- 1 Quantitative reconstruction of early Holocene and last glacial climate on the Balkan
- 2 Peninsula using coupled hydrological and isotope mass balance modelling
- 3 Jack H. Lacey ^{a,*} and Matthew D. Jones ^b
- ⁴ NERC Isotope Geosciences Facilities, British Geological Survey, Keyworth, Nottingham,
- 5 UK
- 6 b School of Geography, University of Nottingham, Nottingham, UK
- ^{*} Corresponding author (<u>jackl@bgs.ac.uk</u>)
- 8 Keywords: Lakes, modelling, stable isotopes, precipitation, water balance, Lake Ohrid

Abstract

We investigate the modern hydrology of Lake Ohrid (Macedonia/Albania) using a combined hydrological and isotope-based modelling approach and present a new evaluation of contemporary water balance and palaeoclimate estimates. The combined model is able to estimate hydrological components that cannot be directly measured, and indicates that sublacustrine spring inflow is in the order of 50% higher than previous estimates and groundwater outflow comprises approximately a third of overall water outflow. In combination with sediment core oxygen isotope data, we used the combined model to quantitatively reconstruct past climate, in particular precipitation, during the early Holocene and last glacial period. Calculated precipitation in the early Holocene was higher than the value for present day and was approximately 44% lower than present during the last glacial, assuming the majority of precipitation fell as snow. The estimated amount of precipitation in the last glacial would have been high enough to provide refugial conditions at Lake Ohrid and to support the continuous existence of arboreal vegetation in the catchment. The improved understanding of the modern isotope hydrology of Lake Ohrid is fundamental for explaining the systematics of

- past isotope variation and providing context for extended sediment records from the lake, which will provide longer-term palaeoclimate reconstructions covering multiple glacial-
- 26 interglacial cycles.

1. Introduction

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Lake Ohrid, located on the Balkan Peninsula (Figure 1), is thought to be Europe's oldest freshwater lake with continuous lacustrine sedimentation for at least the past 1.2 Ma (Wagner et al., 2017). The sensitivity of Lake Ohrid and its catchment to hydroclimate variability over the last glacial-interglacial cycle has been documented in several studies using the stable isotope composition of carbonates (Leng et al., 2010; Lacey et al., 2015), geochemical and sediment proxies (Vogel et al., 2010; Wagner et al., 2010), and terrestrial vegetation composition from pollen (Wagner et al., 2009; Panagiotopoulos et al., 2013, 2014). In 2013, an International Continental scientific Drilling Program (ICDP) deep drilling campaign, the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project, recovered a 584-m composite sediment core sequence spanning the entire history of the lake (Wagner et al., 2014, 2017). Analytical work to date encompasses the upper section of this record (ca. <640 ka) and reveals shifts to more positive values in the reconstructed oxygen isotope composition of lake water ($\delta^{18}O_L$) between glacial and interglacial phases, in particular during the transition between the last glacial and early Holocene (Lacey et al., 2016). This transition from lower glacial to higher interglacial $\delta^{18}O_L$ is opposite to the trend observed in other lake and speleothem records from the region (e.g. Roberts et al., 2008; Masi et al., 2018). In addition, the pollen record from SCOPSCO cores indicates a good correspondence between changes in the vegetation assemblage and glacial-interglacial cycles, and suggests that moisture availability was an important forcing mechanism in controlling the presence and abundance of arboreal vegetation in the catchment (Sadori et al., 2016).

Therefore, to explain the observed changes in $\delta^{18}O_L$ at Lake Ohrid between glacial and interglacial periods, and to estimate past changes in moisture availability, it is necessary to evaluate the drivers of δ^{18} O. In the Mediterranean region, water balance is typically considered to be the primary driver of lake stable isotope hydrology (Roberts et al., 2008, 2010), however it is crucial to understand the modern hydrology of individual lake systems to act as a basis for calibrating proxy-based reconstructions of past climate and environmental change. Palaeoclimate investigations based on stable isotope data from Lake Ohrid have so far only utilised simple linear regression models to understand the hydrological balance of the lake. The current understanding of water balance is derived from estimates that have been modelled using a hydrological mass balance approach (Watzin et al., 2002; Matzinger et al., 2006b), which assume negligible groundwater outflow from the lake. In this study, we use existing monitoring datasets to constrain groundwater flows and calculate a new contemporary water balance for Lake Ohrid using coupled hydrological and stable isotope mass balance modelling. We then use this model to provide a quantitative reconstruction of early Holocene and last glacial climate, in particular past changes in precipitation, in order to better explain glacial-interglacial shifts in δ^{18} O_L observed in the proxy record (Lacey et al., 2016). The reconstructed changes in climate are also used to test the hypothesis of Sadori et al. (2016) that the Lake Ohrid catchment had sufficient moisture levels during glacial phases to act as a refugium for arboreal vegetation. The new water balance model is critical to providing an improved, quantitative understanding of the modern isotope

hydrology of Lake Ohrid, which will be helpful for discerning the systematics of hydroclimate

in longer-term reconstructions from Lake Ohrid that cover multiple glacial-interglacial cycles.

2. Study site

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

Lake Ohrid (693 m a.s.l.; 40°54'-41°10'N, 20°38'-20°48'E; Figure 1) is situated on the border between the Former Yugoslav Republic of Macedonia and Albania in a Pliocene-formed tectonic graben, bounded to the east by the Galičica (2262 m a.s.l.) and Mali Thate (2287 m a.s.l.) mountains and to the west by the Mokra Mountain chain (1500 m a.s.l.). The lake is approximately 30 km long by 15 km wide and covers an area of 358 km². The lake basin has a tub-shaped morphology with a water volume of 50.7 km³, and a maximum and average water depth of 293 m and 150 m, respectively. Lake Ohrid is fed by a direct catchment area of around 1000 km², however an underground connection via karst channels to neighbouring Lake Prespa (849 m a.s.l.; 10 km east of Ohrid) expands the watershed to 2600 km² (Amataj et al., 2007). Remaining water input is derived from direct precipitation and river inflow, and output is dominated by evaporation and river outflow. Groundwater outflow is currently assumed to be negligible and has not been observed to date (Wagner et al., 2008). The climate of Lake Ohrid and its watershed is strongly dependent on both Mediterranean and continental influences, owing to the lake's location in a deep valley surrounded by high mountains and its proximity to the Adriatic Sea, and is also modified by the thermal capacity of the lake itself (Watzin et al., 2002). Average monthly air temperatures range between 2°C in winter and 21°C in summer, with absolute minimum and maximum values of approximately -15°C and 40°C in winter and summer, respectively (Figure 2). The annual distribution of precipitation belongs to the Mediterranean pluviometric regime and varies considerably depending on geographical position in the catchment (Watzin et al., 2002). Rainfall stations around the shoreline of Lake Ohrid receive an average precipitation of 773 mm/year (Figure 2), however this increases up to 1445 mm/year at higher altitudes in the catchment (Wagner et al., 2008). Prevailing wind directions are governed by the basin morphology, with northerly winds prevailing in winter and southerly winds in summer (Stankovic, 1960; Watzin et al., 2002).

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

96 **3. Methodology**

97

3.1 Hydrological mass balance

- The annual water mass balance of a well-mixed lake can be described (e.g. Gibson et al., 2002;
- 99 Steinman et al., 2010) as the change in lake volume (V) per unit time (T), which is a function
- of the sum of water inputs (I) and outputs (Q), and may be written as

$$101 \qquad \frac{dV}{dT} = \sum I - \sum Q \tag{1}$$

- Water inputs to a lake comprise direct precipitation on the lake surface (PL), surface runoff (Si)
- and groundwater inflow (G_i). Water outputs include evaporation (E), surface outflow (S_q) and
- groundwater discharge (G_q), such that

$$105 \frac{dV}{dT} = P_L + S_i + G_i - E - S_q - G_q (2)$$

- For Lake Ohrid, inputs for equation (2) are derived from previous investigations of lake and
- 107 catchment hydrology as described below.
- 108 Precipitation (PL)
- The average annual precipitation recorded at meteorological stations situated throughout the
- Lake Ohrid catchment varies between 703 and 1445 mm/year, however for stations located
- close to the lake the yearly average is 773 mm/year (Figure 2; Watzin et al., 2002). Given that
- Lake Ohrid has a surface area of 358 km², the total amount of precipitation falling over the
- entire surface area of the lake is calculated to be 8.8 m³/s.
- 114 Surface (S_i) and groundwater (G_i) inflow
- The primary surface inflow to Lake Ohrid is the River Sateska, which has a total discharge of
- 7.2 m³/s (Figure 2; Watzin et al., 2002). However, as the river was previously a direct tributary

of the main outflow from Ohrid and diverted into the lake in 1962, we do not incorporate the Sateska inflow in our calculations here as our focus is on the long-term palaeo record (the impact on the isotope composition of lake water, δ_L , is discussed later). Other tributaries, for example the Pogradec, Koselka, and Verdova rivers, and catchment runoff have lower discharge rates totalling 7.2 m³/s (Watzin et al., 2002). Groundwater inflow to Lake Ohrid occurs through a network of surface and sub-lacustrine springs. The surface springs consist of three main complexes to the south and north-east of the lake, of which the largest is a collection of 15 springs located at the southern site of St Naum with an average discharge of 7.5 m³/s (Figure 2; Popovska and Bonacci, 2007). To the west of St Naum, near the village of Tushemisht, a second zone comprising 80 springs has an annual discharge of 2.5 m³/s and the Biljana springs to the north-east of Lake Ohrid have a discharge of 0.3 m³/s (Watzin et al., 2002). Artificial and environmental tracer experiments have shown that the water in surface springs is not solely derived from atmospheric precipitation in the catchment, as a proportion is transferred from nearby Lake Prespa through underground karst channels (Amataj et al., 2007; Eftimi et al., 2007). Lake Prespa has a higher surface area to volume ratio in comparison to Lake Ohrid and its waters have a more positive average isotope composition (Leng et al., 2010), which imparts a characteristic shift when combined with meteoric water in the underground karst system. Two-component mixing analysis conducted using stable isotope and Cl- data suggests that the ratio of water originating from Lake Prespa, compared to meteoric precipitation, is around 53% at the Tushemisht springs and 42% at St Naum (Table 1; Anovski et al., 1991; Eftimi and Zoto, 1997; Anovski, 2001; Eftimi et al., 2001; Matzinger et al., 2006a). The Biliana spring waters are derived solely from meteoric precipitation and not influenced by Lake Prespa (Eftimi et al., 2007).

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

The surface springs around Lake Ohrid receive approximately 4.5 m³/s of water from Lake Prespa (Table 1), however total water outflow from Lake Prespa draining into the underground karst system is estimated to total 7.7 m³/s (Anovski, 2001). The remaining 3.2 m³/s of outflow from Lake Prespa is most likely transferred to Lake Ohrid through the sublacustrine network of springs along the lake's eastern margin (Matzinger et al., 2006a). A precise value for the total inflow derived from the sublacustrine springs is currently unknown. Matzinger et al. (2006b) assume a value of 9.9 m³/s for total sublacustrine spring inflow, thereby implying a meteoric component of 6.7 m³/s when the contribution from Lake Prespa is considered, however this value was determined by closing the balance rather than being a direct measure of flowrate. The meteoric component of sublacustrine spring inflow is therefore unknown and termed GiX here.

152 Evaporation (E)

- 153 Although a direct measurement of evaporation is unavailable for Lake Ohrid, the rate can be 154 estimated using the Linacre (1992) simplification of the Penman (1948) formula for open water
- evaporation:

$$156 \qquad E = [0.015 + 4 \times 10^{-4} \, T_a + 10^{-6} \, z] \times [480 (\, T_a + 0.006 \, z) / (84 - A) - 40 + 2.3 \, u \, (\, T_a - 1.006 \, z) / (1.006 \, z)$$

$$[157 T_d] \text{ (mm/day)} (3)$$

where T_a is the average air temperature (°C), z is the altitude, A is latitude, u is wind speed

(m/s), and T_d is the dew point temperature ($T_d = 0.52 T_{min} + 0.60 T_{max} - 0.009 T_{max}^2 - 2.0 ^{\circ}C$).

Based on climatological measurements between 1961 and 1990 at Pogradec (Figure 2), the

average air temperature at Lake Ohrid is 11.7°C, average maximum temperature is 26.2°C,

average minimum temperature is -0.8°C, and average wind speed is 2.3 m/s (Watzin et al.,

2002). Using Equation 3 (Linacre, 1992), evaporation from Lake Ohrid is estimated to be 13.7

- 164 m³/s, which is similar to a previous estimate calculated using Penman (1948) of 13.0 m³/s
- 165 (Watzin et al., 2002; Matzinger et al., 2006b).
- 166 Surface (S_q) and groundwater (G_q) outflow
- 167 The only surface outflow from Lake Ohrid is the river Crn Drim at the northern margin of the
- lake, which has a measured average discharge rate of 22 m³/s (Watzin et al., 2002). When the
- diversion of the River Sateska is considered, and assuming that any increased outflow is
- directly proportional to increased inflow, the pre-1962 rate is taken to be 14.8 m³/s.
- 171 Groundwater outflow from Lake Ohrid has not been observed to date (Wagner et al., 2008) and
- is not considered by previous water balance models (Watzin et al., 2002; Matzinger et al.,
- 173 2006b). However, given that Triassic limestone crops out along the western margin of Lake
- Ohrid and the basin is characterised by active faulting (Reicherter et al., 2011; Lindhorst et al.,
- 175 2015), the potential for a component of groundwater outflow should not be excluded.
- 176 Hydrological mass balance
- 177 A revised water balance for Lake Ohrid that includes estimates for groundwater fluxes into and
- out of the lake, based on data outlined above, is shown in Table 2. The unquantified component
- of groundwater input through the sublacustrine spring network sourced from meteoric
- precipitation is substituted as G_iX. If a steady state is assumed for Lake Ohrid, such that no
- change in lake volume is observed over a given period (dV/dT = 0), then the sum of water
- inputs is equal to the sum of water outputs and Equation (2) can be rewritten for Lake Ohrid:

183
$$P_L + S_i + G_i P + G_i S + G_i X = E + S_a + G_a$$
 (4)

- where G_i comprises the output from Lake Prespa (G_iP), and the measured surface spring (G_iS)
- and unknown sublacustrine spring (G_iX) components of groundwater inflow derived from
- meteoric precipitation (i.e. $G_i = G_iP + G_iS + G_iX$).

187 Using the revised water balance (Table 2) and Equation (4), the hydrological mass balance for

188 Lake Ohrid may be written as

$$189 29.5 + G_i X = 28.5 + G_a (5)$$

which can be simplified to

191
$$G_q - G_i X = 1.0 \text{ (m}^3/\text{s)}$$
 (6)

- Although the parameters G_iX and G_q cannot be directly measured, it is possible to calculate
- their values through isotope mass balance.

194 **3.2 Isotope mass balance**

- The isotope mass balance of a lake is defined (e.g. Steinman et al., 2010; Gibson et al., 2016;
- Jones et al., 2016) as the sum of the products of water flux (P_L, S_i, G_i, E, S_q, G_q) and the isotope
- composition of the respective inflows (δ_{PL} , δ_{Si} , δ_{Gi}) and outflows (δ_{E} , δ_{Sq} , δ_{Gq}), which can be
- 198 expressed as

$$\frac{dV\delta_L}{dT} = P_L \delta_{PL} + S_i \delta_{Si} + G_i \delta_{Gi} - E \delta_E - S_q \delta_{Sq} - G_q \delta_{Gq}$$
 (7)

- 200 Isotope composition of inflows (δ_{PL} , δ_{Si} , δ_{Gi})
- 201 As part of an IAEA Regional Project the isotope composition of precipitation falling directly
- on the lake's surface (δ_{PL}) was measured at the St Naum spring complex, which determined
- that mean annual weighted $\delta^{18}O = -8.4$ % and $\delta D = -52.9$ % (Figure 3; Anovski, 2001).
- We take $\delta^{18}O = -10.1 \pm 0.5$ % and $\delta D = -67.4 \pm 3.1$ %, average spring water values from data
- collected periodically over a 30-year period (Figure 3; Anovski et al., 1980, 1991, 2001; Eftimi
- and Zoto, 1997; Leng et al., 2010), to represent the isotope composition of surface and
- groundwater inflows fed directly by atmospheric precipitation (δ_{IN}), such that $\delta_{IN} = \delta_{Si} = \delta_{Gi}$.

These values are more negative than for δ_{PL} as infiltration will be principally derived from precipitation at higher altitudes in the Ohrid catchment (Anovski, 2001), which rises to approximately 1600 m above lake level in the Galičica mountain range separating Lake Ohrid and Lake Prespa (Francke et al., 2016). In addition, a large proportion of the precipitation across the catchment likely falls as snow. The pattern of annual discharge of the River Sateska is at a maximum in early spring following snowmelt (Figure 2; Matzinger et al., 2006b). Snow is typically characterised as having a lower isotope composition than the equivalent rainfall as it reflects fractionation at lower temperatures at within-cloud conditions (Gat, 1996; Darling et al., 2006; Dean et al., 2013).

- The Prespa-fed component of surface and sublacustrine springs is assumed to be homogenous with Prespa lakewater (δ_{LP}), which has been measured over a 30-year period to have average $\delta^{18}O = -1.5 \pm 0.6 \%$ and $\delta D = -20.5 \pm 3.6 \%$ (Figure 3; Leng et al., 2010).
- *Isotope composition of outflows* (δ_E , δ_{Sq} , δ_{Gq})

The isotope composition of evaporation (δ_E) is difficult to measure directly, and so is typically calculated using the Craig and Gordon (1965) evaporation model (e.g. Steinman et al., 2010):

$$\delta_E = \frac{(\alpha^* \times \delta_L) - (h \times \delta_A) - \varepsilon}{1 - h + (0.001 \times \varepsilon_K)} \tag{8}$$

where α^* is the reciprocal of the equilibrium isotope fractionation factor (α) calculated for $\delta^{18}O$ (eq. 9) and δD (eq. 10) using the equations of Horita and Wesolowski (1994), and Tw is the temperature of lake surface water (in degrees K) assumed to be 287.2 K (Stankovic, 1960).

$$227 \quad \ln \alpha = 0.35041 \left(\frac{10^6}{T_W^3}\right) - 1.6664 \left(\frac{10^3}{T_W^2}\right) + 6.7123 \left(\frac{1}{T_W}\right) - 7.685 \times 10^{-3}$$
 (9)

$$228 \quad \ln\alpha = 1.1588 \left(\frac{T_w^3}{10^9}\right) - 1.6201 \left(\frac{T_w^2}{10^6}\right) + 0.79484 \left(\frac{T_w}{10^3}\right) + 2.9992 \left(\frac{10^6}{T_w^3}\right) - 161.04 \times 10^{-3} (10)$$

- The normalised relative humidity (h; eq. 11) is the quotient of the saturation vapour pressure of the overlying air (e_{s-a}) and the saturation vapour pressure at the surface water temperature (e_{s-w}) (eq. 12; Steinman et al., 2010), which relates measured relative humidity (RH = 72.0%) to average annual temperature (T) of air (11.7°C) or lake water (14.0°C).
- $233 h = RH \times \frac{e_{s-a}}{e_{s-w}} (11)$

234
$$e_{s-a \& s-w} = 6.108 \times e^{\frac{17.27 \times T}{T+237.7}}$$
 (12)

- The isotope composition of atmospheric moisture (δ_A) is assumed to be in equilibrium with precipitation (eq. 13). The equilibrium isotopic separation factor (ϵ^* ; eq. 14) is the difference between the isotope composition of precipitation and atmospheric moisture (Gibson et al.,
- 238 2002), which is known to be a function of temperature (eq. 9 and 10; Gonfiantini, 1986).

$$\delta_A = \delta_P - \varepsilon^* \tag{13}$$

$$240 \qquad \varepsilon^* = 1000 \times (1 - \alpha^*) \tag{14}$$

In addition to ε*, the total isotope separation factor (ε; eq. 15) also comprises a kinetic component (εκ; Gibson et al., 2002), which is constrained for both oxygen and hydrogen (eq. 16 and 17; Gonfiantini, 1986).

$$244 \varepsilon = \varepsilon^* + \varepsilon_K (15)$$

$$\varepsilon_K = 14.2 \times (1 - h) \text{ for } \delta^{18} O \tag{16}$$

246
$$\varepsilon_K = 12.5 \times (1 - h) \text{ for } \delta D$$
 (17)

In larger lakes, such as Ohrid, evaporation can have a significant influence on the overlying atmosphere producing a moisture feedback, and it is therefore important to consider the effects on kinetic fractionation (eq. 18). As lakewater evaporates, the fraction (f) of evaporate

- incorporated in the overlying atmosphere modifies δ_A by the addition of δ_E to form δ'_A (Gibson
- 251 et al., 2016).

$$\delta'_{A} = (1 - f)\delta_{A} + f\delta_{E}$$
(18)

- In a feedback system, the modified isotope composition of evaporation (δ'_E) is therefore defined
- 254 as:

$$\delta'_{E} = \frac{(\alpha^* \times \delta_L) - (h \times \delta'_A) - \varepsilon}{1 - h + (0.001 \times \varepsilon_K)}$$
(19)

- In addition to evaporation, outflow through the river Crn Drim (δ_{Sq}) and any groundwater flux
- 257 (δ_{Gq}) is assumed to have the same isotope composition as average δ_L , where $\delta^{18}O = -3.5 \pm 0.3$
- 258 % and $\delta D = -31.7 \pm 1.6$ % (Figure 3; Anovski et al., 1980, 1991; Eftimi and Zoto, 1997;
- 259 Matzinger et al., 2006b; Leng et al., 2010).
- 260 Isotope mass balance
- The revised water balance (Table 2) allows Equation (7) to be re-expressed for Lake Ohrid:

$$\frac{dV\delta_L}{dT} = P_L \delta_{PL} + S_i \delta_{IN} + G_i P \delta_{LP} + G_i S \delta_{IN} + G_i X \delta_{IN} - E \delta_{E'} - S_q \delta_L - G_q \delta_L$$
 (20)

- Assuming lake volume is constant through time, such that $dV \delta_L/dT = 0$, Equation (20) can be
- re-expressed and simplified to

265
$$P_L \delta_{PL} + (S_i + G_i S + G_i X) \delta_{IN} + G_i P \delta_{LP} = E \delta_{E'} + (S_q + G_q) \delta_L$$
 (21)

- Given the above, by then iteratively solving equations 18 and 19, for both $\delta^{18}O$ and δD with
- varying f, and by simultaneously evaluating equations 6 and 21 until G_iX and G_q converge, for
- both $\delta^{18}O$ and δD scenarios, a balanced model, both hydrologically and isotopically, for Lake
- Ohrid can be obtained.

4. Results and discussion

4.1. Isotope mass balance

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

The iterative calculation of G_iX and G_q suggests flow rates of 15.3 and 16.3 m³/s, respectively, providing a new estimate of water balance for Lake Ohrid (Table 3). Sublacustrine spring inflow of 15.3 m³/s is approximately 50% higher than in existing hydrological models for the lake (e.g. Matzinger et al., 2006b), and groundwater outflow, previously assumed to be negligible, of 16.3 m³/s comprises roughly a third of total water output from Lake Ohrid. For conservation of isotope mass balance the fraction of evaporate incorporated into the overlying atmosphere is approximately f = 33% (Figure 4), which is of a consistent order of magnitude with other larger lakes such as Lake Superior (40%), Lake Michigan (33%), and Lake Ontario (27%) (Jasechko et al., 2014). The new water balance gives total water output (evaporation, surface and groundwater outflow; Table 3) from Lake Ohrid to be 44.8 m³/s, which, combined with the lake's volume (50.7 km³), suggests a calculated water residence time for the lake of approximately 36 years. As the entire water column experiences complete overturn once every 7 years and the upper 200-m on an annual basis (Matzinger et al., 2006b, 2007), the lake water mixes completely several times within the calculated residence time, which may be lower than actual residence time by up to a factor of 4 (Ambrosetti et al., 2003; Wagner et al., 2017). Further, the new calculated value for total water input is < 3% of the overall lakewater volume, and given the lake is well-mixed within its water residence time, any seasonal and inter-annual variations in δ_L will likely be buffered by the large volume and long residence time. This is highlighted by the contemporary monitoring data (Figure 3), which show that δ_L has remained very consistent over the past 30 years and that the lake is an isotopically well-mixed system $(\delta^{18}O = -3.5 \pm 0.3 \%)$; Leng et al., 2013 and references therein).

4.2 Estimating past hydrological balance

Isotope-based reconstructions of past climate require a good understanding of the contemporary hydrological system, and by using the established stable isotope mass balance model for the modern environment (as presented above) we can use isotope measurements from core sequences to give quantitative estimates of past changes in the hydrological balance at Lake Ohrid. Over the past 640 ka, one of the largest changes in reconstructed $\delta^{18}O_L$ is between the last glacial and the Holocene (Lacey et al., 2016). Average $\delta^{18}O_L$ during the last glacial is roughly 3 ‰ more negative than during the Holocene (Lacey et al., 2016), which is the same magnitude of change as indicated for neighbouring Lake Prespa (Leng et al., 2013). This substantial shift in $\delta^{18}O_L$ could be related to changes in moisture availability, which is also suggested to be a primary driver of changes in catchment vegetation (Lézine et al., 2010; Panagiotopoulos et al., 2014; Sadori et al., 2016). Moisture availability is important for sustaining tree populations and it has been suggested that the Lake Ohrid catchment received enough moisture to enable the survival of arboreal vegetation, even during glacial periods (Sadori et al., 2016). However, glacial phases are typically characterised by more positive δ^{18} O values in central and eastern Mediterranean lake sequences (Roberts et al., 2008; Giaccio et al., 2015) and in speleothem records (Regattieri et al., 2018).

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

To better qualify the extent of water availability, and the precipitation changes that control it, across this time frame, we reconstruct here the change in precipitation during the last glacial and the early Holocene using the stable isotope mass balance model for Lake Ohrid and compare the output to other regional records and climate models.

- Precipitation (P_L) , surface inflows (S_i) and groundwater inflow (G_i)
- Values for P_L at Lake Ohrid during the early Holocene and last glacial are unknown. The inflows S_i, G_iS, and G_iX are all a component of catchment-derived meteoric precipitation, therefore the values can be represented by a single inflow term, I_i, where:

$$318 I_i = S_i + G_i S + G_i X (22)$$

If precipitation over the catchment increases or decreases, P_L will change together with concomitant change in the components of I_i. For estimating past hydrological balance, we assume that variations in P_L and I_i during the early Holocene and last glacial are consistent with their present-day ratio. As P_L is equivalent to 8.8 m³/s and I_i to 27.8 m³/s (Table 3; Equation 22), then:

$$324 I_i = 3.2 \times P_L (23)$$

- We take the present outflow from Lake Prespa (G_iP) to be constant for the early Holocene and
- last glacial at $7.7 \text{ m}^3/\text{s}$.
- Evaporation (E), surface outflow (S_q), and groundwater outflow (G_q)
- 328 To estimate past rates of evaporation, a pollen record from nearby Lake Maliq can be used to 329 evaluate local temperature change. The average temperature difference between the present 330 and early Holocene is reconstructed to be -1°C and for the last glacial -7°C (Bordon et al., 331 2009), which is consistent with the reconstructed pattern of regional temperature change (Davis 332 et al., 2003), also from pollen data. Although there is no way to calculate palaeo-wind speeds, 333 Jones et al. (2007) suggest Late Glacial average wind velocities may be double that of 334 contemporary measured values in the eastern Mediterranean. At Lake Ohrid, maxima in Cr/Ti 335 and Zr/Ti infer stronger wind activity during glacial periods (Vogel et al., 2010), and so a value of 4.6 m/s is used for last glacial wind speed. If it is assumed that maximum and minimum 336 337 temperatures are similarly reduced as for average temperature, evaporation decreases to 12.3 m³/s during the early Holocene and to 6.3 m³/s in the last glacial. 338
- Surface and groundwater outflow for the early Holocene and last glacial are unknown, but as both are a function of lakewater export (Q_q), the parameters S_q and G_q can be combined:

$$341 Q_q = S_q + G_q (24)$$

342 Isotope composition of inflows (δ_{PL} , δ_{IN} , δ_{LP})

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

In the Mediterranean region, contemporary rainfall isotope data show a positive correlation between temperature and the isotope composition of precipitation (δ_P) of around +0.3 %/°C, which compares well with simulated palaeo relationships at the Last Glacial Maximum (LGM; Bard et al., 2002; Zanchetta et al., 2007). There is also a correspondence between the amount of precipitation and δ_P , where modern $\delta^{18}O_P$ decreases by -1.6 % for every 100 mm increase in monthly precipitation (Bard et al., 2002), however as changes in P_L are unknown the amount effect is discussed later. Given the temperature reconstruction from nearby Lake Maliq (Bordon et al., 2009), this implies that δ_P would have been -2.1 % lower in the last glacial (-7 °C) when compared to the late Holocene. When considering glacial-interglacial shifts in δ_P , changes at the source of δ_P must also be taken in to account. Glacial seawater was roughly 1 % higher on average during the LGM due to the expansion of global ice volume (Schrag et al., 2002), and local evaporative enrichment in the Mediterranean resulted in a change of +1.2 \% (Paul et al., 2001). In the Ionian Sea, west of Lake Ohrid, the glacial-interglacial change in δ^{18} O is estimated to be nearer to +1.3 % (Emeis et al., 2000). This suggests that the combined effect of temperature and source $\delta^{18}O$ changes between the last glacial and late Holocene would therefore be approximately -0.8 %. Assuming that δ^{18} O of Mediterranean seawater in the Holocene had a relatively similar isotope composition to today, as observed for the Ionian Sea (Emeis et al., 2000), we take early Holocene (-1 °C) δ_P to be -0.3 % compared to late Holocene values. As temperatures in the early Holocene were similar to those at present, we assume a comparable precipitation regime (rainfall vs. snowfall) and take the variation in δ_P of -0.3 % to also apply

for δ_{IN} . However, in the last glacial, much of the precipitation at higher altitudes across the

Ohrid-Prespa catchment may have fallen as snow, as indicated by climate model simulations for the region at the Last Glacial Maximum (Robinson et al., 2006). The snow may have also been incorporated into ice sheets during phases of glacial expansion (Ribolini et al., 2011). Snowfall reflects equilibrium conditions at the point of in-cloud formation and so comprises significantly lower $\delta^{18}O$ (Darling et al., 2006), which is highlighted by Dean et al. (2013) who report snowfall $\delta^{18}O$ of around -16 ‰ in the catchment of Lake Nar in central Turkey, compared to typical average rainfall values of around -10.6 ‰ (Jones et al., 2005). As much of the present stream and spring inflow to Lake Ohrid is fed by higher altitude precipitation over the catchment and spring snowmelt (Matzinger et al., 2006b), we approximate δ_{1N} during the last glacial to $\delta^{18}O = -16$ ‰.

The transfer of water from Lake Prespa to Lake Ohrid during the early Holocene and last glacial is assumed constant, although δ_{LP} will vary between the two intervals. Measured $\delta^{18}O$ for endogenic calcite (Holocene) and authigenic siderite (last glacial) is available from cores recovered from Lake Prespa (core Co1215; Figure 1), where $\delta^{18}O_{\text{calcite}}$ in the early Holocene is -2.8 % and $\delta^{18}O_{\text{siderite}}$ in the last glacial is -1.4 % (Figure 5; Leng et al., 2010, 2013). Assuming a temperature of 19°C for summer lakewater at Prespa (time of endogenic calcite precipitation) in the early Holocene and 4.7°C (air temperature) for glacial bottom water (environment of authigenic siderite precipitation), δ_{LP} is calculated to be -2.1 % for the early Holocene (using Hays and Grossman, 1991) and -5.8 % during the last glacial (using Zhang et al., 2001).

 δ^2 H is estimated for δ_{PL} , δ_{IN} , and δ_{LP} using the modern local evaporation line (δ^2 H = 5.4 δ^{18} O – 12.8), defined by water measurements collated over a ca. 30-year period (Anovski et al., 1980, 1991; Eftimi and Zoto, 1997; Anovski, 2001; Matzinger et al., 2006b; Jordanoska et al., 2010; Leng et al., 2010, 2013).

Isotope composition of outflows (\delta_{E}, \delta_{Sq}, \delta_{Gq})

The isotope composition of evaporation is calculated iteratively using equations 18 and 19, and a variable f. This is achieved by simultaneously evaluating hydrological and isotope mass balance equations 25 and 26 to solve for P_L and Q_q (Figure 4), which are balanced for both $\delta^{18}O$ and δD as in the present-day mass balance model.

$$393 4.2P_L + G_i P = E + Q_a (25)$$

394
$$P_L \delta_{PL} + 3.2 P_L \delta_{IN} + G_i P \delta_{LP} = E \delta_{E'} + Q_a \delta_L$$
 (26)

Equations 25 and 26 are derived by combining equations 4 and 21 with equations 23 and 24, respectively. To calculate δ_E (for use in Equation 18), we take the same temperature change as for calculating E and assume a relative humidity of 73% for the early Holocene (based on the present relationship between RH and temperature) and 50% for the last glacial. Over interglacial-glacial timescales, relative humidity is suggested to reduce with decreasing temperatures as less moisture is available due to lower evaporation rates (Lemcke and Sturm, 1997; Jones et al., 2007), and lower RH during the last glacial is confirmed for the Balkan region by a pollen-based humidity-index from the Aegean Sea (Kouli et al., 2012).

To determine the past isotope composition of lakewater outflow, assumed to be equivalent to δ_L during respective time periods, we use measured $\delta^{18}O_{calcite}$ of -6.0 % for the early Holocene (average for 8.5-9 ka from core Co1262; Lacey et al., 2015) and measured $\delta^{18}O_{siderite}$ of -4.0 % for the last glacial (average for 16-42 ka from core 5045-1, Figure 5; Lacey et al., 2016). As for the Lake Prespa calculations, we assume a temperature of 19°C for summer lake water in the early Holocene and 4.7°C for glacial bottom water. Conversion to $\delta^{18}O_L$ gives -5.3 % during the early Holocene and -8.1 % during the last glacial (calculated using Hays and Grossman, 1991; Zhang et al., 2001).

Model output and sensitivity tests

412 The calculated hydrological balance for Lake Ohrid during the early Holocene and last glacial 413 period is given in Table 4. The iterative calculation of P_L suggests that precipitation was around 414 26% higher in the early Holocene (11.1 m³/s or 978 mm/year) and 44% lower in the last glacial 415 (4.9 m³/s or 432 mm/year), in comparison to the late Holocene (Table 4). 416 The hydrological balance model output is dependent on estimates of past temperature, 417 evaporation, wind speeds, and δ_P (including the isotope composition and seasonality of 418 precipitation). The possible variability in these parameters, and any influence this may have on 419 the calculation of past hydrological balance, can be assessed using sensitivity tests. 420 Palaeotemperatures are estimated from a reconstruction based on a nearby pollen sequence 421 (Bordon et al., 2009), and influence the calculation of evaporative flux from the lake and the 422 amount of direct precipitation (P_L) through the iterative calculation of δ'E. The calculation of 423 past evaporative flux uses estimates for temperature and wind speed, and sensitivity analysis 424 suggests that wind speed has less influence on evaporation compared to changes in temperature 425 (Figure 6). Wind speeds would have to increase to \sim 22 m/s (assuming mean air temperature = 426 4.7 °C), or average temperature would have to be similar to the early Holocene (10.4 °C; 427 assuming wind speed = 4.6 m/s), before evaporation during the last glacial was equivalent to 428 the modern evaporative flux. Changing the estimate of past temperature by $\pm 2^{\circ}$ C for the 429 iterative calculation of δ'E and P_L (i.e. twice the reconstructed change between the early and 430 late Holocene; Bordon et al., 2009) suggests that temperature changes do not overly effect the resulting value for P_L, where a +1°C change leads to +1 m³/s in P_L in the early Holocene (Table 431 432 5). This also assumes a simultaneous change in evaporation, with other parameters held 433 constant, as varying air temperature influences the calculation of evaporative flux. In the late Glacial, temperature changes have less effect on P_L than in the early Holocene, as a +1°C 434 change leads to around +0.7 m³/s in P_L (Table 5). 435

In the last glacial, δ_{IN} is approximated to $\delta^{18}O = -16$ ‰ as high-altitude precipitation in the catchment and snowmelt is a major component of stream and spring inflow to Lake Ohrid, so a greater component of annual precipitation would likely comprise snowfall during colder glacial phases. Sensitivity analysis shows that changes in δ_{IN} only have a minor effect on the calculated value for P_L , where varying $\delta^{18}O_{IN}$ between -16 % and -13 % produces up to a 2.9 m^3/s change in P_L (Figure 6). It is only when δ_{IN} approaches δ_{PL} that larger variations in P_L are predicted, however δ_{IN} will always be lower than δ_{PL} due to an altitude effect and the elevation difference between Lake Ohrid and its catchment. Therefore, reduced P_L during the last glacial is possible even when seasonality changes in precipitation are taken into account. The sensitivity analysis of changing P_L with respect to δ_{PL} also suggests that the amount effect, where variable P_L forces changes in δ_{PL} , would only drive small changes in calculated values for P_L. The relationship between modern monthly precipitation and δ^{18} O is around -1.6 % per 100 mm change (based on Global Network for Isotopes in Precipitation data from Pisa, Genoa, and Palermo), although this may have been up to -3.9 % per 100 mm at the LGM (Bard et al., 2002). The estimated change in P_L in the early Holocene of +205 mm/year may therefore equate to an amount effect of between -0.3 % and -3.3 %, depending on the seasonality of additional precipitation. If these values are taken into account and lower δ_{PL} and δ_{IN} are incorporated into the model for the early Holocene the estimated value for P_L is reduced, which is unlikely given regional precipitation reconstructions for this time (e.g. Brayshaw et al., 2011; Peyron et al., 2017). Similarly, during the last glacial, the estimated change of -341 mm/year may equate to an amount effect of between +0.5 % and +13.3 %, depending on the seasonality of

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

only if the seasonality of precipitation was such that δ_{IN} approached δ_{PL} (i.e. restricted snowfall) would changes in δ_{PL} be overly influenced by the amount effect (Figure 6).

precipitation and whether the contemporary or LGM relationship is considered. Sensitivity

analysis for the last glacial suggest that varying δ_{PL} results only in a minor change in P_L , and

4.3 Past hydrological balance

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

Greater precipitation in the early Holocene is consistent with the shift to lower δ^{18} O observed in lake carbonate and speleothem records from across the Balkan Peninsula (Constantin et al., 2007; Francke et al., 2013; Leng et al., 2013; Drăguşin et al., 2014), and a regional shift to lower δ^{18} O across other Mediterranean lake records (Lamb et al., 1989; Frogley et al., 2001; Zanchetta et al., 2007; Roberts et al., 2011; Dean et al., 2015). This is further supported by lake level reconstructions from Italy and Greece that indicate deeper water conditions during the early Holocene (Digerfeldt et al., 2000; Magny et al., 2007, 2011; Joannin et al., 2012), and increased river discharge into the Gulf of Salerno (Naimo et al., 2005). Pollen-inferred reconstructions of precipitation from marine and terrestrial records show a wetter regional climate regime across the central and eastern Mediterranean during the early Holocene (Peyron et al., 2017), where rainfall is estimated to have been roughly 20% higher than present in central Anatolia and the southern Levant based on other isotope records (Bar-Matthews et al., 2003; Jones et al., 2007). Global and regional climate model simulations also suggest that the southern Balkan Peninsula experienced one of the largest increases in rainfall during the early Holocene set against stronger precipitation across the Mediterranean region as a whole compared to the present (Brayshaw et al., 2011). The substantial decrease in precipitation calculated for the last glacial period is broadly consistent with pollen-based rainfall estimates for the Late Glacial and Younger Dryas from nearby Lake Malig (~ 300 mm/year; Bordon et al., 2009), and a 50% reduction in winter precipitation between the Late Glacial and early Holocene over the borderlands of the Aegean Sea (Kotthoff et al., 2008). Model simulations of past climates for the last glacial, typically focussed on the Last Glacial Maximum (ca. 21 ka), indicate reduced precipitation relative to present day, but also suggest that evaporation still likely exceeded precipitation at this time (Robinson et al., 2006), which may be due a southward shift in Mediterranean storm tracks

(Goldsmith et al., 2017). The pollen record from Lake Ohrid suggests that glacial periods were typically characterised by cold and dry conditions, as shown by the dominance of non-arboreal pollen indicative of an open environment, which was dominated by steppes and steppe forests during the last two glacial periods (Sadori et al., 2016). However, even during glacial periods, environmental conditions at Lake Ohrid did not appear to cross ecological tolerance thresholds as most arboreal taxa have a continuous presence in the record over the past ca. 500 ka. This suggests that the lake's catchment may have acted as a refugium area for tree populations (Sadori et al., 2016), similar to Lake Ioannina in western Greece (Tzedakis et al., 2002), but in contrast to other eastern Mediterranean sites where arboreal taxa often disappear during glacials due to a more continental climate and lower moisture availability (Okuda et al., 2001; Tzedakis et al., 2004). At Lake Ohrid, the calculated annual precipitation of around 432 mm/year (or 4.9 m³/s) during the last glacial (Table 4) is above the threshold of approximately 300 mm for the survival of temperate tree populations (e.g. Zohary, 1973). Rainfall is also observed to be greater across the catchment compared to directly over the lake, as average rainfall across the watershed is 907 mm, whereas direct precipitation on the lake is lower at 773 mm (Watzin et al., 2002; Popovska and Bonacci, 2007). This suggests that the calculated value for direct precipitation of 432 mm during the last glacial will be lower than for the catchment as a whole. In addition, the fraction of evaporate added to overlying atmospheric vapour is calculated to be only slightly higher than present for the early Holocene (0.36), but is estimated to be much higher for the last glacial (0.73), suggesting that the lake would have provided additional moisture to its surroundings during dry phases. Therefore, the estimate for last glacial precipitation supports the suggestion of Sadori et al. (2016) that refugial conditions most likely occurred in the Lake Ohrid catchment area during glacial periods.

5. Conclusions

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

This work provides an improved, quantitative understanding of the modern isotope hydrology of Lake Ohrid by re-evaluating groundwater fluxes, which is helpful for explaining the systematics of past climate variations recorded in proxy records from the lake. By incorporating contemporary isotope data into hydrological and isotope mass balance models, we have been able to provide a more robust estimate for the water balance of Lake Ohrid. The new model incorporates underground inflow and outflow components that cannot be directly measured. Groundwater inflow through sublacustrine springs derived from meteoric precipitation is calculated to be 15.3 m³/s, which is around 50% more than predicted in previous water balance models. Groundwater outflow, previously assumed to be negligible, is estimated to be 16.3 m³/s and comprise roughly a third of outflow from Lake Ohrid. The new estimate of groundwater outflow decreases the importance of evaporation at only a third of total water output. Therefore, overall changes in the amount of precipitation, and associated changes in throughflow, may have greater influence on δ^{18} O rather than isotope variations being intrinsically linked to changes in the precipitation to evaporation ratio. Estimated values for hydrological balance in the early Holocene suggest that precipitation at Lake Ohrid was up to 26% higher than the value for present day, which is consistent with local and regional palaeoclimate records and climate model simulations. Precipitation during the last glacial is calculated to have been around 44% lower than present. The model also suggests that during recent glacial phases the reconstructed shift to low $\delta^{18}O_L$ from sediment core data can be accounted for, even when precipitation is greatly reduced. This assumes that the majority of precipitation fell in winter as snow within the Lake Ohrid catchment, similar to climate model predictions for the Last Glacial Maximum. The amount of precipitation during the last glacial was above the critical threshold to support the continuous presence of arboreal vegetation

within the catchment, suggesting that refugial conditions existed even through glacial phases.

6. Acknowledgements

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

- Part of this work was undertaken during the PhD of JHL which was funded by the British
- Geological Survey University Funding Initiative (BUFI). We are grateful to Melanie Leng for
- providing feedback on earlier drafts of this work, and thank Gianni Zanchetta and an
- anonymous reviewer for their useful comments which significantly improved the final
- manuscript.

540

7. References

- 541 Amataj, S., Anovski, T., Benischke, R., Eftimi, R., Gourcy, L. L., Kola, L., Leontiadis, I.,
- Micevski, E., Stamos, A., and Zoto, J., 2007, Tracer methods used to verify the hypothesis of
- 543 Cvijić about the underground connection between Prespa and Ohrid Lake: Environmental
- 544 Geology, v. 51, no. 5, p. 749-753.
- Ambrosetti, W., Barbanti, L., Sala, N., 2003, Residence time and physical processes in lakes:
- 546 Journal of Limnology, vol. 62, p. 1–15, doi:10.4081/jlimnol.2003.s1.1, 2003.
- 547 Anovski, T., 2001, Progress in the Study of Prespa Lake Using Nuclear and Related
- Techniques, IAEA Regional Project RER/8/008, Skopje, Macedonia.
- Anovski, T., Andonovski, B., and Mineva, B., Study of the hydrological relationship between
- lakes Ohrid and Prespa, in Proceedings Proceedings of an IAEA international symposium,
- 551 IAEA-SM-Vienna, 11-15 March 1991, Volume 319.
- Anovski, T., Leontiadis, I., and Zoto, J., 2001, Isotope Data, in Anovski, T., ed., Progress in
- 553 the Study of Prespa Lake Using Nuclear and Related Techniques, IAEA Regional Project
- 554 RER/8/008: Skopje, Macedonia.
- Anovski, T., Naumovski, J., Kacurkov, D., and Kirkov, P., 1980, A study of the origin of waters
- of St. Naum Springs, Lake Ohrid: Fisika, v. 12, no. 76-86.

- Bar-Matthews, M., Ayalon, A., Gilmour, M., Matthews, A., and Hawkesworth, C. J., 2003,
- Sea-land oxygen isotopic relationships from planktonic foraminifera and speleothems in the
- 559 Eastern Mediterranean region and their implication for paleorainfall during interglacial
- intervals: Geochimica et Cosmochimica Acta, v. 67, no. 17, p. 3181-3199.
- Bard, E., Delaygue, G., Rostek, F., Antonioli, F., Silenzi, S., and Schrag, D. P., 2002,
- Hydrological conditions over the western Mediterranean basin during the deposition of the cold
- Sapropel 6 (ca. 175 kyr BP): Earth and Planetary Science Letters, v. 202, no. 2, p. 481-494.
- Bordon, A., Peyron, O., Lézine, A.-M., Brewer, S., and Fouache, E., 2009, Pollen-inferred
- 565 Late-Glacial and Holocene climate in southern Balkans (Lake Maliq): Quaternary
- 566 International, v. 200, no. 1-2, p. 19-30.
- Brayshaw, D. J., Rambeau, C. M. C., and Smith, S. J., 2011, Changes in Mediterranean climate
- during the Holocene: Insights from global and regional climate modelling: The Holocene, v.
- 569 21, no. 1, p. 15-31.
- 570 Constantin, S., Bojar, A.-V., Lauritzen, S.-E., and Lundberg, J., 2007, Holocene and Late
- 571 Pleistocene climate in the sub-Mediterranean continental environment: A speleothem record
- from Poleva Cave (Southern Carpathians, Romania): Palaeogeography, Palaeoclimatology,
- 573 Palaeoecology, v. 243, no. 3-4, p. 322-338.
- Craig, H., 1961, Isotopic Variations in Meteoric Waters: Science, v. 133, p. 1702-1703.
- 575 Craig, H., and Gordon, L. I., 1965, Deuterium and oxygen 18 variations in the ocean and marine
- 576 atmosphere, in Tongiogi, E., ed., Stable Isotopes in Oceanographic Studies and
- 577 Paleotemperatures: Spoleto, Italy, p. 9-130.
- 578 Darling, W. G., Bath, A. H., Gibson, J. J., and Rozanski, K., 2006, Isotopes in
- Palaeoenvironmental Research: 1. Isotopes in Water, Netherlands, Springer.

- Davis, B. A. S., Brewer, S., Stevenson, A. C., and Guiot, J., 2003, The temperature of Europe
- during the Holocene reconstructed from pollen data: Quaternary Science Reviews, v. 22, no.
- 582 15-17, p. 1701-1716.
- Dean, J. R., Jones, M. D., Leng, M. J., Noble, S. R., Metcalfe, S. E., Sloane, H. J., Sahy, D.,
- Eastwood, W. J., and Roberts, C. N., 2015, Eastern Mediterranean hydroclimate over the late
- 585 glacial and Holocene, reconstructed from the sediments of Nar lake, central Turkey, using
- stable isotopes and carbonate mineralogy: Quaternary Science Reviews, v. 124, p. 162-174.
- Dean, J. R., Jones, M. D., Leng, M. J., Sloane, H. J., Roberts, C. N., Woodbridge, J., Swann,
- G. E. A., Metcalfe, S. E., Eastwood, W. J., and Yiğitbaşıoğlu, H., 2013, Palaeo-seasonality of
- the last two millennia reconstructed from the oxygen isotope composition of carbonates and
- diatom silica from Nar Gölü, central Turkey: Quaternary Science Reviews, v. 66, p. 35-44.
- 591 Digerfeldt, G., Olsson, S., and Sandgren, P., 2000, Reconstruction of lake-level changes in lake
- 592 Xinias, central Greece, during the last 40 000 years: Palaeogeography Palaeoclimatology
- 593 Palaeoecology, v. 158, p. 65-82.
- Drăguşin, V., Staubwasser, M., Hoffmann, D. L., Ersek, V., Onac, B. P., and Veres, D., 2014,
- 595 Constraining Holocene hydrological changes in the Carpathian–Balkan region using
- speleothem $\delta < \sup 18 < \sup 0$ and pollen-based temperature reconstructions: Climate of the
- 597 Past, v. 10, no. 4, p. 1363-1380.
- 598 Eftimi, R., Amataj, S., and Zoto, J., 2007, Groundwater circulation in two transboundary
- 599 carbonate aguifers of Albania; their vulnerability and protection, in Witkowski, A. J.,
- Kowalczyk, A., and Vrba, J., eds., Groundwater vulnerability assessment and maping, Volume
- 11: The Netherlands, Taylor & Francis, p. 206-218.

- 602 Eftimi, R., Micevski, E., and Stamos, A., 2001, Geological and hydrogeological conditions of
- 603 the Prespa Region, in Anovski, T., ed., Progress in the Study of Prespa Lake Using Nuclear
- and Related Techniques, IAEA Regional Project RER/8/008: Skopje, Macedonia, p. 11-22.
- 605 Eftimi, R., and Zoto, J., 1997, Isotope study of the connection of Ohrid and Prespa lakes,
- 606 International Symposium "Towards Integrated Conservation and Sustainable Development of
- Transboundary Macro and Micro Prespa Lakes": Korcha, Albania.
- 608 Emeis, K. C., Struck, U., Schulz, H. M., Rosenberg, R., Bernasconi, S., Erlenkeuser, H.,
- 609 Sakamoto, T., and Martinez-Ruiz, F., 2000, Temperature and salinity variations of
- Mediterranean Sea surface waters over the last 16,000 years from records of planktonic stable
- oxygen isotopes and alkenone unsaturation ratios: Palaeogeography Palaeoclimatology
- 612 Palaeoecology, v. 158, no. 3-4, p. 259-280.
- Francke, A., Wagner, B., Just, J., Leicher, N., Gromig, R., Baumgarten, H., Vogel, H., Lacey,
- J. H., Sadori, L., Wonik, T., Leng, M. J., Zanchetta, G., Sulpizio, R., and Giaccio, B., 2016,
- 615 Sedimentological processes and environmental variability at Lake Ohrid (Macedonia, Albania)
- between 637 ka and the present: Biogeosciences, v. 13, no. 4, p. 1179-1196.
- Francke, A., Wagner, B., Leng, M. J., and Rethemeyer, J., 2013, A Late Glacial to Holocene
- record of environmental change from Lake Dojran (Macedonia, Greece): Climate of the Past,
- 619 v. 9, no. 1, p. 481-498.
- 620 Frogley, M. R., Griffiths, H. I., and Heaton, T. H. E., 2001, Historical biogeography and Late
- Ouaternary environmental change of Lake Pamvotis, Ioannina (north-western Greece):
- evidence from ostracods: Journal of Biogeography, v. 28, no. 6, p. 745-756.
- 623 Gat, J.R., 1996, Oxygen and hydrogen isotopes in the hydrological cycle: Annual Review of
- Earth and Planetary Sciences, v. 24, p. 225-262.

- 625 Giaccio, B., Regattieri, E., Zanchetta, G., Wagner, B., Galli, P., Mannella, G., Niespolo, E.,
- Peronace, E., Renne, P.R., Nomade, S., Cavinato, G.P., Messina, P., Sposato, A., Boschi, C.,
- Florindo, F., Marra, F., and Sadori, L., 2015, A key continental archive for the last 2 Ma of
- 628 climatic history of the central Mediterranean region: A pilot drilling in the Fucino Basin, central
- 629 Italy: Scientific Drilling, v. 20, p. 13-19.
- 630 Gibson, J. J., Birks, S. J., and Yi, Y., 2016, Stable isotope mass balance of lakes: a
- contemporary perspective: Quaternary Science Reviews, v. 131, part B, p. 316-328.
- 632 Gibson, J. J., Prepas, E. E., and McEachern, P., 2002, Quantitative comparison of lake
- throughflow, residency, and catchment runoff using stable isotopes: modelling and results from
- a regional survey of Boreal lakes: Journal of Hydrology, v. 262, no. 1-4, p. 128-144.
- Gonfiantini, R., 1986, Environmental isotopes in lake studies. In: Fritz, P., Fontes, J. Ch. (Eds.),
- Handbook of Environmental Isotope Geochemistry, vol. 3, Elsevier, New York.
- Goldsmith, Y., Polissar, P. J., Ayalon, A., Bar-Matthews, M., deMenocal, P. B., and Broecker,
- W. S., 2017, The modern and Last Glacial Maximum hydrological cycles of the Eastern
- Mediterranean and the Levant from a water isotope perspective: Earth and Planetary Science
- 640 Letters, v. 457, p. 302-312.
- Hays, P. D., and Grossman, E. L., 1991, Oxygen isotopes in meteoric calcite cements as
- indicators of continental paleoclimate: Geology, v. 19, p. 441-444.
- Horita, J., and Wesolowski, D. J., 1994, Liquid-vapor fractionation of oxygen and hydrogen
- 644 isotopes of water from the freezing to the critical temperature: Geochimica et Cosmochimica
- 645 Acta, v. 58, no. 16, p. 3425-3437.
- Jasechko, S., Gibson, J. J., and Edwards, T. W. D., 2014, Stable isotope mass balance of the
- Laurentian Great Lakes: Journal of Great Lakes Research, v. 40, no. 2, p. 336-346.

- Joannin, S., Brugiapaglia, E., de Beaulieu, J. L., Bernardo, L., Magny, M., Peyron, O., Goring,
- S., and Vannière, B., 2012, Pollen-based reconstruction of Holocene vegetation and climate in
- southern Italy: the case of Lago Trifoglietti: Clim. Past, v. 8, no. 6, p. 1973-1996.
- Jones, M.D., Leng, M.J., Roberts, C.N., Türkes, M. and Moyeed, R., 2005, A coupled
- calibration and modelling approach to the understanding of dry-land lake oxygen isotope
- records: Journal of Paleolimnolgy, v. 34, p. 391-411.
- Jones, M. D., Roberts, C. N., and Leng, M. J., 2007, Quantifying climatic change through the
- last glacial–interglacial transition based on lake isotope palaeohydrology from central Turkey:
- 656 Quaternary Research, v. 67, no. 3, p. 463-473.
- Jones, M.D., Cuthbert, M.O., Leng, M.J., McGowan, S., Mariethoz, G., Arrowsmith, C.,
- 658 Sloane, H.J., Humphrey, K.K., Cross, I., 2016. Comparisons of observed and modelled lake
- 659 δ18O variability. Quaternary Science Reviews, v. 131, Part B, p. 329-340.
- Jordanoska, B., Kunz, M. J., Stafilov, T., and Wuest, A., 2010, Temporal variability in physico-
- chemical properties of St. Naum karst springs feeding Lake Ohrid: Ecology and Protection of
- 662 the Environment, v. 13, no. 1-2, p. 3-11.
- Kotthoff, U., Pross, J., Müller, U. C., Peyron, O., Schmiedl, G., Schulz, H., and Bordon, A.,
- 2008, Climate dynamics in the borderlands of the Aegean Sea during formation of sapropel S1
- deduced from a marine pollen record: Quaternary Science Reviews, v. 27, no. 7-8, p. 832-845.
- Kouli, K., Gogou, A., Bouloubassi, I., Triantaphyllou, M. V., Ioakim, C., Katsouras, G.,
- Roussakis, G., and Lykousis, V., 2012, Late postglacial paleoenvironmental change in the
- 668 northeastern Mediterranean region: Combined palynological and molecular biomarker
- evidence: Quaternary International, v. 261, p. 118-127.

- Lacey, J. H., Francke, A., Leng, M. J., Vane, C. H., and Wagner, B., 2015, A high-resolution
- Late Glacial to Holocene record of environmental change in the Mediterranean from Lake
- Ohrid (Macedonia/Albania): International Journal of Earth Sciences, v. 104, no. 6, p. 1623-
- 673 1638.
- Lacey, J. H., Leng, M. J., Francke, A., Sloane, H. J., Milodowski, A., Vogel, H., Baumgarten,
- H., Zanchetta, G., and Wagner, B., 2016, Northern Mediterranean climate since the Middle
- 676 Pleistocene: a 637 ka stable isotope record from Lake Ohrid (Albania/Macedonia):
- 677 Biogeosciences, v. 13, no. 6, p. 1801-1820.
- Lamb, H. F., Eicher, U., and Switsur, V. R., 1989, An 18 000-year record of vegetation, lake-
- 679 level and climatic change from Tigalmamine, Middle Atlas, Morocco: Journal of
- 680 Biogeography, v. 16, no. 1, p. 65-74.
- 681 Lemcke, G., and Sturm, M., 1997, δ180 and Trace Element Measurements as Proxy for the
- Reconstruction of Climate Changes at Lake Van (Turkey): Preliminary Results, in Dalfes, H.
- N., Kukla, G., and Weiss, H., eds., Third Millennium BC Climate Change and Old World
- 684 Collapse: Berlin, Heidelberg, Springer Berlin Heidelberg, p. 653-678.
- Leng, M. J., Baneschi, I., Zanchetta, G., Jex, C. N., Wagner, B., and Vogel, H., 2010, Late
- 686 Quaternary palaeoenvironmental reconstruction from Lakes Ohrid and Prespa
- 687 (Macedonia/Albania border) using stable isotopes: Biogeosciences, v. 7, no. 10, p. 3109-3122.
- Leng, M. J., Wagner, B., Boehm, A., Panagiotopoulos, K., Vane, C. H., Snelling, A., Haidon,
- 689 C., Woodley, E., Vogel, H., Zanchetta, G., and Baneschi, I., 2013, Understanding past climatic
- and hydrological variability in the Mediterranean from Lake Prespa sediment isotope and
- 691 geochemical record over the Last Glacial cycle: Quaternary Science Reviews, v. 66, p. 123-
- 692 136.

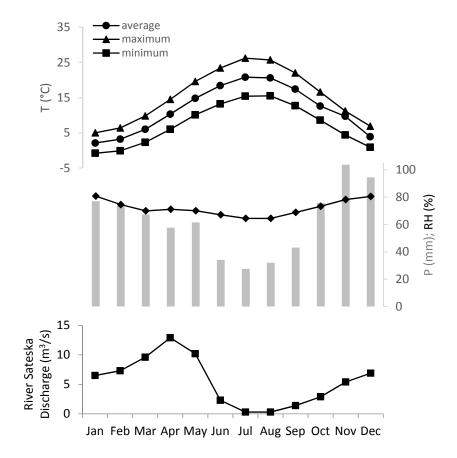
- 693 Lézine, A.-M., von Grafenstein, U., Andersen, N., Belmecheri, S., ordon, A., Caron, B., Cazet,
- J.-P., Erlenkeuser, H., Fouache, E., Grenier, C., Huntsman-Mapila, P., Hureau-Mazaudier, D.,
- Manelli, D., Mazaud, A., Robert, C. Sulpizio, R., Tiercelin, J.-J., Zanchetta, G., and Zegollari,
- 696 Z., 2010, Lake Ohrid, Albania, provides an exceptional multi-proxy record of environmental
- 697 changes during the last glacial-interglacial cycle: Palaeogeography, Palaeoclimatology,
- 698 Palaeoecology, v. 287, p. 116–127.
- 699 Linacre, E., 1992, Climate Data and Resources: A Reference and Guide, London, Routledge.
- Lindhorst, K., Krastel, S., Reicherter, K., Stipp, M., Wagner, B., and Schwenk, T., 2015,
- 701 Sedimentary and tectonic evolution of Lake Ohrid (Macedonia/Albania): Basin Research, v.
- 702 27, p. 84-101.
- Magny, M., Bossuet, G., Ruffaldi, P., Leroux, A., and Mouthon, J., 2011, Orbital imprint on
- Holocene palaeohydrological variations in west-central Europe as reflected by lake-level
- changes at Cerin (Jura Mountains, eastern France): Journal of Quaternary Science, v. 26, no.
- 706 2, p. 171-177.
- Magny, M., de Beaulieu, J.-L., Drescher-Schneider, R., Vannière, B., Walter-Simonnet, A.-V.,
- Miras, Y., Millet, L., Bossuet, G., Peyron, O., Brugiapaglia, E., and Leroux, A., 2007, Holocene
- 709 climate changes in the central Mediterranean as recorded by lake-level fluctuations at Lake
- 710 Accesa (Tuscany, Italy): Quaternary Science Reviews, v. 26, no. 13–14, p. 1736-1758.
- Matzinger, A., Jordanoski, M., Veljanoska-Sarafiloska, E., Sturm, M., Müller, B., and Wüest,
- A., 2006a, Is Lake Prespa Jeopardizing the Ecosystem of Ancient Lake Ohrid?: Hydrobiologia,
- 713 v. 553, no. 1, p. 89-109.

- Matzinger, A., Spirkovski, Z., Patceva, S., and Wüest, A., 2006b, Sensitivity of Ancient Lake
- 715 Ohrid to Local Anthropogenic Impacts and Global Warming: Journal of Great Lakes Research,
- 716 v. 32, no. 1, p. 158-179.
- Matzinger, A., Schmid, M., Veljanoska-Sarafiloska, E., Patceva, S., Guseska, D., Wagner, B.,
- Müller, B., Sturm, M., Wüest, A., 2007, Eutrophication of ancient Lake Ohrid: Global warming
- amplifies detrimental effects of increased nutrient inputs: Limnology and Oceanography, v. 52,
- 720 p. 338-353.
- Naimo, D., Adamo, P., Imperato, M., and Stanzione, D., 2005, Mineralogy and geochemistry
- of a marine sequence, Gulf of Salerno, Italy: Quaternary International, v. 140-141, p. 53-63.
- Okuda, M., Yasuda, Y., and Setoguchi, T., 2001, Middle to Late Pleistocene vegetation history
- and climatic changes at Lake Kopais, Southeast Greece: Boreas, v. 30, no. 1, p. 73-82.
- Outcalt, S.I., Allen, H.L., 1982, Modeling the annual thermal regime of Lake Ohrid,
- Yugoslavia, using daily weather data: Ecological Modelling, v. 15, p. 165-184.
- Panagiotopoulos, K., Aufgebauer, A., Schäbitz, F., and Wagner, B., 2013, Vegetation and
- climate history of the Lake Prespa region since the Lateglacial: Quaternary International, v.
- 729 293, p. 157-169.
- Panagiotopoulos, K., Böhm, A., Leng, M. J., Wagner, B., and Schäbitz, F., 2014, Climate
- variability over the last 92 ka in SW Balkans from analysis of sediments from Lake Prespa:
- 732 Climate of the Past, v. 10, no. 2, p. 643-660.
- Paul, H. A., Bernasconi, S. M., Schmid, D. W., and McKenzie, J. A., 2001, Oxygen isotope
- composition of the Mediterranean Sea since the Last Glacial Maximum: Constraints from pore
- water analyses: Earth and Planetary Science Letters, v. 192, no. 1, p. 1-14.

- Penman, H. L., 1948, Natural Evaporation from Open Water, Bare Soil and Grass: Proceedings
- of the Royal Society of London. Series A. Mathematical and Physical Sciences, v. 193, p. 120-
- 738 145.
- Peyron, O., Combourieu-Nebout, N., Brayshaw, D., Goring, S., Andrieu-Ponel, V., Desprat,
- 740 S., Fletcher, W., Gambin, B., Ioakim, C., Joannin, S., Kotthoff, U., Kouli, K., Montade, V.,
- Pross, J., Sadori, L., and Magny, M., 2017, Precipitation changes in the Mediterranean basin
- during the Holocene from terrestrial and marine pollen records: a model–data comparison:
- 743 Climate of the Past, v. 13, no. 3, p. 249-265.
- Popovska, C., and Bonacci, O., 2007, Basic data on the hydrology of Lakes Ohrid and Prespa:
- 745 Hydrological Processes, v. 21, no. 5, p. 658-664.
- Regattieri, E., Zanchetta, G., Isola, I., Bajo, P., Perchiazzi, N., Drysdale, R.N., Boschi, C.,
- Hellstrom, J.C., Francke, A., and Wagner, B., 2018, A MIS 9/MIS 8 speleothem record of
- hydrological variability from Macedonia (F.Y.R.O.M.): Global and Planetary Change, v. 162,
- 749 p. 39-52.
- Reicherter, K., Hoffmann, N., Lindhorst, K., Krastel, S., Fernández-Steeger, T., Grützner, C.,
- and Wiatr, T., 2011, Active basins and neotectonics: Morphotectonics of the Lake Ohrid Basin
- 752 (FYROM and Albania): Zeitschrift der Deutschen Gesellschaft fur Geowissenschaften, v. 162,
- 753 no. 2, p. 217-234.
- Ribolini, A., Isola, I., Zanchetta, G., Bini, M., and Sulpizio, R., 2011, Glacial feature on the
- Galicica Mountains, Macedonia: preliminary report: Geografia Fisica e Dinamica Quaternaria,
- 756 v. 34, p. 247-255.

- 757 Roberts, C. N., Zanchetta, G., and Jones, M. D., 2010, Oxygen isotopes as tracers of
- 758 Mediterranean climate variability: An introduction: Global and Planetary Change, v. 71, no. 3-
- 759 4, p. 135-140.
- Roberts, N., Brayshaw, D., Kuzucuoglu, C., Perez, R., and Sadori, L., 2011, The mid-Holocene
- climatic transition in the Mediterranean: Causes and consequences: The Holocene, v. 21, no.
- 762 1, p. 3-13.
- Roberts, N., Jones, M. D., Benkaddour, A., Eastwood, W. J., Filippi, M. L., Frogley, M. R.,
- Lamb, H. F., Leng, M. J., Reed, J. M., Stein, M., Stevens, L., Valero-Garcés, B., and Zanchetta,
- G., 2008, Stable isotope records of Late Quaternary climate and hydrology from Mediterranean
- lakes: the ISOMED synthesis: Quaternary Science Reviews, v. 27, no. 25-26, p. 2426-2441.
- Robinson, S. A., Black, S., Sellwood, B. W., and Valdes, P. J., 2006, A review of
- palaeoclimates and palaeoenvironments in the Levant and Eastern Mediterranean from 25,000
- 769 to 5000 years BP: setting the environmental background for the evolution of human
- civilisation: Quaternary Science Reviews, v. 25, no. 13-14, p. 1517-1541.
- 771 Sadori, L., Koutsodendris, A., Panagiotopoulos, K., Masi, A., Bertini, A., Combourieu-Nebout,
- 772 N., Francke, A., Kouli, K., Joannin, S., Mercuri, A. M., Peyron, O., Torri, P., Wagner, B.,
- Zanchetta, G., Sinopoli, G., and Donders, T. H., 2016, Pollen-based paleoenvironmental and
- paleoclimatic change at Lake Ohrid (south-eastern Europe) during the past 500 ka:
- 775 Biogeosciences, v. 13, no. 5, p. 1423-1437.
- Schrag, D. P., Adkins, J. F., McIntyre, K., Alexander, J. L., Hodell, D. A., Charles, C. D., and
- 777 McManus, J. F., 2002, The oxygen isotopic composition of seawater during the Last Glacial
- 778 Maximum: Quaternary Science Reviews, v. 21, no. 1–3, p. 331-342.

- 779 Stankovic, S., 1960, The Balkan Lake Ohrid and Its Living World, Den Haag, Uitgeverij Dr.
- 780 W. Junk, Monographiae Biologicae.
- 781 Steinman, B. A., Rosenmeier, M. F., Abbott, M. B., and Bain, D. J., 2010, The isotopic and
- hydrologic response of small, closed-basin lakes to climate forcing from predictive models:
- 783 Application to paleoclimate studies in the upper Columbia River basin: Limnology and
- 784 Oceanography, v. 55, no. 6, p. 2231-2245.
- Tzedakis, P. C., Frogley, M. R., Lawson, I. T., Preece, R. C., Cacho, I., and de Abreu, L., 2004,
- 786 Ecological thresholds and patterns of millennial-scale climate variability: The response of
- vegetation in Greece during the last glacial period: Geology, v. 32, no. 2, p. 109-112.
- Tzedakis, P. C., Lawson, I. T., Frogley, M. R., Hewitt, G. M., and Preece, R. C., 2002, Buffered
- tree population changes in a quaternary refugium: evolutionary implications: Science, v. 297,
- 790 no. 5589, p. 2044-2047.
- Vogel, H., Wagner, B., Zanchetta, G., Sulpizio, R., and Rosén, P., 2010, A paleoclimate record
- with tephrochronological age control for the last glacial-interglacial cycle from Lake Ohrid,
- Albania and Macedonia: Journal of Paleolimnology, v. 44, no. 1, p. 295-310.
- Wagner, B., Lotter, A. F., Nowaczyk, N., Reed, J. M., Schwalb, A., Sulpizio, R., Valsecchi,
- 795 V., Wessels, M., and Zanchetta, G., 2009, A 40,000-year record of environmental change from
- ancient Lake Ohrid (Albania and Macedonia): Journal of Paleolimnology, v. 41, no. 3, p. 407-
- 797 430.
- Wagner, B., Reicherter, K., Daut, G., Wessels, M., Matzinger, A., Schwalb, A., Spirkovski, Z.,
- and Sanxhaku, M., 2008, The potential of Lake Ohrid for long-term palaeoenvironmental
- reconstructions: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 259, no. 2-3, p. 341-
- 801 356.


- Wagner, B., Vogel, H., Zanchetta, G., and Sulpizio, R., 2010, Environmental change within
- the Balkan region during the past ca. 50 ka recorded in the sediments from lakes Prespa and
- 804 Ohrid: Biogeosciences, v. 7, no. 10, p. 3187-3198.
- Wagner, B., Wilke, T., Francke, A., Albrecht, C., Baumgarten, H., Bertini, A., Combourieu-
- Nebout, N., Cvetkoska, A., amp, apos, Addabbo, M., Donders, T. H., Föller, K., Giaccio, B.,
- Grazhdani, A., Hauffe, T., Holtvoeth, J., Joannin, S., Jovanovska, E., Just, J., Kouli, K.,
- 808 Koutsodendris, A., Krastel, S., Lacey, J. H., Leicher, N., Leng, M. J., Levkov, Z., Lindhorst,
- 809 K., Masi, A., Mercuri, A. M., Nomade, S., Nowaczyk, N., Panagiotopoulos, K., Peyron, O.,
- Reed, J. M., Regattieri, E., Sadori, L., Sagnotti, L., Stelbrink, B., Sulpizio, R., Tofilovska, S.,
- 811 Torri, P., Vogel, H., Wagner, T., Wagner-Cremer, F., Wolff, G. A., Wonik, T., Zanchetta, G.,
- and Zhang, X. S., 2017, The environmental and evolutionary history of Lake Ohrid
- 813 (FYROM/Albania): interim results from the SCOPSCO deep drilling project: Biogeosciences,
- 814 v. 14, no. 8, p. 2033-2054.
- Wagner, B., Wilke, T., Krastel, S., Zanchetta, G., Sulpizio, R., Reicherter, K., Leng, M. J.,
- 816 Grazhdani, A., Trajanovski, S., Francke, A., Lindhorst, K., Levkov, Z., Cvetkoska, A., Reed,
- J. M., Zhang, X., Lacey, J. H., Wonik, T., Baumgarten, H., and Vogel, H., 2014, The
- 818 SCOPSCO drilling project recovers more than 1.2 million years of history from Lake Ohrid:
- 819 Scientific Drilling, v. 17, p. 19-29.
- Watzin, M. C., Puka, V., and Naumoski, T. B., 2002, Lake Ohrid and its watershed, state of
- the environment report, Macedonia, Tirana, Lake Ohrid Conservation Project.
- Zanchetta, G., Borghini, A., Fallick, A. E., Bonadonna, F. P., and Leone, G., 2007, Late
- Quaternary palaeohydrology of Lake Pergusa (Sicily, southern Italy) as inferred by stable
- isotopes of lacustrine carbonates: Journal of Paleolimnology, v. 38, no. 2, p. 227-239.

- 825 Zhang, C. L., Horita, J., Cole, D. R., Zhou, J. Z., Lovley, D. R., and Phelps, T. J., 2001,
- 826 Temperature-dependent oxygen and carbon isotope fractionations of biogenic siderite:
- 827 Geochimica et Cosmochimica Acta, v. 65, no. 14, p. 2257-2271.
- 828 Zohary, M., 1973, Geobotanical foundations of the Middle East, Stuttgart, Fischer.

Figure 1 (A) Location of Lake Ohrid and Lake Prespa on the Balkan Peninsula (black rectangle), and (B) map of the Ohrid and Prespa basins, showing bathymetry of Lake Ohrid (Lindhorst et al., 2015). The location of coring sites mentioned in the text (5045-1, Co1262, Co1215; Leng et al., 2013; Lacey et al., 2015, 2016; Wagner et al., 2017) are shown by white squares.

Figure 2 Climatological indices of air temperature (T) and precipitation (P) from the meteorological station at Pogradec, Albania (1961-1990; Watzin et al., 2002), relative humidity (RH) from the station at Bitola (1972-1977; Outcalt and Allen, 1982), and the seasonal discharge of the River Sateska (1996-2000; Matzinger et al., 2006b).

Figure 3 Modern isotope composition ($\delta^{18}O$ and δD) of water from lakes Ohrid and Prespa, springs, and local direct/catchment rainfall (Anovski et al., 1980; Anovski et al., 1991, 2001; Eftimi and Zoto, 1997; Matzinger, 2006b; Jordanoska et al., 2010; Leng et al., 2010, 2013). The global meteoric water line (GMWL; Craig, 1961), local meteoric water line (LMWL; Anovski et al., 1991, Eftimi and Zoto, 1997), and calculated local evaporation line (LEL) are shown.

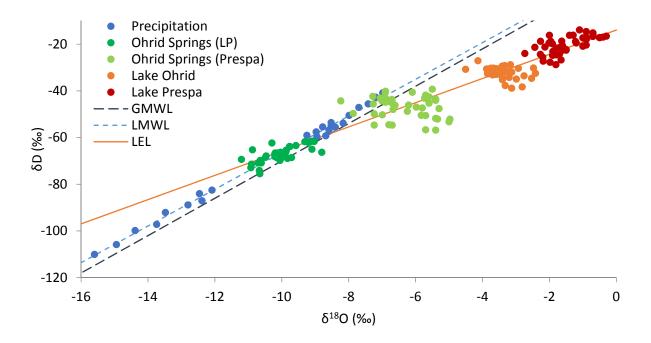
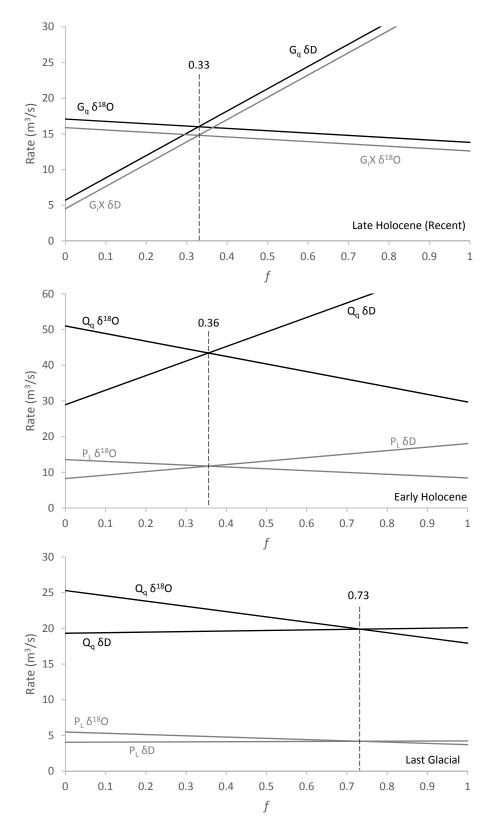



Figure 4 Iterative calculation of evaporation by using variable f and simultaneously evaluating hydrological and isotope mass balance equations to solve for G_iX and G_q (recent/Late Holocene), and P_L and Qq (Early Holocene and last glacial), which are balanced for both $\delta^{18}O$ and δD .

Figure 5 Reconstructed oxygen isotope composition (δ^{18} O) of lakewater from Lake Ohrid cores Co1262 and 5045-1 (Lacey et al., 2015, 2016) and Lake Prespa core Co1215 (Leng et al., 2013). δ^{18} O lakewater is calculated from calcite and siderite isotope data (see text for calculation).

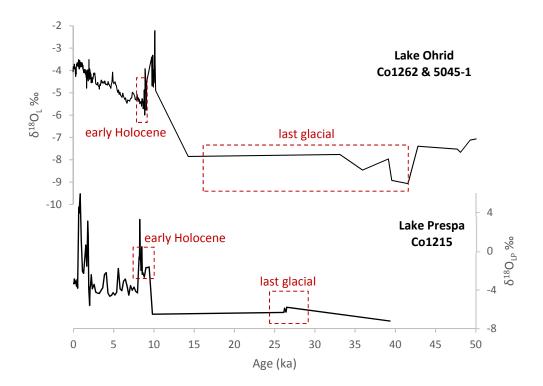
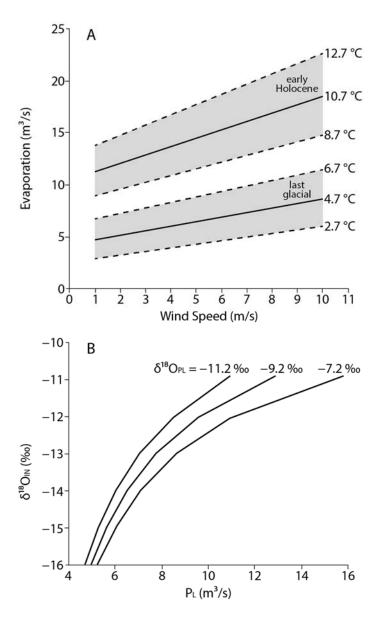



Figure 6 Sensitivity of A) evaporation to changing wind speed at different temperatures for the early Holocene and last glacial, and B) precipitation over the lake (P_L) to changing $\delta^{18}O_{IN}$ at different $\delta^{18}O_{PL}$ during the last glacial (all other parameters remain constant).

Table 1 Relative proportions of meteoric precipitation and outflow from Lake Prespa comprising spring inflow to Lake Ohrid.

Spring Complex	Component of Spring Inflow (m ³ /s)			
Spring Complex	Meteoric Precipitation	Lake Prespa Outflow		
St. Naum	4.3 (58%)	3.2 (42%)		
Tushemisht	1.2 (47%)	1.3 (53%)		
Biljana	0.3 (100%)	0 (0%)		
Total	5.8 (56%)	4.5 (44%)		

Source	Flow rate (m ³ /s)
<u>Inputs</u>	
Precipitation (P_L)	8.8
Surface inflow (S _i)	7.2
Groundwater inflow (G _i)	
Prespa-fed (G_iP)	7.7
 Surface springs (G_iS) 	5.8
 Sublacustrine springs (G_iX) 	G _i X
	29.5 + G _i X
<u>Outputs</u>	
Evaporation (E)	13.7
Surface outflow (Sq)	14.8
Groundwater outflow (Gq)	G _q
	28.5 + G _Q

Table 3 New water balance for Lake Ohrid based on coupled hydrological and isotope mass balance modelling.

Source	Flow rat	e (m³/s)	δ ¹⁸ O (‰)	δD (‰)
<u>Inputs</u>				_
Precipitation (P_L)	8.8	(20%)	-8.4	-52.9
Surface inflow (S _i)	7.2	(16%)	-10.1	-67.4
Groundwater inflow (G _i)				
Prespa-fed (G_iP)	7.7	(17%)	-1.5	-20.5
Surface springs (G_iS)	5.8	(13%)	-10.1	-67.4
 Sublacustrine springs (G_iX) 	15.3	(34%)	-10.1	-67.4
<u>Outputs</u>				
Evaporation (E)	13.7	(31%)	-19.1	-112.7
Surface outflow (Sq)	14.8	(33%)	-3.5	-31.7
Groundwater outflow (Gq)	16.3	(36%)	-3.5	-31.7

Table 4 Estimate of past hydrological balance of Lake Ohrid during the early Holocene and last glacial.

Source	Flow rate (m ³ /s)	δ ¹⁸ O (‰)	δD (‰
Early Holocene			
<u>Inputs</u>			
Precipitation (P _L)	11.1	-8.7	-59.6
Inflow (I _i)	35.1	-10.4	-68.8
Prespa inflow (G _i P)	7.7	-2.1	-24.1
<u>Outputs</u>			
Evaporation (E)	12.3	-20.9	-125.
Outflow (Q _q)	41.6	-5.3	-41.3
Last Glacial			
<u>Inputs</u>			
Precipitation (P _L)	4.9	-9.2	-62.3
Inflow (I _i)	15.4	-16.0	-98.9
Prespa inflow (G _i P)	7.7	-5.8	-44.C
Outputs			
Evaporation (E)	6.3	-25.5	-150.
Outflow (Q _q)	21.7	-8.1	-56.4

Table 5 Sensitivity of precipitation over the lake (P_L) to changing temperature during the early Holocene and last glacial. Evaporative flux varies with changing temperature, all other parameters remain constant.

25.5

0.75

Early Holocene

6.7

9.0

869

870

871

872

T _{air} (°C)	T _{lake} (°C)	E (m³/s)	P _L (m ³ /s)	Q _q (m ³ /s)	f
8.7	11.0	9.8	9.2	36.3	0.35
10.7	13.0	12.3	11.1	41.6	0.36
12.7	15.0	15.1	13.1	47.2	0.36
Last glad	cial				
Last glad	cial T _{lake} (°C)	E (m³/s)	P _L (m³/s)	Q _q (m ³ /s)	f
	T _{lake}	_	=	Q _q (m ³ /s)	<i>f</i> 0.71

6.4

8.7