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Abstract 21 

An understanding of the balance of interspecific competition and the physical environment in structuring organismal 22 

communities is crucial because those communities structured primarily by their physical environment typically exhibit 23 

greater sensitivity to environmental change than those structured predominantly by competitive interactions. Here, utilising 24 

detailed phylogenetic and functional information, we investigate this question in macrofaunal assemblages from Northwest 25 

Atlantic Ocean continental slopes, a high seas region projected to experience substantial environmental change through the 26 

current century. We demonstrate assemblages to be both phylogenetically and functionally under-dispersed and thus 27 

conclude that the physical environment, not competition, may dominate in structuring deep-ocean communities. Further, we 28 

find temperature and bottom trawling intensity to be amongst the environmental factors significantly related with assemblage 29 

diversity. These results hint that deep-ocean communities are highly sensitive to their physical environment and vulnerable 30 

to environmental perturbation, including by direct disturbance through fishing, and indirectly through the changes brought 31 

about by climate change. 32 

 33 
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Introduction 35 

Competition between species has long been recognised as an important factor determining the ecological diversity and 36 

structure of organismal communities (1-4). Intense interspecific competition for scarce resources can result in the exclusion 37 

of certain taxa (2, 4), shaping species’ realised niches and distributions, and influencing ecosystem functioning (5, 6). 38 

Numerous studies have investigated the role of competition in structuring terrestrial (such as plant (7)) and shallow-water 39 

(such as coral reef (8)) assemblages, but the importance of interspecific competition in structuring the expansive and 40 

functionally important communities of the deep-ocean has been a matter of debate since the discovery of high alpha 41 

diversity in deep-water sediments (9-11).  Some researchers have emphasised an important role  of biological interactions 42 

in structuring deep-seafloor communities, theorising a dynamic balance between competitive forces and predation (12, 13). 43 

Others have argued that extensive niche differentiation, coupled with typically low organismal densities and the availability 44 

of space, mean that competitive interactions are unlikely to be significant in structuring modern-day deep-ocean 45 

communities (9, 10, 14, 15).    46 

 47 

Empirical evidence in support of either of these viewpoints is limited. Studies that have examined the morphological or 48 

trophic characteristics of deep-sea assemblages present some evidence for the displacement of ecologically similar taxa by 49 

their competitive dominants (16-18). Conversely, studies that have investigated the taxonomic or phylogenetic structure of 50 

assemblages provide some evidence that variation in physical environmental conditions may be of greater influence than 51 

competitive interactions in structuring deep-ocean communities (19, 20). However, investigations to date have been limited 52 

in their analytical scope by the challenges associated with sampling and/or conducting experiments in the deep ocean.  53 

 54 

Knowing whether interspecific competition or the physical environment dominates in structuring natural communities is 55 

important because it further enhances our understanding of the sensitivity of ecosystems to environmental change. 56 

Communities that are structured predominantly by interspecific competition are typically more stable under environmental 57 

stress than those whose structure is governed by the physical environment (21). Understanding the sensitivity of deep-sea 58 

ecosystems to environmental change is of pressing concern because they are predicted to experience increasing direct and 59 

indirect anthropogenic pressure over this century (22-24). For example, fishing fleets are operating at ever-increasing 60 

depths (25), there is growing commercial interest in the mining of seabed minerals (26), and greenhouse gas emissions are 61 

increasing oceanic temperature, reducing pH and dissolved oxygen concentrations, and altering food supply to the deep 62 

ocean (23, 24, 27).   63 

 64 
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In this study, we perform ‘community phylogenetic’ analyses to investigate the importance of interspecific competition 65 

versus the physical environment in shaping the composition of deep-seafloor assemblages in the Northwest Atlantic Ocean 66 

– a region predicted to experience particularly rapid environmental change over this century (28). Application of a 67 

community phylogenetic approach avoids many of the problems associated with conducting experiments in deep-ocean 68 

environments, enabling an investigation of previously unprecedented scale. Under this approach, the dispersion of taxa 69 

within samples across a phylogeny or functional trait dendrogram is compared to that which would be expected by chance 70 

(29). If taxa within samples are found, on average, to be less similar to one another than would be expected by random 71 

draw from the available taxa pool, assemblages are described as ‘over-dispersed’; this is typically considered evidence of a 72 

dominance of competitive exclusion in shaping assemblage structure, since phylogenetically/functionally similar taxa are 73 

assumed to be ecologically similar (3, 29, 30). Conversely, if taxa within samples are found, on average, to be more similar 74 

to one another than would be expected by chance, assemblages are described as ‘under-dispersed’; this is typically 75 

considered evidence of a dominance of the physical environment in determining assemblage structure, since 76 

phylogenetically/functionally similar taxa are assumed to share the particular traits that are necessary for survival under the 77 

prevailing environmental conditions (3, 29, 30) (although see Mayfield and Levine (31)). 78 

 79 

Our results provide evidence that deep-seafloor communities may typically be both phylogenetically and functionally 80 

under-dispersed. We therefore also investigate and discuss a number of physical environmental parameters which may be 81 

of importance in structuring the enigmatic but widespread communities of deep-ocean sediments. 82 

 83 

Materials and Methods 84 

Sampling of deep-seafloor assemblages 85 

We analysed 312 sediment samples, forming the largest macrofaunal sample set yet collected from the deep ocean. 86 

Samples were collected with a box corer (area 0.25 m2) from the continental slopes of the Northwest Atlantic Ocean (depth 87 

range: 582 – 2294 m) (Fig. 1) between May-August 2009 and June-August 2010, and form part of the international 88 

‘NEREIDA’ programme (https://www.nafo.int/About-us/International-Cooperation), a project instigated by the Northwest 89 

Atlantic Fisheries Organisation (NAFO) in order to investigate the impacts of high seas fisheries on Vulnerable Marine 90 

Ecosystems. Sediment subsamples were taken for geochemical and particle size analyses and remaining sediment was 91 

washed over a 1 mm mesh sieve for faunal analyses. 20,245 specimens of peracarid crustacean were identified to the genus 92 

level (177 genera within 74 families in total). Peracarid crustaceans were chosen for analysis because of their low dispersal 93 
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potential, extremely high taxonomic diversity, superabundance in marine sediments, and ecological importance as prey, 94 

predators and ecosystem engineers (32-34). 95 

 96 

Supertree phylogeny construction 97 

To investigate the phylogenetic structure of the sampled peracarid assemblages, we constructed a ‘supertree’ (35) (Fig. 2a). 98 

We used Google Scholar to identify 59 studies containing suitable evolutionary source trees. From each study only unique 99 

source trees were retained for analysis to ensure that there was no duplication of source tree topology (an emergent 100 

characteristic of evolutionary trees as phylogenetic hypotheses, and the information directly used during supertree 101 

construction) that would otherwise unfairly weight the analysis as a result of pseudoreplication (35). 127 evolutionary trees 102 

were retained for analysis (Table S2), and monophyletic taxonomic groups were labelled following World Register of 103 

Marine Species (WoRMS) systematic nomenclature. 104 

 105 

Supertrees were constructed using MultiLevelSupertree (MLS) 1.0 (36) run on the Oxford University Advanced Research 106 

Computing supercomputer ‘ARCUS (Phase B)’ (http://www.arc.ox.ac.uk/content/home). Because of prohibitive run times, 107 

the program was run individually for the peracarid orders Amphipoda, Isopoda, Tanaidacea and Cumacea. For each run a 108 

taxonomy tree was used to guide the program.  109 

 110 

To provide reference branch length information for the supertree, we constructed two further phylogenetic trees based on 111 

18S SSU rDNA, 16S rDNA, cytochrome c oxidase 1 (COI) and Histone H3 gene sequences downloaded from GenBank 112 

(Supporting Appendix 1; the topologies of these trees are available upon request).  Genes were aligned individually using 113 

MAFFT v7.273 (37) running on the MAFFT online server (http://mafft.cbrc.jp/alignment/server/). Alignments were 114 

scrutinised using trimAl v1.2 (38). The final alignment was concatenated using SequenceMatrix 1.8 (39) and consisted of 115 

285 taxa and 2586 base pairs. PartitionFinder v1.1.1 (40) was used to select the most appropriate model of evolution and 116 

partitioning scheme. ML and Bayesian topologies were estimated using RAxML v8.2.8 and MrBayes v3.2.6, respectively, 117 

on the ‘CIPRES science gateway v3.3’ online server (41).  118 

 119 

During a fifth round of supertree construction, we used MLS 1.0 to combine the output trees from the four previous MLS 120 

runs and the ML and Bayesian analyses with all source trees focussing on order-level relationships within Peracarida and 121 

Malacostraca to produce a final supertree with 1487 terminal taxa. This supertree topology was then trimmed to include 122 

only those taxa present in the GenBank sequence concatenated alignment. We estimated maximum likelihood branch 123 
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lengths for this topology using RAxML v8.2.8. Common nodes between the supertree and ML branch length tree were 124 

labelled using PhyloCom 4.2 (42) and the labelled ML branch length tree was used as an input for the program R8s 1.8 125 

(43) in order to obtain a dated phylogeny. 22 nodes were constrained with age estimates based on fossil data (Table S1). 126 

Non-Parametric Rate Smoothing (NPRS) with Powell optimisation was selected as the analysis method. The BLADJ 127 

function of PhyloCom 4.2 (42) was then used to obtain a fully-dated supertree (Fig. 2a; see Supplementary Material for a 128 

‘Newick’ format representation of the supertree to enable detailed examination of its topology). 129 

 130 

Functional dendrogram construction 131 

To characterise the functional structure of the sampled peracarid assemblages, we constructed a dendrogram (Fig. 2b) 132 

describing the functional similarity of sampled families based on their scoring for a selection of traits (Table S3). Trait 133 

groupings and traits were chosen based on ecological relevance and data availability. We utilised a fuzzy coding (44) 134 

approach to enable the coding of variability in trait scores within a family/individual. Based on available literature and the 135 

expert opinion of the authors TH, AB, GJB, SG and OSA, 77 taxa were scored for 38 traits in ten trait groupings. The trait 136 

database was converted into a dendrogram via hierarchical clustering (Fig. 2b; see Supplementary Material for a ‘Newick’ 137 

format representation of the functional dendrogram). We used cophenetic correlation coefficient values (45) to select the 138 

most appropriate distance metric and clustering method as Euclidean distance and unweighted pair group method using 139 

arithmetic averages (UPGMA) clustering. Analyses were conducted in R 3.0.2 (46). 140 

 141 

Testing for phylogenetic and functional assemblage structure 142 

We investigated phylogenetic assemblage structure using the phylostruct function of the R package ‘picante 1.6-2’ (47) based 143 

on the constructed supertree (Fig.2a) and complete genus-level peracarid assemblage matrix. To investigate assemblage 144 

structure at smaller spatial scales, we used ESRI ArcGIS 10.1 to produce seven data subsets, each consisting of 30 box cores 145 

chosen at random from within a set radius (50, 100, 200, 300, 400, 500 and 600 km) of the central-most sampling point. To 146 

quantify the phylogenetic dispersion (‘diversity’) of peracarid genera within each sample, we calculated the metric 147 

‘Phylogenetic Species Variability’ (PSV) (48). We employed permutation tests (100000 permutations) to determine whether 148 

the average PSV of all samples, and sample subsets, was significantly different from that expected under two null hypotheses 149 

– ‘Null 1’ and ‘Null 2’ (48). Under ‘Null 1’ phylogenetic structure was removed from both taxon prevalence and sample 150 

composition by the randomisation of taxon presence within samples. Under ‘Null 2’, phylogenetic structure was removed 151 

from sample composition, but not from taxon prevalence, by the randomisation of taxon occurrence between samples. 152 

 153 
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Since functional dendrograms are analogous to phylogenies in form, we employed the same methods as outlined above to 154 

quantify the functional dispersion (referred to herein as ‘Functional Species Variability’ (FSV)) of peracarids contained 155 

within each sample based on the constructed functional dendrogram (Fig. 2b) and compared this to the expected outcome 156 

under the two null hypotheses stated above. 157 

 158 

Testing for phylogenetic signal 159 

Because the interpretation of community phylogenetic patterns relies on knowledge of the evolution of taxon traits (29), we 160 

tested for phylogenetic signal across the peracarid trait matrix by applying a Mantel test (49). Based on the constructed 161 

supertree (Fig. 2a), we calculated the square root of patristic distance as a measure of phylogenetic distance between taxa 162 

using the R package ‘ape 4.1’ (50). Euclidean distance was calculated as a measure of trait similarity between taxa based 163 

on the peracarid trait matrix. The Mantel test was performed using the R package ‘vegan 2.0-9’ (51) (100000 164 

permutations). To assess the strength of phylogenetic signal in individual traits, based on the supertree of Peracarida (Fig. 165 

2a) we calculated Pagel’s λ (52) for each trait in the peracarid functional trait table using the R package ‘phylosignal 1.2’ 166 

(53) (100000 permutations). 167 

 168 

Characterisation of the deep-sea physical environment 169 

To investigate relationships between the PSV/FSV of sampled peracarid assemblages and the prevailing environmental 170 

conditions, we examined the following environmental parameters: bathymetry (depth, slope, aspect, seafloor rugosity, 171 

bathymetric position index); fishing intensity (vessel monitoring system [VMS] signal density and total trawl length per 172 

km2); geological context; seafloor sediment particle size (percent clay/silt/sand); carbon availability (percent inorganic, 173 

organic and total carbon, surface chlorophyll a and particulate organic carbon (POC) concentrations, modelled transport of 174 

POC to depth); physical oceanographic variables (temperature, salinity and current speed); and month and year of sample 175 

collection.  176 

 177 

Water depth at each sampling location was extracted using ArcGIS 10.1 based on multibeam bathymetric surveys (5625 m2 178 

cell size). Slope, eastness and northness, roughness (225 x 225 m analysis window) and standard deviation of multibeam 179 

bathymetry values (225 x 225 m analysis window) were calculated using the Spatial Analyst extension of ArcGIS 10.1. 180 

Benthic Terrain Modeller (54) was used to calculate Bathymetric Position Index (BPI) over a range of radii as well as 181 

seafloor rugosity (375 x 375 m and 1875 x 1875 m analysis windows). 182 
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 183 

We quantified bottom trawling intensity using VMS signal locations. Individual trawl paths were identified based on boat 184 

identity, speed, location, date and time using ArcGIS 10.1, and the Line Density Tool (Spatial Analyst extension) was used 185 

to measure the total length of trawls per km2 within a set radius (1, 3, or 5 km) from each box core. 186 

 187 

The sediments of the study area were classified into 12 discreet geological categories based on their acoustic 188 

characteristics, depth and slope (55). We extracted the relevant geological category for each sampling location using 189 

ArcGIS 10.1. 190 

 191 

Sediment percent clay/silt/sand was calculated for each core subsample based the following particle size categories 192 

consistent with the ‘Phi’ (Φ) scale. We calculated particle size diversity following the methodology of Etter and Grassle 193 

(56) and Leduc et al. (57). 194 

 195 

Sediment total carbon and organic carbon content were determined using a Leco TruSpec CHN analyser. Inorganic carbon 196 

was determined by the difference between the total carbon and organic carbon measurements for each sample (58). 197 

 198 

We obtained surface chlorophyll a and POC concentrations from the Giovanni ocean colour radiometry online data system 199 

(https://giovanni.gsfc.nasa.gov/giovanni/). MODIS AQUA 4 km resolution data was downloaded for the years 2008-2010. 200 

These data were interpolated to 2500 x 2500 pixels (525 m resolution) in QGIS 2.2. We estimated POC delivery to the 201 

seafloor from surface POC concentrations following region-specific equations (59). 202 

 203 

Seafloor temperature, salinity, and meridional and zonal current speed values were extracted from a modelled monthly 204 

average data layer for the study area (60) and averaged both across the year prior to sample collection and across the year 205 

of sample collection. These values were interpolated to 3000 x 3000 pixels (578 m resolution) in QGIS 2.2. Absolute 206 

current speed was calculated using Pythagoras’ theorem. 10-year minimum/maximum values for temperature and current 207 

speed, respectively, and 10-year average values for both variables were calculated to capture longer-term variability.  208 

 209 
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Statistical analyses 210 

We removed highly correlated environmental variables following consideration of Variance Inflation Factors. Variables 211 

were removed from the analysis in a stepwise manner (those with highest VIF first). The resulting dataset contained 19 212 

variables (Table S4). VIF calculations were undertaken in R 3.0.2 (46) using the package ‘HH 3.1-32’ (61). 213 

 214 

We constructed Generalised Additive Models (GAMs) using the R package ‘mgcv 1.7-26’ (62) to determine which 215 

combination of environmental variables most effectively explained variability in PSV and FSV between samples. Initial 216 

GAMs consisted of all variables contained within Table S4, with smoothers (penalised thin-plate regression spline) added 217 

to all continuous variables. Appropriate error distributions and link functions were selected based on model diagnostics and 218 

the Akaike Information Criterion (AIC). Acceptable satisfaction of model assumptions was confirmed using the gam.check 219 

function. Smoothing parameters were optimised automatically on the basis of the Generalised Cross Validation criterion 220 

(62). Explanatory terms included in each GAM were refined by backwards stepwise selection considering variable P-221 

values and model AIC until a minimum AIC value was reached. 222 

 223 

Please see the Supplementary Materials for additional detail relating to the methodology employed by this study. 224 

 225 

Results 226 

Phylogenetic and functional structure of deep-seafloor assemblages 227 

We found the average PSV value of the deep-sea assemblages analysed to be significantly smaller than that which would be 228 

expected under both null hypotheses (mean PSVobserved = 0.8728; mean PSVNull 1 = 0.8817, mean PSVNull 2 = 0.8830; 229 

probability mean PSVobserved taken from Null 1 distribution = <0.001 (Fig. 3a); probability mean PSVobserved taken from the 230 

Null 2 distribution = <<0.0001 (Fig. 3b)). Similar results were obtained for all data subsets analysed. Based on these results, 231 

we conclude that the deep-sea assemblages analysed are phylogenetically ‘under-dispersed’; i.e. that the peracarid taxa within 232 

a sample are on average more closely related to one another than would be expected by chance.  233 

 234 

Further, we found the average FSV value of the assemblages analysed also to be significantly smaller than that which would 235 

be expected under both null hypotheses (mean FSVobserved = 0.8220; mean FSVNull 1 = 0.8354, mean FSVNull 2 = 0.8259; 236 

probability mean FSVobserved taken from Null 1 distribution = <<0.0001 (Fig. 3c); probability mean FSVobserved taken from 237 

the Null 2 distribution = <<0.0001 (Fig. 3d)). Similar results were obtained for all data subsets analysed. We therefore 238 
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conclude that the deep-sea assemblages analysed are functionally ‘under-dispersed’; i.e. that the peracarid taxa within a 239 

sample share, on average, more functional traits with each other than would be expected by chance.  240 

 241 

Phylogenetic signal 242 

Significant phylogenetic signal was identified in the peracarid trait matrix (Mantel test: ρ = 0.3583, P < 0.001; Pagel’s λ: 34 243 

of 38 traits exhibit significant phylogenetic signal (Table S5)). We thus conclude that, on average, phylogenetically similar 244 

taxa tend also to be functionally similar. 245 

 246 

Environmental drivers of phylogenetic and functional structure 247 

We found assemblage PSV to relate negatively with average seafloor temperature for the year of sample collection 248 

(P = 0.0349) (Fig. 4a), and maximal current speed values for ten years prior to sample collection (P = 0.0214) (Fig. 4b). 249 

However, we found PSV to vary unimodally with average surface chlorophyll a concentration for the year of sample 250 

collection (P = 0.0011) (Fig. 4c), and in a complex but weakly positive manner with sediment organic carbon content 251 

(P = 0.0001) (Fig. 4d). We also found assemblage PSV to be significantly related to the month (P < 0.0001) (Fig. 4e) and 252 

year (P < 0.0001) (Fig. 4f) of sample collection.  253 

 254 

We found assemblage FSV to be negatively related to bottom trawling intensity (P = 0.0452) (Fig. 4g), but positively 255 

related to bathymetric position index (P = 0.0037) (Fig. 4h), while FSV varied unimodally with seafloor roughness 256 

(P = 0.0472) (Fig. 4i). Sediment total carbon content was found to relate in a complex but weakly positive manner with 257 

FSV (P = 0.0185) (Fig. 4j). We also found assemblage FSV to be significantly related to the month of sample collection 258 

(P < 0.0001) (Fig. 4k). 259 

 260 

Discussion 261 

The complementary phylogenetic and functional analyses performed here provide evidence for a compositional under-262 

dispersion of the focal deep-sea assemblages at the spatial scales investigated. This under-dispersion may reflect the 263 

selection of favourable phenotypic traits that are shared between similar taxa (29). Typically the selecting agent in question 264 

is the physical environment, and, as a result, this process is known as ‘environmental filtering’ (29). Although not global in 265 

extent, and focussing only on continental slope depths, the results of our study provide evidence that the physical 266 

environment may be more important than interspecific competition in shaping the composition of deep-water communities, 267 

emphasising a potentially high sensitivity of deep-sea ecosystems to environmental perturbation (21). 268 
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 269 

Our findings challenge those studies that hypothesise an importance of competition and character displacement as a 270 

significant ecological structuring agent in the deep sea (12, 13), and conflict with investigations that have examined the 271 

morphological or trophic characteristics of deep-sea assemblages (16-18). Instead, they substantiate the hypothesis that 272 

competitive interactions between species in the deep ocean are weak and unlikely to be significant in structuring 273 

communities at the spatial scales investigated (14, 15). Further, they support the results of previous analyses of lesser 274 

spatial scope that have investigated the taxonomic and phylogenetic structure of deep-sea assemblages (19, 20). 275 

 276 

Comparison of our results with those of other studies employing the PSV metric suggests that the phylogenetic signal 277 

observed here is comparably strong or stronger than that reported for many non-marine assemblages, including temperate 278 

lake fish assemblages (30, 48), tropical plant assemblages (63), archaea assemblages (64) and tropical bird assemblages 279 

(65). 280 

 281 

Although significant phylogenetic signal was apparent in the functional trait matrix, our results provide some evidence for 282 

the convergence of functional traits between relatively distantly related crustacean taxa. For example, in Fig. 3, mean 283 

FSVNull 2 is closer to mean FSVobserved than mean FSVNull 1 is (Fig. 3c and 3d), suggesting that a portion of the observed 284 

under-dispersion reflects elevated functional similarity of the most prevalent taxa (‘Null 2’ removes 285 

phylogenetic/functional structure only from assemblage composition, maintaining any structure in relative taxon 286 

prevalence, whilst ‘Null 1’ removes phylogenetic/functional structure from both assemblage composition and taxon 287 

prevalence). However, whilst the more prevalent taxa are more functionally similar to each other than would be expected 288 

by chance, they are not correspondingly phylogenetically similar; mean PSVNull 2 is not closer to mean PSVobserved than 289 

mean PSVNull 1 is (Fig. 3a and 3b), suggesting that their functional similarity is convergent to an extent. Examples of 290 

apparent functional convergence can be identified in Fig. 2b - the amphipod family Lysianassidae, and the isopod family 291 

Cirolanidae, for example. Our results suggest that traits related to fecundity and armament exhibit greatest propensity for 292 

convergent evolution amongst the peracarid taxa analysed (Table S5).  293 

 294 

Our investigation into the possible environmental drivers of assemblage variability demonstrates that both natural and 295 

anthropogenic factors may influence the structure of the deep-sea assemblages (Fig. 4). The negative relationship between 296 

bottom trawling intensity and assemblage FSV (Fig. 4g) suggests that physical disturbance by bottom trawling reduces 297 

soft-sediment functional diversity, with the resulting assemblages exhibiting a reduced subset of the functional traits that 298 
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would otherwise be present in an undisturbed assemblage. Whilst generally concordant with the small number of studies 299 

that have investigated trawling impacts on deep-sea macrofauna and meiofauna (66-70), this finding adds a new facet to 300 

our understanding of the impacts of bottom trawling in the deep ocean.  301 

 302 

Our analyses demonstrate a negative relationship between seafloor temperature and the phylogenetic diversity of the 303 

sampled peracarid assemblages (Fig. 4a), indicating that the physiological tolerances of peracarid taxa to temperature 304 

change are preserved within evolutionary lineages. That this relationship is apparent across a temperature range of only 305 

~1.2 ᵒC (Fig. 4a) suggests that even the superficially small increases in deep-ocean temperature that are predicted to occur 306 

over this century as a result of climate change (71, 72), particularly in the high seas of the North Atlantic (28), will 307 

significantly reduce the phylogenetic diversity of the communities found there, potentially impacting deep-ocean 308 

ecosystem functioning (73). An altered phylogenetic profile of deep-sea ecosystems may eventually lead to a change in the 309 

cycling, storage and sequestration pathways of nutrients and chemicals, such as carbon. 310 

 311 

Under current climate change scenarios, global patterns of the export of surface production to the deep ocean are expected 312 

to change in a complex manner (23, 24, 27, 74). Food supply to the deep ocean may dwindle in some regions, such as the 313 

North and South Atlantic Oceans (24), whilst being enhanced in others, such as the Arctic and Southern Oceans (24). Our 314 

analyses suggest that changes in food availability in the deep ocean may affect both the phylogenetic and functional 315 

variability of communities, but in a complex manner (Figs. 4c, 4d, 4j). This in turn may affect the availability and variety 316 

of food for demersal and pelagic organisms that feed on sediment-dwelling prey. This multifaceted relationship is complex 317 

and still poorly understood. 318 

 319 

Overall, the results of our analyses suggest that deep-water soft-sediment ecosystems, which constitute the majority of 320 

global seafloor area, may be particularly sensitive to environmental change. Such ecosystems are central to a number of 321 

important ecosystem services including carbon sequestration (75), and are predicted to come under increasing direct and 322 

indirect anthropogenic pressures (22-24, 27). Even superficially small changes in natural and anthropogenic disturbance 323 

regimes, temperature, food availability and bathymetry may significantly alter the phylogenetic and functional variability 324 

of deep-seafloor communities (Fig. 4), and this may alter ecosystem functioning and the provision of ecosystem services 325 

by the deep ocean (73). Our findings are therefore relevant to the understanding of anthropogenic pressures on deep-sea 326 

ecosystems, including, for example, the prediction of possible mining impacts on deep-sea fauna. We advocate that the 327 
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precautionary principle be exercised in all circumstances where anthropogenic actions may disrupt the natural ecology of 328 

deep-water ecosystems. 329 

 330 
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Figure captions 528 

 529 

Figure 1: Box corer deployment locations (yellow dots, n = 312) and bathymetry (darker areas = greater water depth) of the sampling area in 530 

the Northwest Atlantic Ocean (300 m depth contours; SRTM30 bathymetric data). Red line shows the extent of the Canadian Exclusive 531 

Economic Zone. Green boxes show locations of Northwest Atlantic Fisheries Organisation subarea divisions. Inset map places the sampling 532 

area (white box) in a global context (Satellite imagery courtesy of ESRI World Imagery).    533 

 534 

Figure 2: ‘A’: Supertree chronogram of Peracarida (Crustacea), including other malacostracan taxa as outgroups. 1487 terminal taxa; 535 

produced from 129 source trees using MultiLevelSupertree 1.0 (36). Root at 600 million years before present (Ma), concentric circles 536 

representing 50 Ma steps to present day (tips). Examples of taxa – Amphipoda (blue branches): Leucothoe rudicola (modified from (76)); 537 

Cumacea (yellow branches): Procampylaspis chathamensis (image © Sarah Gerken); Tanaidacea (red branches): Pseudosphyrapus anomalus 538 

(image © Graham J. Bird); Isopoda (green branches): Atlantoserolis vemae (modified from (77)); Mysida (pink branches): Heteromysis modlini 539 

(modified from (78)). ‘B’: Functional dendrogram of 77 peracarid taxa sampled by box corer from the NW Atlantic Ocean. Produced by the 540 

clustering (UPGMA, Euclidean distance) of a database of 38 functional traits in 10 trait groupings. Branches coloured by higher taxonomic 541 

identity of terminal taxa using same palette as the supertree. ‘Newick’ format files for both the supertree and functional dendrogram are 542 

available in the Supplementary Material. 543 

 544 
Figure 3: Contrast of observed (black dashed lines; n = 299) and null distribution (histograms) of average ‘Phylogenetic Species Variability’ 545 

(red; ‘A’ and ‘B’) and ‘Functional Species Variability’ (blue; ‘C’ and ‘D’) values for peracarid assemblages sampled from the NW Atlantic 546 

Ocean given phylogenetic relationships specified by the supertree of Peracarida (Fig. 2a) and functional similarity specified by the functional 547 

dendrogram of Peracarida (Fig. 2b).  548 

 549 

Figure 4: Relationships between the phylogenetic (red) / functional variability (blue) of sampled peracarid assemblages (n = 299) and 550 

environmental parameters. A: PSV/ mean annual seafloor temperature, B: PSV/ maximal decadal current speed, C: PSV/ surface chlorophyll a 551 

concentration, D: PSV/ sediment organic carbon content, E: PSV/ month, F: PSV/ year, G: FSV/ bottom trawling intensity, H: FSV/ 552 

bathymetric position index, I: FSV/ seafloor roughness, J: FSV/ sediment total carbon content, K: FSV/ month. Error around best fit lines/bar 553 

values = 95 % confidence intervals.  554 



 
18 

Ashford et al. 

Figure 1 555 

  556 



 
19 

Ashford et al. 

Figure 2 557 

    558 

A B 



 
20 

Ashford et al. 

Figure 3 559 
 560 
  561 

A B 

C D 



 
21 

Ashford et al. 

Figure 4 562 

563 

564 

565 

 566 

A B C 

D E F 

G H I 

J K 


