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Abstract: In situ chlorophyll fluorometers have been used to quantify the distribution of 
chlorophyll concentration in natural waters for decades. However, chlorophyll fluorescence is 
depressed during daylight hours due to non-photochemical quenching (NPQ). Corrections 
attempted to date have provided improvement but still remain unsatisfactory, often over-
estimating the expected value. In this study, we examine the relationship between NPQ and 
instantaneous Photosynthetically Active Radiation (iPAR) using field data from BGC-Argo 
floats equipped with Chlorophyll-a fluorometers and radiometers. This analysis leads to an 
improved NPQ correction that incorporates both iPAR and mixed layer depth (MLD) and is 
validated against data collected at sunrise or sunset. The optimal NPQ light threshold is found 
to be iPAR = 15 μmol quanta m−2 s−1, and the proposed methods based on such a light 
threshold correct the NPQ effect more accurately than others, except in “shallow-mixing” 
waters (NPQ light threshold depth deeper than MLD). For these waters, an empirical-
relationship-based method is proposed for improvement of NPQ correction using an iPAR 
profile. It is therefore recommended that, for optimal NPQ corrections, profiling floats 
measuring chlorophyll fluorescence in daytime be equipped with iPAR radiometers. 
Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further 
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1. Introduction 

Since in vivo fluorometry was introduced by Lorenzen in 1966 [1], advances in field-
deployable sensor technology have led to the routine use of in situ chlorophyll fluorometers to 
quantify the chlorophyll a concentration ([Chla], mg m−3) in natural waters [2,3]. The rapid 
increase in number of Argo-style profiling floats equipped with chlorophyll fluorometers over 
the past decade [4–6] has led to in vivo fluorometry playing an increasing role in the study of 
phytoplankton dynamics and distributions. In the near future, the thousand-float planned 
Biogeochemical-Argo (BGC-Argo) fleet [6] is expected to provide more than 50,000 vertical 
profiles every year in the world’s ocean (assuming weekly profiling). 

Despite the merits of in situ Chla sensors (small size, low power consumption, high 
measurement frequency, stability, and relatively low cost), it has been known for a long time 
that conversion from fluorescence to [Chla] requires a variety of corrections and assumptions 
[3]. Several studies have contributed methods to convert fluorescence to [Chla] [4,7–10], 
remove non-algal fluorescence interference [7,11], and address non-photochemical quenching 
(NPQ), a phenomenon whereby cells exposed to high light exhibit reduced fluorescence per 
unit of chlorophyll [12–14]. Among these issues, the NPQ effect still remains a significant 
challenge. The ability to obtain reliable (unbiased by NPQ) information on [Chla] is critical 
to study of ocean biology and biogeochemistry, as well as for better estimations of heat flux 
[15]. 

NPQ is a physiological mechanism that phytoplankton undertake to protect their 
photosynthetic apparatus from damage when exposed to high light [16]. Its effect is 
ubiquitous in natural waters, affecting sensor-induced Chla fluorescence [16,17] as well as 
sun-induced natural fluorescence [18,19]. NPQ results in fluorescence per unit of chlorophyll 
exhibiting significant temporal, spatial and vertical variability. Coincident with diurnal 
variations in solar illumination, the fluorescence signal of a chlorophyll fluorometer is 
generally lowest (greatest NPQ) near local noon and highest at nighttime [13,19,21]. Due to 
the decrease in daytime irradiance with depth, the NPQ depression is strongest near the 
surface and declines with depth. This effect can be noticed in well mixed waters where [Chla] 
is homogeneous within the mixed layer but where NPQ results in a “subsurface/deep 
fluorescence maximum (DFM)” [14]. 

Several strategies have been employed to correct for NPQ. Night-time measurements do 
not suffer from NPQ, so when night-time profiles are close in time and space, they can be 
used to directly replace or correct daytime fluorescence [22]. However, for most BGC-Argo 
float operations, a different correction is needed to accommodate the much longer intervals 
between day and night profiles or absence of night profiles (e.g. many floats profile only near 
local noon). While the previously proposed NPQ correction methods [13,14] work 
satisfactorily in many oceanic systems, some recent studies suggest that they over-correct 
[Chla] in surface layers of the Southern Ocean [23,24]. This over-correction may have two 
potential causes: erroneous estimation of actively mixing layer depth (XLD) due to the 
criterion used to define the mixed layer depth (MLD) [25], and/or lack of consideration of the 
minimum light intensity required to induce NPQ [26]. With respect to mixing, the two 
previous corrections proposed by [13] and [14] assumed an actively mixing mixed layer 
(XLD = MLD), using for MLD criterion the depth where density increases relative to the 
surface value by 0.03 kg m−3 or 0.125 kg m−3 [27,28]. On the other hand, criteria defining 
active mixing layer use a much smaller density difference, such as 0.005 to 0.01 kg m−3 [25]. 

                                                                                              Vol. 26, No. 19 | 17 Sep 2018 | OPTICS EXPRESS 24736 



In addition [13], and [14] did not consider the prevailing light intensity. Holm-Hansen et al. 
[26] have reported that the NPQ of Chla fluorescence appears when the Instantaneous 
Photosynthetically Available Radiation (iPAR) is greater than 40 μmol quanta m−2 s−1 in the 
Southern Ocean. If iPAR measurements are available, incorporating such a “light-threshold” 
criterion as part of the NPQ correction scheme could potentially represent a useful alternative 
to circumvent the above over-correction problem; we explore such a “light-threshold” 
approach in this study. 

Here, we analyze a data set from profiling floats that profile multiple times a day to 
determine the light and MLD thresholds for optimal NPQ correction. When the quenching 
depth exceeds the MLD, an empirical relationship between iPAR and NPQ is proposed to 
correct the NPQ not only above but also below the MLD. All the methods proposed are 
validated and compared with previous methods, by comparing BGC-Argo-measured 
fluorescence profiles acquired at noon with those acquired at sunrise or sunset, when no NPQ 
is assumed. Based on these analyses, recommendations are proposed to improve the quality 
control and correction procedures for fluorescence profiles acquired in aquatic environments, 
and in particular, but not exclusively, by BGC-Argo floats. 

2. Materials and methods 

2.1 NPQ correction methods 

2.1.1 NPQ correction methods based on MLD 

Two NPQ correction methods, hereafter denoted S08 and X12 [13,14], were developed and 
applied on data collected with Chla fluorometers deployed on profiling platforms (gliders and 
BGC-Argo floats) within the mixed layer: 

 = / .bpFRatio FChla b  (1) 

 ( )( )( )= = .MaxFRatioz z FRatio max FRatio z MLD≤  (2a) 

 ( ) ( )( )= .MaxFRatioFRatio z max FRatio z MLD≤  (2b) 

 ( ) ( ) ( ) ( )
( )S08 z = .

( )
MaxFRatio bp MaxFRatio

MaxFRatio

FRatio z b z z z
FChla z z z

 × ≤
 >

 (3) 

 ( )( )( ) == .MaxFluoz z FChla max FChla z MLD≤  (4a) 

 ( ) ( )( )= .MaxFluoFChla z max FChla z MLD≤  (4b) 

 ( ) ( ) ( )
( )X12 z = .

( )
MaxFluo MaxFluo

MaxFluo

FChla z z z
FChla z z z

 ≤
 >

 (5) 

Here, FChla and S08/X12 stand for the uncorrected and NPQ-corrected FChla, respectively. 
bbp is the particle backscattering coefficient (generally measured at 700 nm), FRatio is the 
FChla/bbp ratio. zMaxFluo and zMaxFRatio represent the depths where the uncorrected FChla and 
the uncorrected FChla/bbp ratio reach their maximum value within the mixed layer, 
respectively. Note that these two depths are, by definition, always shallower or equal to the 
MLD (Eq. (2) and 4). 

Both methods extrapolate FChla into the upper part of the surface mixed-layer from depth 
based on the FChla at zMaxFluo (for X12) or the FRatio at zMaxFRatio (for S08). They rely on two 
key assumptions: 1) the depth of the layer affected by NPQ is shallower than the MLD, and 2) 
either [Chla] (for X12) or FRatio (for S08) is uniformly distributed within the “NPQ layer”, 
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consistent with an a priori assumption that the mixed layer is an actively mixing layer. 
Consequently, either the maximal value of FChla (for X12) or the maximal FRatio (for S08) 
is assumed to correspond to the value not affected by NPQ, since NPQ always results in 
FChla depression. Both of the above assumptions can introduce errors, which the methods 
below are designed to reduce. 

2.1.2 NPQ correction methods based on MLD and euphotic depth 

Recently, a correction method [23] was proposed based on the use of the euphotic layer depth 
(zeu) instead of MLD, where zeu is the depth at which PAR reaches 1% of its surface value. 
Where MLD > zeu, this method represents an improvement over a method based only on 
MLD, because NPQ is not expected at zeu and below. The use of zeu can therefore improve 
some cases of over-correction of NPQ discussed in Section 1 without introducing cases of 
under-correction. Furthermore zeu has a long history in oceanography as a light-threshold 
horizon for photosynthesis, and many algorithms have been developed to compute it. [23] 
used an ocean-color-satellite-derived zeu, but satellite data is not always available, especially 
during winter in high latitude regions. Plant et al. [24] updated this method with estimated 
diffused attenuation coefficient of PAR (i.e. Kd(PAR)) computed from uncorrected in situ 
FChla based on an empirical relationship [29] (Eq. (6)). For comparison and discussion, their 
method, denoted as P18, is presented here: 

 ( ) [ ]0.674
PAR =0.0232+0.074 .dK Chla×  (6) 

 ( )( )( )z

0
= exp PAR =0.01 .eu dz z K dz−  (7) 

 ( )( )( )( )P18 = min , .= euz z FChla max FChla z MLD z≤  (8a) 

 ( ) ( )( )( )P18 min , .euFChla z max FChla z MLD z= ≤  (8b) 

 ( ) ( ) ( )
( )

P18 P18

P18

P18 z .
( )

FChla z z z
FChla z z z

 ≤=  >
 (9) 

Here [Chla] uses uncorrected FChla after basic processing (See Section 2.3). We have tried 
another empirical method for estimating Kd(PAR) from [Chla] using [30] and found zeu 
estimated by P18 to be more accurate (closer to the in situ radiometer-measured zeu). 

2.1.3 NPQ correction methods based on MLD and light-threshold depth 

In the present study, we propose new NPQ correction methods similar to P18, but using an 
absolute light threshold instead of zeu. The optimal iPAR threshold is found at 15 μmol quanta 
m−2 s−1 (see below), and the improved NPQ correction methods, hereafter denoted as S08 + 
and X12 + , rely on the definition of an “NPQ layer” from the surface to min(MLD, ziPAR15): 

 ( )( )( )( )S08+ iPAR15min , .z z FRatio max FRatio z MLD z= ≤=  (10a) 

 ( ) ( )( )( )S08+ iPAR15min , .FRatio z max FRatio z MLD z= ≤  (10b) 

 ( ) ( ) ( ) ( )
( )

S08+ S08+

S08+

S08+ z .
( )

bpFRatio z b z z z
FChla z z z

 × ≤=  >
 (11) 

 ( )( )( )( )X12+ iPAR15min , .z z FChla max FChla z MLD z= = ≤  (12a) 
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 ( ) ( )( )( )X12+ iPAR15min , .FChla z max FChla z MLD z= ≤  (12b) 

 ( ) ( ) ( )
( )
X12+ X12+

X12+

X12+ z .
( )

FChla z z z
FChla z z z

 ≤=  >
 (13) 

2.1.4 NPQ correction method based on an empirical relationship 

The above methods are not expected to perform well in shallow-mixing waters, when NPQ 
also occurs below the MLD, because the FChla at the reference depth may be already 
quenched to some extent. Therefore, for shallow-mixing waters with ziPAR15 > MLD, we 
propose a different NPQ correction, in which an empirical fit between iPAR and NPQ is used 
to correct FChla below the MLD. Additionally, the corrected FChla at 10 m is extrapolated to 
the surface to circumvent potential errors introduced in the near surface, where wave focusing 
can cause large fluctuations in in situ iPAR measurements [8]. A sigmoid function is used to 
model NPQ with three parameters: r, the fraction of fluorescence signal not affected by NPQ; 
iPARmid, the iPAR value with the greatest gradient in a sigmoid function; and e, the exponent 
coefficient of a sigmoid function. These parameters are computed based on an empirical fit 
between our measurements of iPAR and the observed ratio quenched FChla to unquenched 
FChla. The new method is hereafter denoted XB18 and is computed as follows: 

 ( ) ( ) ( ) ( )( )( )( ) ( )
( )

/ 1 / 1 / 10m
XB18 .

XB18 10m ( 10m)

e
midFChla z r r iPAR z iPAR z

z
z z

 + − + ≥= 
 = <

(14) 

2.2 Statistical metrics 

Three statistical metrics are used to evaluate different NPQ correction methods: 1) Mean 
Absolute Error (MAE), which represents the absolute errors between the corrected values and 
reference values; 2) Mean Absolute Percentage Error (MAPE), which represents the relative 
errors; 3) and Mean Percentage Error (MPE), which represents the systematic relative bias. 
They are defined as: 

 
1

1
.

n

i i
i

MAE P A
n =

= −  (15) 

 ( )
1

100
% .

n
i i

i i

P A
MAPE

n A=

−
=   (16) 

 
( ) ( )

1

100
 % .

n
i i

i i

P A
MPE

n A=

−
=   (17) 

Here, Pi represents the corrected value of FChla, Ai is the reference value of FChla without 
NPQ, and n represents the number of samples. In this study, these metrics are used to assess 
the level of agreement between FChla profiles corrected using 6 different NPQ corrections 
and reference profiles measured at sunrise or sunset. 

2.3 Data 

To evaluate the NPQ correction methods, a data set consisting of FChla, bbp(700) and iPAR 
profiles collected by 23 profiling floats is used (Fig. 1, Table 1). 605 pairs of profiles (out of 
850 in total) are selected for analysis according to the following criteria: 1) there are local 
noon and local sunrise/sunset profiles within a short time interval (<36 hours); 2) the mean 
absolute percentage difference (MAPE) of bbp(700) profiles from surface to 100m between 
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noon and sunrise/sunset is lower than 10% (this criterion caused most of the rejection of 
pairs); 3) if both the sunrise and sunset profiles satisfy the above requirements, then the 
profile with lower MAPE is chosen as reference. In this study, the sunrise or sunset profiles 
are assumed to exhibit no NPQ [16,20,21]. Additionally, we assume that any variation in 
[Chla] profiles between sunrise and noon (e.g. due to lateral and vertical advection or 
phytoplankton growth or grazing) is small compared to the effect of NPQ [12]. 

Table 1. Information related to BGC-Argo float data used in this study 

Float WMO Profile Pair* Period Region 

lovbio006b 6901474 68 (68, 0) 
2012-10-26 to 
2014-10-17 Subtropical North 

Atlantic 
lovbio010b 6901473 86 (86, 0) 

2012-10-26 to 
2015-02-19 

lovbio016d 6902700 7 (6, 1) 
2015-12-29 to 
2015-12-25 

Mediterranean Sea lovbio064b 6901496 24 (19, 5) 
2013-08-01 to 
2014-01-30 

lovbio064c 6901776 22 (20, 2) 
2014-03-21 to 
2015-02-27 

lovbio062c 6901573 2 (1, 1) 
2016-06-12 to 
2016-06-15 

Red Sea 

xiabio001b / 5 (5, 0) 
2017-06-17 to 
2017-06-21 

South China Sea 

lovbio014b 6901524 2 (1, 1) 
2013-05-24 to 
2013-06-18 

Subpolar North 
Atlantic 

lovbio023b 6901517 8 (1, 7) 
2013-04-30 to 
2013-07-09 

lovbio029b 6901519 6 (1, 5) 
2013-05-20 to 
2013-06-29 

lovbio030b 6901527 9 (2, 7) 
2013-06-08 to 
2013-07-28 

lovbio045b 6901486 2 (1, 1) 2013-07-14 

lovbio059c 6901646 3 (0, 3) 2014-10-24 

lovbio061c 6901647 23 (0, 23) 
2015-03-27 to 
2015-05-12 

metbio003d 6901180 65 (3, 62) 
2015-11-15 to 
2016-04-26 

metbio010d 6901181 68 (4, 64) 
2015-11-13 to 
2016-04-18 

lovbio048b 6901584 3 (0, 3) 
2015-05-27 to 
2015-05-29 

Southern Ocean 

lovbio098c 6902734 22 (3, 19) 
2016-10-20 to 
2017-11-16 

lovbio100c 6902735 58 (4, 54) 
2016-10-21 to 
2018-02-18 

lovbio101c 6902736 31 (3, 28) 
2016-10-20 to 
2018-01-29 

lovbio103c 6902737 23 (2, 21) 
2016-10-24 to 
2018-02-26 

lovbio104c 6902738 13 (3, 10) 
2016-10-26 to 
2017-01-10 

lovbio107c 6902739 55 (1, 54) 
2016-10-21 to 
2018-02-18 

Total  
605 (234, 
371) 

  

* The numbers in the parentheses represent the number of profiles of the DCM- and w/oDCM-
Type, respectively. 

The mixed layer depth (MLD) is determined as the depth where the density is higher than 
its value at 10 m by 0.03 kg m−3 [27]. MLD is used to distinguish the DCM-Type profiles 
(with a deep chlorophyll maximum (DCM) below MLD) from w/oDCM-Type profiles 
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(without DCM). An analysis of the optimal MLD definition for NPQ correction is given in 
Section 3.2. The depth of maximum uncorrected FChla (DFM) is calculated first. The profiles 
with MLD shallower than DFM are identified as ‘DCM-Type’ (DFM is regarded as a true 
DCM), otherwise as ‘w/oDCM-Type’ (shallow DFM is assumed to be due to NPQ). Out of 
the 605 pairs, 234 are of ‘DCM-Type’, and 371 are of ‘w/oDCM-Type’ (Table 1). 

 

Fig. 1. Locations of BGC-Argo floats used in this study. 

All profiling floats used in this study are of the PROVOR CTS 4 series [31] equipped with 
a SeaBird CTD (SBE41CP), a Satlantic radiometer (OCR504) that measures downwelling 
irradiance at three wavelengths (380, 412 and 490 nm) and iPAR, and a WET Labs ECO 
Triplet that includes a Chla fluorometer (Ex/Em: 470nm/695nm), a backscattering sensor 
(700 nm), and a colored dissolved organic matter (CDOM) fluorometer (Ex/Em: 
370nm/460nm) or, in few occasions, an additional backscattering sensor (532nm). The 
vertical resolution of the measurements is ~1 m from 250 m to 10 m and ~0.2 m from 10 m to 
the surface. The backscattering coefficient at 700 nm is processed following Schmechtig et al. 
[32]. Briefly, data are converted to engineering units, the contribution of salt water scattering 
is subtracted, and the backscattering coefficient is computed from the measurement of the 
volume scattering function at one angle. For Chla fluorometry, all the recorded fluorescence 
digital counts (DC) are converted to [Chla] using half of the factory calibration slope 
coefficient [33]. We find in certain cases that the application of a CDOM-interference 
correction [11] resulted in an over-correction (an abnormal increase of FChla at the surface), 
so the “deep-offset” correction method [11] is applied for dark current bias correction. The 
offset is determined as follows: 1) In each “deep” profile (defined as those profiles where 
maximal observation depth is deeper than 500m), the minimum FChla is determined; 2) all 
“minimum FChla” values are collected for each sensor; 3) the median value of minimum 
FChla observed by each sensor is taken as the reference offset for this sensor. This offset 
calculation is necessary (rather than using the factory dark counts, which are typically about 
50 counts), due to a “float-sensor combination effect” which results in a dark signal change 
(typically ranging from 3 to 5 counts) when the sensor is mounted on the float. 

3. Results and discussions 

3.1 Choice of filter for smoothing FChla profiles 

High frequency fluctuations in the FChla profiles negatively affect NPQ correction 
performance and need to be smoothed before any NPQ correction. In this study, we use a 
median filter as a low-pass filter to smooth out the high frequency fluctuations. However, if 
the filtering window is too small, it risks not removing enough of the fluctuations, leading to 
over-estimation of the maximum of FChla and FRatio. On the other hand, if filtering window 
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is too large, it will reduce true FChla maxima, under-estimating the maximum of FChla or 
FRatio. We therefore evaluate the optimal filtering window by studying the sensitivity of 
MAE and MAPE of median-filtered FChla values obtained when using different window 
size, taking the raw FChla as the reference, in w/oDCM- and DCM-Type waters, respectively 
(Fig. 2). MAE and MAPE in this context are used as measures of variability removed by the 
filter. As window size increases, there is initially substantial variability that is removed, 
exhibited by a large change in MAE and MAPE (Fig. 2). As the window size increases above 
11 points, the improvement settles on a constant increase in MAE and MAPE for both water 
types. MAE due to random (Poisson) noise should not increase linearly with increasing filter 
width, so the linear portions of Fig. 2 suggest that further smoothing starts to eliminate 
nonrandom fluctuations (i.e., true features of the FChla profile). For the rest of this study, we 
thus choose to use an 11-point median window, representing a vertical resolution of ~11 m 
below 10 m depth and ~2 m above 10 m depth, and extrapolate the ending points (i.e., the 
first 5 values at surface, without enough filter window, are assigned as the median value of 
first 11 points). 

 

Fig. 2. Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) of median-
filtered FChla values, taking the raw FChla as the reference, with the change of window size 
(from 3-point median to 19-point median) in DCM- (Panel a) and w/oDCM-Type (Panel b) 
waters, respectively. The dashed straight lines represent the linear regressed line between 
MAE/MAPE and the window size (from 13 to 19). 

3.2 Optimizing the MLD criteria and ziPAR criteria for S08 + and X12 + 

In this section, different MLD criteria and different ziPAR criteria are tested to determine the 
optimal combination for NPQ correction. As mentioned above, the reported over-correction 
issue [23] may be due to 1) wrong estimation of actively mixing layer depth (XLD) when 
defining the mixed layer depth (MLD) [34], and/or 2) lack of consideration of a NPQ light 
threshold. For example, a very high gradient of chlorophyll located just below MLD can 
result in overcorrection if MLD is over-estimated. On the other hand, if XLD has shoaled 
recently, [Chla] is still homogeneous in the deeper ML, and NPQ extends below the XLD, 
then use of a shallower “MLD” criterion may lead to under-correction. 

We assess statistically (using MAE, MAPE and MPE) the optimal MLD and ziPAR criteria 
for NPQ correction by varying the MLD density criterion between 0.0025 to 0.03 kg m−3 at 
0.0025 kg m−3 increments and simultaneously varying the ziPAR criterion between 0 to 55 
μmol quanta m−2 s−1 at 5 μmol quanta m−2 s−1 increments (0 means no iPAR threshold is 
considered, so the results are just the original S08 and X12), for the w/oDCM-Type only (Fig. 
3). 

Surprisingly, the NPQ correction is found to be rather insensitive to MLD criterion once 
the criterion becomes larger than 0.015 kg m−3 (Fig. 3), suggesting that 1) for most cases, 
ziPAR is shallower than MLD0.015, and 2) the light threshold plays a dominant role in shaping 
the NPQ correction, especially in deep mixing waters as found in the Southern Ocean. Best 
performance (lowest MAE and MAPE) occurs with higher density and lower light thresholds 
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(Fig. 3). MPE quantifies the systematical bias, with negative values denoting under-
estimation and positive ones denoting over-estimation. Figure 3e and f display a clear change 
of MPE from the negative bias at the bottom left (ziPAR55 and MLD0.0025, the criterion with the 
shallowest NPQ layer, very close to the uncorrected data) to the positive bias at the top right 
(i.e. ziPAR0 and MLD0.03, this criterion represents S08 and X12), with no systematic bias when 
the light threshold is chosen at 10 or 15 μmol quanta m−2 s−1. The optimal MLD criterion is in 
the range between 0.02 and 0.03 kg m−3, consistent with the MLD criterion of 0.03 kg m−3 
previously proposed [13-14]. This result confirms the strong benefit of adding light threshold 
to improve the NPQ correction. 

 

Fig. 3. Analysis for ‘w/oDCM-Type’ waters: The variations of MAE (Mean Absolute Error), 
MAPE (Mean Absolute Percentage Error, right y-axis) and MPE (Mean Percentage Error) at 
different MLD criteria (x-axis) and different ziPAR criteria (y-axis) for the S08 + (left) and X12 
+ (right) NPQ corrections. 
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Considering of all three metrics, we suggest that the optimal light threshold depth for 
NPQ correction could be chosen as ziPAR15, and that it is not necessary to change the MLD 
criterion. Therefore, ziPAR15 and MLD0.03 are used in the light-threshold methods. Note that, 
using the optimized definitions, mean values ( ± standard deviation) of MLD0.03 are 131 ( ± 
86) m and 41 ( ± 27) m, and mean values ( ± standard deviation) of ziPAR15 are 103 ( ± 29) m 
and 133 ( ± 30) m for the w/oDCM-Type and the DCM-Type, respectively. Hereafter, we use 
the abbreviation “MLD” to refer to MLD0.03. 

3.3 Validation and comparison for w/o DCM-type 

 

Fig. 4. Ratio of uncorrected FChla at noon to the reference vs. the noon iPAR value at the 
same depth (Panel a), as well as the corresponding P18 (Panel b), S08 (Panel c), X12 (Panel d), 
S08 + (Panel e) and X12 + ratios (Panel f), in the w/oDCM-Type waters. The colored curves 
represent the average values at the same iPAR, and dashed ones represent the standard 
deviations. The horizontal dashed lines represent the ratio = 1, and the vertical lines represent 
iPAR = 15 μmol quanta m−2 s−1, the numbers of points and profiles are listed in Table 2. 

Figure 4a illustrates the NPQ phenomenon in the w/oDCM-Type water with a significant 
depression of fluorescence signal at high irradiances. The NPQ magnitude can reach values as 
high as 90%, i.e., observed FChla at noon is only 10% of the value at the same depth at 
sunrise/sunset. A small over-correction (MPE of 10.0% and 6.8%) is exhibited by the S08 and 
X12 corrections [23] (Fig. 4c-d), most likely because FChla is larger near the bottom of the 
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MLD [23], due either to enhancement of phytoplankton biomass, increased intracellular 
[Chla] (faster than mixing), or significant differences between MLD and XLD (not an 
actively mixing layer); in such a case, both S08 and X12 over-estimate the MaxRatio or 
MaxFluo, resulting in an over-correction of the [Chla] profile. P18 represents an 
improvement compared to the previous methods (Fig. 4b) (MAE improves from 0.065 to 
0.062 and MAPE improves from 11.5% to 10.6%), but it also exhibits the problem of over-
correction (MPE of 4.7%), likely because zeu is often much deeper than the layer affected by 
NPQ. 

Table 2. Statistical results of all correction methods, taking the sunrise/sunset profiles as 
the reference. 

Correcti
on methods 

w/oDCM-Type (N = 
37471, P = 371)* 

Deep-mixing DCM-
Type (ziPAR15 ≤ MLD) 

(N = 2602, P = 33)* 

Shallow-mixing DCM-Type 
(ziPAR15 > MLD) 

(N = 18965, P = 201)* 

MAE MAPE MPE MAE MAPE MPE MAE MAPE MPE 

Uncorr. 0.238 38.0% −35.0% 0.146 35.2% −27.9% 0.044 43.2% −29.3% 

S08 0.072 13.8% 10.0% 0.058 33.9% 26.9% 0.030 34.5% −4.6% 

X12 0.065 11.5% 6.8% 0.067 35.6% 28.2% 0.031 35.0% −2.8% 

P18 0.062 10.6% 4.7% 0.070 35.9% 27.9% **0.031 **35.0% **-2.8% 

S08 + 0.062 10.3% 1.3% 0.052 23.9% 9.1% **0.030 **34.5% **-4.6% 

X12 + 0.062 9.8% 1.0% 0.064 26.6% 11.2% **0.031 **35.0% **-2.8% 

XB18 / / / / / / 0.032 32.2% 0.2% 

* N represents the sample size (number of points), and P represents the number of profiles ** Note that X12 + 
and P18 are identical to X12 and S08 + to S08 in Shallow-mixing DCM-Type 

Compared to the earlier methods, the light-threshold methods proposed here perform 
better (Fig. 4(e) and 4(f)), with the ratio of noon to sunrise (or sunset) FChla closer to one. 
Statistically, all five methods have lower absolute errors (MAE) and relative errors (MAPE) 
values than the uncorrected FChla (Table 2), and the threshold-based methods (S08 + and 
X12 + ) are better than S08, X12 and P18 (Table 2), with MAPE improved from 10.6% (P18) 
to 9.8% (X12 + ), and MPE improved from 4.7% (P18) to 1.0% (X12 + ). There is no obvious 
difference between the two light-threshold methods and the very similar pattern between S08 
and X12 is also seen in Figs. 4(c) and 4(d), suggesting that the backscattering has a negligible 
contribution to the improvement of NPQ correction, compared to the simpler extrapolation 
method solely based on FChla (i.e., X12 and X12 + ). 

3.4 Validation for deep-mixing DCM-type (ziPAR15 ≤ MLD) 

Based on the results of optimization analysis, all the DCM-Type profiles are further separated 
into two sub-types: Deep-mixing (ziPAR15 ≤ MLD, i.e. the light threshold is not deeper than 
MLD and NPQ appears only in the mixed layer) and Shallow-mixing (ziPAR15 > MLD, i.e. the 
light threshold is deeper than MLD and NPQ may occur below the mixed layer). Because S08 
+ and X12 + do not improve on S08 and X12 for the shallow mixing case, this case is 
addressed separately below. 

For the Deep-mixing DCM-Type (Fig. 5), for which we have only 33 profiles, all the 
correction methods display a similar pattern to the w/oDCM-Type, including: 1) S08, X12 
and P18 have an obvious over-correction with MPE ranging from 26.9% to 28.2%, and with 
MAPE larger than 33% (Table 2); 2) S08 + and X12 + show a significant improvement with 
MAPE lower than 27% and MPE lower than 12%, suggesting that light-threshold methods 
also work better than others in this case. 

The proposed two methods using the absolute light intensity depth (ziPAR15) are superior to 
P18 using zeu, although P18 does provide an improvement when compared to the original 
methods, especially in the w/oDCM-Type waters. The benefit of using absolute light intensity 
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vs. zeu in the NPQ correction is consistent with mechanistic understanding of NPQ. NPQ 
depends on absolute light level [21], while zeu represents a relative light intensity. The depth 
where NPQ effect is noticed (fluorescence signal depression magnitude) varies with daily 
light intensity rhythm and varies with depth (greater at surface and lower at depth, Fig. 4a and 
5a), meanwhile, zeu is relatively stable at diurnal scale. Using an absolute light threshold (like 
ziPAR15) is more consistent with the NPQ. We conclude that, for both w/oDCM-Type and 
Deep-mixing DCM-Type, S08+/X12 + > P18 > S08/X12 (> means “an improvement 
compared to”). Note that we have also attempted to use a combined treatment method [7] to 
obtain [Chla] based on the downwelling irradiance (Ed(490)) profile, and use that to correct 
NPQ effect of FChla. We found the method to introduce too much noise and be less robust 
than the method we have tested here. 

 

Fig. 5. As same as Fig. 4, but for Deep-mixing DCM-Type (ziPAR15 ≤ MLD). 

For floats without a radiometer we have tried an alternative NPQ-correction method based 
on the same theory of S08 + and X12 + , but using a modeled iPAR profile (See Appendix). It 
is intended for substituting S08 + & X12 + when the radiometry is unavailable, as well as for 
replacing P18, but results suggest that P18 outperforms the methods using modeled iPAR 
profile with lower MAE, MAPE and MPE and should therefore be used when measured iPAR 
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data is unavailable for now. Future work, using a more accurate estimation of surface iPAR, is 
likely to provide improvement. 

3.5 Validation for shallow-mixing DCM-type (ziPAR15 > MLD) 

 

Fig. 6. Panel a-d are as same as Fig. 4, but for shallow-mixing DCM-Type (ziPAR15 > MLD). 
Panel e shows the regressed sigmoid function between FChla ratio and iPAR, and Panel f 
shows the scatter plot of XB18 

Figure 6a-d shows the same plot as Figs. 4 and 5, but for Shallow-mixing DCM-Type (ziPAR15 
< MLD). The figures of S08 + and X12 + are not shown, as they are the same as S08 and 
X12, respectively. Note that P18 and X12 are also identical in this case. Although the 
uncorrected FChla still shows the quenching issue in high-light conditions (Fig. 6a), S08, 
X12 and P18 do not over-correct, but slightly under-correct (MPE as −4.6% and −2.8%) (Fig. 
6b-d). It follows that if the layer impacted by NPQ is deeper than the mixed layer, all 
proposed methods cannot retrieve the correct FChla or FRatio for NPQ within the mixed 
layer, nor correct well for NPQ below the mixed layer. This is because in the stratified layer 
(below MLD) where NPQ is still occurring, we cannot assume that FChla or FRatio is 
constant with depth below MLD. In such cases, we propose a new method based on an 
empirical relationship between iPAR and NPQ (Fig. 6e; black line) following Eq. (14), using 
the following three empirical coefficients, r = 0.092, iPARmid = 261 μmol quanta m−2 s−1, and 
e = 2.2, obtained by a regression analysis. 
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Using this approach (XB18) there is no improvement in MAE, but MAPE decreases from 
34.5% to 32.2%, and MPE becomes much closer to 0 (Table 2). It is noteworthy that the 
improvement is most significant under high irradiance conditions where the NPQ effect is 
greatest (Fig. 6f). For all points with iPAR > 100 μmol quanta m−2 s−1, MAE, MAPE and 
MPE of XB18 are 0.027 mg m−3, 25.6% and −1.4%, respectively. Comparatively, the same 
metrics for P18 are 0.030 mg m−3, 38.9% and −12.5%, respectively. 

3.6 Simulation test for the low-resolution profiles 

The present study is based on BGC-Argo data acquired with a vertical resolution of ~1m or 
better in the top 0-250 m layer. It is noteworthy that many BGC-Argo floats have lower 
vertical resolution, primarily in order to increase battery life. In this section, we test if the new 
methods proposed here (i.e. S08 + , X12 + and XB18) still represent an improvement when 
compared to S08, X12 and P18 under low-resolution observation. 

The typical observation depths for an APEX float deployed as part of the SOCCOM 
project in the Southern Ocean are every 5m from 5 to 100 m, and every 10 m from 100 m to 
360 m, every 20 m from 360 to 400 m, and every 50 m from 400 m to 1000 m [35]. The low-
resolution noontime profiles are generated at SOCCOM depths by nearest neighbor 
interpolation of unsmoothed high-resolution profiles, and the low-resolution reference 
profiles are generated by linear interpolation of the smoothed high-resolution profiles. This 
choice is preferred because the reference values are used as the “true” unquenched (NPQ-
corrected) profiles, and smoothing is necessary to remove the environmental noise. Before 
application of all NPQ correction methods, the simulated low-resolution noon data are 
smoothed by a 3-point median filter. 

The final statistical results are shown in Table 3 (scatter plots are not shown). Note that 
the elimination of very high resolution data at z < 10 m also eliminates the most highly 
quenched data from this data set, so these statistics cannot be directly compared with the high 
resolution statistics in Tables 1 and 2. However, similar to the analysis based on high-
resolution profiles (Table 2), the P18 method still represents a slight improvement over the 
previous S08 and X12 methods, and S08 + and X12 + still represent a further improvement in 
NPQ correction for w/oDCM-Type and Deep-mixing DCM-Type. In these waters, therefore, 
P18 is still the preferred method when iPAR is not measured, and X12 + is preferred when 
iPAR is measured. As for the Shallow-mixing DCM-Type, XB18 does not represent an 
unambiguous improvement over other methods when data are low resolution, unlike at high 
resolution, possibly because the improvement of XB18 relative to other methods is most 
pronounced near the surface. 

Table 3. The same as Table 2, but for low vertical resolution data. 

Correcti
on methods 

w/oDCM-Type 
Deep-mixing DCM-

Type (ziPAR15 ≤ MLD) 
Shallow-mixing DCM-Type 

(ziPAR15 > MLD) 

MAE MAPE MPE MAE MAPE MPE MAE MAPE MPE 

Uncorr. 0.113 24.8% −17.1% 0.083 25.6% −16.1% 0.036 31.8% −11.8% 

S08 0.097 20.0% 16.5% 0.077 34.2% 24.7% 0.033 29.3% 1.0% 

X12 0.075 14.3% 10.3% 0.077 36.3% 27.4% 0.033 29.3% 1.4% 

P18 0.074 13.9% 9.6% 0.077 36.3% 27.4% *0.033 *29.3% *1.4% 

S08 + 0.072 13.2% 4.1% 0.069 25.5% 12.5% *0.033 *29.3% *1.0% 

X12 + 0.067 11.4% 2.8% 0.074 27.9% 14.2% *0.033 *29.3% *1.4% 

XB18 / / / / / / 0.033 28.7% 6.7% 

* Note that X12 + and P18 are identical to X12 and S08 + to S08 in shallow-mixing DCM-type. 
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4. Summary and recommendations 

4.1 Summary 

1) The methods S08 + and X12 + , using ziPAR15 (depth with iPAR reaching 15 μmol 
quanta m−2 s−1) and MLD, improve the NPQ correction in the deep mixing waters 
(w/oDCM-Type and Deep-mixing DCM-Type). 

2) The method XB18, using an empirical sigmoid function of iPAR (Eq. (18), improves 
the NPQ correction in the shallow-mixing waters (Shallow-mixing DCM-Type). 

 ( ) ( ) ( )( )( )( ) ( )
( )

2.2
/ 0.092 0.908 / 1 / 261 10m

XB18
XB18 10m ( 10m)

FChla z iPAR z z
z

z z

 + + ≥= 
 = <

. (18) 

3) The MLD criterion for NPQ correction of 0.03 kg m−3 is suitable. 

4) When iPAR is not available on floats, P18, using estimated euphotic depth (zeu) 
provides the optimal correction. 

4.2 Recommendations 

1) NPQ corrections are recommended for all in situ Chla fluorometry observations 
conducted during daytime, because NPQ biases the whole upper profile of FChla, 
depressing the fluorescence signal by up to 90%. 

2) To optimally correct the NPQ effect, a synchronous measurement of downwelling 
instantaneous Photosynthetically Active Radiation (iPAR) is recommended, 
especially on long-term autonomous observation platform, e.g. the BGC-Argo floats. 

3) An NPQ light threshold of ziPAR15 is recommended for S08 + and X12 + . A 
combination of X12 + (when MLD ≥ ziPAR15) and XB18 (when MLD < ziPAR15) 
provides the best overall NPQ correction for all profile types. 

4) Practically, for the implementation of procedures for BGC-Argo data quality control, 
we recommend that: 

a) In real-time for floats: the original X12 (used by the present RTQC NPQ correction 
procedures) could be taken as an initial correction. 

b) In delayed-mode for floats with iPAR: X12 + and XB18 are recommended to be applied for 
BGC-Argo floats that include iPAR measurements. 

c) In delayed-mode for floats without iPAR: P18 is recommended for all cases. 

5. Appendix: NPQ correction method based on modeled light-threshold depth 

This section describes an NPQ correction method based on the light-threshold depth (i.e., 
ziPAR15), but using the modeled iPAR profile, for the BGC-Argo floats without radiometry. 
The method is not included in the main text because its performance does not currently 
exceed that of previous methods. 

5.1 Method 

When a concurrent iPAR profile is not available, S08+ and X12+ cannot be employed 
directly. An alternative method is to estimate the iPAR profile based on the surface irradiance 
(Ed(λ,0-)), assuming a clear sky and using a solar irradiance model (GC90) [36], an empirical 
bio-optical relationship between spectral diffuse attenuation coefficients (Kd) and chlorophyll-
a concentration (MM01) [37], and the uncorrected FChla as input for Kd. The inputs of the Kd 
model [37] include the diffuse attenuation coefficient of pure sea water, Kw(λ), the slope 
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coefficient, χ(λ), and exponential coefficient, e(λ), and are used at all visible wavelengths 
from 400 nm to 700 nm (Eq. 19); Ed profiles are then propagated downward from GC90 
surface values (Eq. 20). Finally, the iPAR value is obtained through the integration of spectral 
Ed from 400nm to 700nm (Eq. 21), where h is Planck's constant and c is the speed of light. 

 ( ) ( ) ( ) ( ) ( )
.λ, z λ ,

e
d wK K Chla z

λχ λ λ= +     (19) 

 ( ) ( ) ( )z

0
λ, z λ,0 exp λ, z .d d dE E K dz−  = −    (20) 
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On the basis of such a modeled iPAR profile, we could compute ziPAR15, and then apply it 
to the light-threshold-based correction method (i.e. Eq. 10 to 13), producing two alternative 
corrected FChla profiles, called as S08m and X12m (‘m’ stands for modeled). 

6. Results 

Briefly, the model-based S08m and X12m perform better than the original S08 and X12, but 
do not show clear improvement compared to P18 (even performing worse in w/oDCM-Type, 
Table 4). The reason is that clear-sky iPAR estimation at surface is higher than the true 
measurement (figure not shown), which leads to an over-estimation of ziPAR15. 

As mentioned above, using the threshold light for NPQ correction is more consistent with 
the NPQ phenomenon and theory, than using a relative light (i.e. zeu). Therefore, we expect 
that such a light-model-based method could be further improved in the future, e.g., by 
incorporating cloud cover with data from other sources. 

Table 4. Statistical results of all correction methods for floats without radiometry. 

Correcti
on methods 

w/oDCM-Type 
Deep-mixing DCM-

Type (ziPAR15 ≤ MLD) 
Shallow-mixing DCM-

Type (ziPAR15 > MLD) 

MAE MAPE MPE MAE MAPE MPE MAE MAPE MPE 

S08 0.072 13.8% 10.0% 0.058 33.9% 26.9% 0.030 34.5% −4.6% 

X12 0.065 11.5% 6.8% 0.067 35.6% 28.2% 0.031 35.0% −2.8% 

P18 0.062 10.6% 4.7% 0.070 35.9% 27.9% *0.031 *35.0% *-2.8% 

S08m 0.070 13.2% 8.9% 0.057 33.0% 25.9% *0.030 *34.5% *-4.6% 

X12m 0.064 11.3% 6.2% 0.067 35.0% 27.6% *0.031 *35.0% *-2.8% 

* Note that X12m and P18 are identical to X12 and S08m to S08 in shallow-mixing DCM-type. 
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