activities have been dramatically changed in these regions. For example, fruit 

trees are associated with excessive nutrient and irrigation application in comparison with 

cereal crops. Meanwhile, over-fertilisation is very common in orchards with intensive 

management due to limited scientific knowledge and production-management expertise of the 

farmers in China (Cai et al., 2014; Ju et al., 2014; Zhu et al., 2013). Accordingly, China’s 

policy makers urgently need to understand how this land-use-change trend affects soil erosion 

and non-point-source water pollution. Therefore, it is timely to investigate the impacts of the 

land-use change on soil erosion and nutrient loss on sloping fields to better support 

sustainable management of water and soil conservation and agricultural non-point-source 

water pollution in China (Ferreiraa et al., 2015; Pang et al., 2012). 

The Yujia River Catchment, which is located at the southern edge of the Loess Plateau, is 

an ideal area to undertake this type of research. This catchment is a typical hilly area at the 

northern foot of the Qinling Mountains in Shaanxi Province. A large proportion of agricultural 

land in this catchment has been converted to kiwifruit orchards from arable land planting 



cereals since 1990 (Wei et al., 2015). This area has become the most important kiwifruit 

production base in China, accounting for 30% of the total kiwifruit cultivation area in the 

world and 60% of that in China (Sun and Fu, 2009). The study area is facing the problems of 

soil erosion and nutrient losses due to high nutrient input in orchards (Lu et al., 2016a, 2016b), 

high slope of the arable land, Loess soil cemented loosely, and concentrated rainfall between 

July and September (Wei et al., 2015). Therefore, there is a critical need to undertake this 

study to provide scientific supports to the local governments to make sound policies for 

sustainable management of agricultural land resources, soil erosion and water resources. 

Numerical modelling plays an important role in investigating soil erosion. It is a 

common practice to adopt existing soil-erosion models with varying degrees of complexity to 

understand and estimate soil erosion, using field data and derived data from remote sensing 

and Geographic Information Systems (GIS) (Fernandez et al., 2003;  Xu et al., 2009). The 

RUSLE model (Renard et al. 1997), which has been extensively tested in many soil erosion 

studies (e.g., Meusburger et al. 2010; Rulli et al. 2013; Xu et al. 2013), is useful in estimating 

soil erosion on an annual basis due to its parsimonious parameter requirement. In addition, 

parameters required by RUSLE are readily available or can be easily derived from other 

datasets. For example, slope can be calculated from digital elevation model (DEM) using GIS; 

and the land-use map can be derived from satellite images. In this study, RUSLE was adopted 

in conjunction with GIS and Remote Sensing to estimate the soil erosion and soil nutrient 

losses in 1957–1989 and 1990–2013 reflecting the typical agricultural land-use changes in the 

catchment. Our hypothesis was that land-use change from arable lands to kiwifruit orchards 

would reduce soil erosion and increase nutrient losses in the small catchment.  

2. Materials and Methods  

2.1. Study site 

The Yujia River Catchment (107°39′–108°37′E and 33°42′–34°14′N) is located in the 

Zhouzhi county, Shaanxi province (Fig. 1), covering an area of 4.12 km2. Lying at the 

northern foot of the Qinling Mountains, it is characterised by a V-shaped geomorphologic 

ravine with an altitude of 487–672 m (Fig. 1). In the catchment, the land surface tips 

northeastwards and has the lowest terrain located at the outlet of the catchment, where a 



reservoir was built in 1957 (Fig. 1).  

In the catchment, 85% of the arable lands have a slope range of 0–15°. With an annual 

mean temperature of 13.2°C, the area has an annually average rainfall of 713 mm 

(1957–2013), of which 61–84% occurred between July and September, indicating a typical 

temperate continental monsoon climate. The major soil types in the catchment can be divided 

into three soil groups ， i.e. Hapli-Ustic Argosols, Typic Usti-Alluvic Primosols and 

Loessi-Orthic Primosols (Chinese soil taxonomic classification), and five soil subgroups 

(Chinese Soil Taxonomy Research Group, 2001). 

Before 1989, the arable land, orchard, forest and unutilised land accounted for 65%, 14%, 

3.2% and 0.5% of the catchment respectively. However, their proportions were changed to 

28%, 39%, 7.1% and 1.5% from 1989 when China’s agricultural structure adjustments began. 

The main cereals in the catchment are winter wheat and summer corn, while kiwifruit is the 

leading fruit (occupying 84% of the orchards) due to its high economic value.  

 

Fig. 1 The location and digital elevation model (DEM) of the Yujia River Catchment, Shaanxi 

province, China. 

 

 

2.2. The Revised Universal Soil Loss Equation (RUSLE) model 

The RUSLE model was developed to predict long-term average annual soil loss (t ha−1 year−1) 



resulting from raindrop splash and runoff from specific field slopes in specified cropping and 

management systems (Wischmeier and Smith, 1978). RUSLE has been widely used to 

generate reliable estimate of soil erosion (Borrelli et al., 2017; Di Stefano et al., 2016; 

Haregeweyn et al., 2017; Leh et al., 2013; Panagos et al., 2015; SooHoo et al., 2017;  

Tanyas et al., 2015). It considers five factors affecting erosion, namely rainfall-runoff 

erosivity (R), (MJ mm ha−1 h−1 year−1), soil erodibility (K) (t ha−1 h ha−1 MJ−1 mm−1), 

topographic factor (the combination of the slope length and the steepness factor) (LS), crop 

management factor (C), and the factor of erosion-control practice (P). The RUSLE equation 

can be written as follow:  

𝐴 = 𝑅 × 𝐾 × 𝐿𝑆 × 𝐶 × 𝑃    (1) 

where A is soil annual loss (t ha−1 year−1). 

2.2.1. R–rainfall-runoff erosivity factor 

R is the major driving force of the soil erosion, reflecting the effect of raindrop impact 

and the amount and rate of runoff likely to be associated with rain. In the original USLE 

method, R was defined as a function of kinetic energy and 30-minute rainfall intensity derived 

from measurements of autographic recorders (Wischmeier and Smith, 1978). Since the time 

series of the rainfall intensity are not readily available, the method of Renard (Haregeweyn et 

al., 2013; Lehet al., 2013; Renard et al., 1997) was adopted in this study to calculate R using 

annual rainfall in 57 years (1957–2013):   

      (2) 

where, Pa is the annual rainfall (mm). 

 

2.2.2. K–Soil erodibility factor 

K values, which represent the effect of soil properties and soil profile characteristics on 

soil loss, reflect the rate of soil loss per rainfall-runoff erosivity (R). Normally K is estimated 

based on soil textures and organic matter. K can be calculated using equation below (Williams, 

1990):  
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where, SAN, SIL and CLA are the mass fractions (%) of sand, silt and clay respectively; SN1 

= 1 − SAN/100; and SOC is the mass fraction of soil organic carbon (%). The soil types (Fig. 

2), SAN, SIL, CLA and SOC were extracted from the soil database of the second national soil 

census of China.  

The value of K in the formula above is in the American unit of 

t·acre·hr·100-1·acre-1·feet-1·ton-1·inch-1 (Williams, 1990). Therefore, a constant value of 

0.1317 was used to transform K into the international unit of t·ha·hr·ha-1·MJ-1·mm-1.  

 

Fig. 2 The distribution of soil type in the Yujia River Catchment, Shaanxi province, China. Hapli-Ustic 

Argosols 1, Hapli-Ustic Argosols 2, Hapli-Ustic Argosols 3 are three unnamed subgroups in the soil 

family of Hapli-Ustic according to Chinese soil taxonomic classification. 

2.2.3. LS–Topographic factor 

LS represents the ratio of soil loss on a given slope length and steepness to soil loss from 
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a slope that has a length of 22.1 m and a steepness of 9% (Renard et al., 1997). The slope 

length (L) and slope steepness (S) were calculated using DEM (1m ×1m) in the study area 

(Fig. 1, Table 1). The method of Wischmeier and Smith (1978) was adopted to calculate L:  

( / 22.1)L           

= /  （1+ ）                   (4) 

0.8(sin / 0.089) / [3.0(sin ) 0.56]     

where, λ is the horizontal projection of the slope length; α is the index of the slope length 

calculated using the method of Renard et al. (1997); and θ is the slope steepness. Since there 

is a wide variation in slope in the study area, the McCool Formula (McCool et al., 1987) was 

used to calculate S at the locations with a gentle slope (θ ≤ 5°): 

                  𝑆 = 10.8 𝑠𝑖𝑛 𝜃 + 0.03       (5) 

The method of liu et al. (2001) was used for S calculation where θ > 5°:  

𝑆 = {
16.8 sin 𝜃 − 0.5               5° ≤ 𝜃 < 10°
21.9 sin 𝜃 − 0.96                   𝜃 ≥ 10°

                   (6) 

 

2.2.4. C–Crop management factor 

C, which reflects the effect of cropping and management activities on erosion rates, 

indicates how the conservation plan will affect the average annual soil loss. The C value 

ranges from zero to one. A zero value indicates that soil erosion is unlikely to occur; and a 

value of one suggests unrestrained soil erosion. C values in this study were from the study of 

Cai et al. (2000) undertaken based on the land-use map (Table 1, Fig. 3). Arable land, orchard, 

forest, residential land, roads, waters, and unutilised land were assigned the C values of 0.31, 

0.05, 0.006, 0, 0, 0 and 0.4 respectively. Based on the history of agricultural structural 

adjustments, year 1990 was treated as the key turning point of the land-use change in the area. 

Fig. 3 shows the distribution of C values in the periods of 1957–1989 and 1990–2013 derived 

from the land-use patterns of 1989 and 2013. The land-use map of 2013, which was derived 

by interpreting the Quickbird multispectral satellite image, has been validated via the field 

survey in the study area (Table 1). 

 



 

Fig. 3 Land-use maps of 1989 and 2013 in the Yujia River Catchment. 

2.2.5. P–Conservation practice factor 

P represents the ratio of soil loss after the implementation of a conservation practice 

trying to reduce soil loss from straight-row farming up and down slope. The P value ranges 

from 0 to 1 (P = 0: no soil erosion due to the conservation practices; P = 1: the occurrence of 

soil erosion at its highest potential rate when lacking conservation practices). Since there were 

very limited measures of water and soil conservation in the area before 1990, P from 1957 to 

1989 was assigned a value 1. However, contour farming methods have been applied in most 

arable lands in the study catchment since 1990. Therefore, P was assigned different values 

during the period 1990–2013 based on the slope of land: P = 0.3 in areas where θ < 5°; P = 

0.5 where 5°≤ θ <10°; and P = 0.6 where θ ≥ 10°.  

2.3. Datasets  

The datasets used for estimating soil erosion in this study are listed in Table 1.  

 

Table 1. The datasets used to calculate the soil erosion 

Data type Source Description 



Digital Elevation 

Model (DEM) 

1:10,000 topographic map, Shaanxi 

Bureau of Geographic Surveying and 

Mapping. 

We used ArcGIS10.0 Spatial Analyst tool to 

discretise the cells ca. 1m ×1m in size on the 

basis of 1:10,000 scale topographic map 

Land-uses 

1989: Office of Land Resource 

Investigation of Shaanxi Province  
1:10,000 scale 

2013: Interpretation of satellite images in 

April 2012 

Interpretation after the image treatment on 

the purchased Quickbird multispectral 

satellite image (0.61m resolution) of April 

2012; field survey in May 2013  

Soil type data 
2nd soil investigation data, sampling 

analysis of Shaanxi Province  

The distribution of soil types and soil 

textures from the 2nd soil investigation data 

of Shaanxi Province  

Rainfall data Zhouzhi Meteorological Bureau 
Meteorological station near the study area 

during 1957–2013  

 

2.4. Calculating the dry weight of sediments in the reservoir 

The Reservoir at the outlet of the catchment was built in 1957. With a dam of 17m high 

and 318m long, its initial volume was 11.75 × 105 m3 when it was built. No dredging work 

has been undertaken since 1957. As a result of leakage, the reservoir has a low water level 

during the summer and autumn, and remains dry the rest of the year. We calculated the 

amount of the sediments deposited in the reservoir by comparing the difference between the 

reservoir’s initial volume and the volume measured in December 2013. The dry density of the 

sediments in the reservoir was measured as 1.51 g cm−3. The dry weight of sediments in the 

reservoir over the 57-year period was calculated by multiplying the volume of the sediments 

by the dry density of sediments.  

2.5. Estimating soil nutrient losses from the catchment 

The soil nutrient contents in the catchment were measured in October 2012. The grid 

sampling method (60m×60m) was used to take soil samples within the catchment; and the 

multi-point composite samples were collected from 118 sampling sites shown in Fig. 4. The 



location of the central point of each sampling site was recorded using portable GPS device. 

For each sampling site, the content of soil organic matter, total nitrogen (TN) and available 

phosphorus (AP) within 0–20 cm soil depth were analysed using the method of Bao (2000). 

The spatial distribution of the soil contents of organic matter, TN and AP was then generated 

using the Kriging interpolation method via ArcGIS10.1 (Fig. 4). Based on the average soil 

nutrient contents, the amount of soil nutrient losses were calculated using the estimated mass 

of the soil erosion. 

 

 

Fig.4 Soil sampling points and the distribution of soil nutrients in the Yujia River Catchment. TN: total 

nitrogen; AP: available phosphorus. 

 

3. Results 

3.1. Verifying the results of the RUSLE method 

The total soil erosion estimated using the RUSLE model in the Yujia River Catchment 

over 57 years is 10.90 × 105 t, based on the different land-use patterns in 1957–1989 and 

1990–2013. This estimate is equivalent to a loss of 0.36 cm thick topsoil in the catchment 

every year. It worth noting that RUSLE was designed to estimate soil erosion instead of 

sediment yield, which is the erosion from slopes, channels, and mass wasting, minus the 

sediment deposited after it is eroded but before it reaches the point of interest (Renard et al., 

1997). The sediments deposited in the reservoir were measured as 10.11 × 105 t, which is 7.8% 

less than the total soil erosion estimated using RUSLE. This difference may be caused by the 



settlement of some of the soil eroded along the streams or rivers in the catchment before 

reaching the reservoir. Therefore, this indicates that the estimate of soil erosion using RUSLE 

is sensible in this study.  

 

3.2. Soil erosion intensity  

The estimated annual soil erosion modulus in the catchment was categorised into the 

slight, light, medium, strong, very strong or severe soil erosion intensity, in accordance with 

the SL190-2007 Standards for Classification and Gradation of Soil Erosion (Ministry of Water 

Resources of China, 2008). The distributions of soil erosion intensity in the periods of 

1957–1989 and 1990–2013 are shown in Fig.5, while their details are listed in Table 2. It 

indicates that the annual mean soil erosion modulus was 6,185 t/km2 in 1957–1989, and 

categorised as strong soil erosion. In contrast, the annual mean soil erosion modulus was 

2,510 t/km2 in 1990–2013, categorised as medium soil erosion. The annual mean soil erosion 

amount in 1957–1989 was 25,497 t, which is 2.5 times that in 1990–2013 (10,349 t). The 

lands with strong soil erosion intensity and above in 1957–1989 and 1990–2013 accounted for 

33.4% and 13.9% of the study area respectively (Fig. 5); and the soil erosion they generated 

each year in two periods were 23,017 t and 8,022 t, contributing 90.3% and 77.5% of the 

annual total soil erosion of the catchment respectively.  

 

Table 2. Soil erosion intensity classification of the Yujia River Catchment. 

Soil erosion 

intensity 

Soil erosion 

modulus (t·km-2yr-1) 

Area percentage (%) Erosion rate (t·yr-1) 

1957–1989 1990–2013 1957–1989 1990–2013 

Slight ≤ 500 40.5 59.7 127 195 

Light 500 –2 500 14.5 18.2 586 942 

Medium 2 500 – 5 000 11.6 8.2 1767 1190 

Strong 5 000 – 8 000 6.2 2.6 1515 724 

Very strong 8 000 – 15 000 11.2 6.5 5361 2929 

Severe > 15 000 16.0 4.8 16141 4369 

 



 

Fig. 5 Annual soil erosion intensity in 1957–1989 and 1990–2013 in the Yujia River 

Catchment. 

 

3.3. Soil erosion from different land-uses 

Based on the land-use map of 2013, it was found that the soil erosion modulus of the 

arable land was 9.6 and 29.9 times that of orchard and forest respectively (Table 3). Although 

the arable land covered only 28% of the total area of the catchment, it contributed 83% of the 

total soil erosion of 2013 in the study area. Whilst orchards covered 39% of the total area of 

the catchment, they generated only 12% of the total erosion of the catchment in 2013.  

Meanwhile, forest contributed only 0.69% of the total soil erosion of 2013 in the catchment. 

This shows that the arable land is a major source of soil erosion in the Yujia River Catchment.  

 

Table 3. Soil erosion amount under different land-uses in the Yujia River Catchment. 

Land-use 
Soil erosion modulus 

(t·km-2·yr-1) 

Area 

(km2) 

Erosion rate 

(t·yr-1) 

Arable land 9834 1.17 11505 

Orchard  1025 1.60 1640 

Forest 329 0.29 95 

 

3.4. Sensitivity analysis of soil erosion modulus to the slope of land 

The sensitivity analysis of erosion modulus to the slope and land-use was undertaken by 



changing slope stepwise with an interval of 5° for different land-uses of 2013 (Table 4). It 

shows that the soil erosion modulus of both the arable land and orchard increases with the 

rises of the slope of land, whereas that of forest becomes stable when slope is higher than 20°. 

The average increase of the soil erosion modulus for the arable land was 6.1 and 40.8 times 

that of the orchard land and forest respectively when increasing the slope in this sensitivity 

analysis. This indicates that the soil erosion in the arable land is much more sensitive to the 

slope of land than that in orchard and forest.  

 

Table 4.The sensitivity of the soil erosion modulus to slope in different land-uses 

Land-use type 
Soil erosion modulus (t·km-2·yr-1) 

5° 10° 15° 20° 25° 

Arable land 1117.97 5134.60 11409.70 17330.50 22964.27 

Orchard 168.95 790.17 1925.09 2788.56 3762.86 

Forest 61.20 286.19 437.31 604.30 596.30 

 

3.5. Soil nutrient losses in the catchment  

The soil nutrient losses from different land-uses of the catchment in 2013 have been 

calculated using the method described in the section 2.5. Although the arable land covered 28% 

of the study area, it contributed to 81.3% and 80.4% of the catchment’s total organic matter 

and total nitrogen (TN) lost via soil erosion in 2013 (Table 5). However, the loss of the 

available phosphorus (AP) from soils was mainly from orchards; and 66.7% of the total loss 

of the AP was from orchards covering 39% of the catchment. 

Table 5.Nutrient loss under different land-use patterns in the Yujia River Catchment 

Land-use type 
Organic matter 

(t·yr-1) 

Total Nitrogen 

(t·yr-1) 

Available 

Phosphorus 

(t·yr-1) 

Arable land  109.96 7.21 0.06 

Orchard land 23.39 1.62 0.12 

Forest land 1.91 0.14 - 

 

4. Discussions  

4.1. The reduction of soil erosion due to the development of orchards 



Compared with the period of 1957–1989, the soil erosion modulus and erosion rate in the 

catchment during 1990–2013 have decreased significantly (Table 3 and Fig. 5). This was 

mainly caused by converting the arable land to kiwifruit orchards. The proportion of the 

arable land in the catchment has reduced from 65% (1957–1989) to 28% (1990–2013), while 

that of the kiwifruit orchards has increased from 14% (1957–1989) to 39% (1990–2013). The 

kiwifruit orchards have less soil erosion than the arable land due to the two reasons: (1) The 

crop rotation is winter wheat and summer maize in the catchment. Wheat is normally 

harvested in early June, and maize is then sowed immediately. The rainfall starts to increase 

from June in the study catchment. Therefore, the possibility of the occurrence of soil erosion 

becomes high during this transition period and early stage of maize (Vogel et al.，2016) due to 

the bare soil or less vegetation coverage (Vanwalleghem et al.，2017). (2) Irrigation is 

required in the kiwifruit orchards due to high water demand of kiwifruit vines. In actual 

practice, kiwifruit growers usually level the land or make small ridges to prevent water 

quickly running out their kiwifruit orchards, thus leading to the reduction of soil erosion. 

 

4.2. The impacts of land-use change on soil erosion and nutrient losses 

The results show that the soil erosion and the loss of the organic matter and TN mainly 

originated from the arable land, whereas the loss of the soil AP was mainly from orchards in 

the catchment (Table 5). Compared with available nutrients in soil, the organic matter and TN 

of soil are more stable and subject to fertilisation and field management. For example, the 

average contents of the organic matter for the arable land and orchards in the catchment are 

11.28 g kg−1 and 17.15 g kg−1; while the average contents of TN in two land-uses are 0.74 g 

kg−1 and 1.18 g kg−1, respectively. However, the average content of the soil AP in the kiwifruit 

orchards (85.67 mg kg−1) is more than 13 times that of the arable land (6.15 mg kg−1) (Wei et 

al.，2015). That explains why a high proportion of the soil AP was mainly from the kiwifruit 

orchards in the catchment.  

The fertilisation surveys in the catchment showed that phosphate fertiliser has been 

overused in 51.7% of the kiwifruit orchards; while 81.8% of the kiwifruit orchards have the 

problem of excessive application of nitrogen fertiliser (Kang et al., 2014; Luet al., 2016a, 

2016b). Consequently, the soils of many kiwifruit orchards in the catchment have high 



contents of available N and P, thus increasing the risk of water pollution from agricultural 

non-point sources. Therefore, although the development of kiwifruit orchards in the 

catchment has reduced the risk of soil erosion, it has increased the losses of available nitrogen 

and phosphorus from soils.  

 

4.3. Measures to reducing soil erosion and nutrient losses 

The results of this study show that soil erosion and losses of soil organic matter and TN 

mainly occurred in the sloping arable land. It is also found that the soil erosion modulus of the 

arable land is highly sensitive to the slope of land. Therefore, measures, such as land levelling, 

changing sloping land to terraces, and conservation farming (including contour planting and 

straw mulching), should be taken to reduce the soil erosion and hence the losses of the soil 

organic matter and TN from arable land (Mhazo et al., 2016; Prosdocimi et al., 2016; 

Vanwalleghem et al., 2017). 

As discussed above, the conversion of the arable land to kiwifruit orchards has increased 

the losses of the soil phosphorus and nitrate in the catchment. For example, Lu et al. (2016a) 

reported that nitrate accumulation in kiwifruit orchard was as high as 793 kg N/ha in 0-200 

cm soil profiles, thus leading to high nitrate leaching (Gao et al., 2016). Therefore, attention 

should be paid to promoting appropriate fertilisation practices and strengthening the 

comprehensive management of nutrients in the orchards to reduce nutrient losses.  

5. Conclusions  

The total soil erosion during 1957–2013 estimated using the RUSLE method is in line 

with the amount of sediment accumulated in the reservoir at the outlet of the Yujiahe River 

Catchment. The soil eroded in the catchment is equivalent to an annual loss of 0.36 cm thick 

topsoil. The arable land is the main source of soil erosion; and its erosion modulus is 9.6 times 

that of the orchards in the catchment. Land-use change from the arable land to the kiwifruit 

orchards in the catchment since 1990 has significantly reduced soil erosion intensity from the 

strong to a medium level. In addition, the soil erosion modulus of the arable land has the 

highest sensitivity to the slope of land. Therefore, different conservation measures, such as 

changing sloping land to terraces and straw mulching, should be widely implemented in the 



Yujiahe River Catchment to reduce soil erosion. About 81.3% of the organic matter loss and 

80.4% of the total nitrogen loss in the catchment were from the arable land. In contrast, 66.7% 

of the loss of total available phosphorus in the catchment was from the kiwifruit orchards. 

Therefore, it is necessary to promote appropriate fertilisation practices and strengthen the 

comprehensive nutrient management in orchards to prevent non-point-source water pollution.  
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