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A B S T R A C T

Uncertainty in capturing the effects of riparian tree shade for assessment of algal growth rates and water tem-
perature hinders the predictive capability of models applied for river basin management. Using photo-
grammetry-derived tree canopy data, we quantified hourly shade along the River Thames (UK) and used it to
estimate the reduction in the amount of direct radiation reaching the water surface. In addition we tested the
suitability of freely-available LIDAR data to map ground elevation. Following removal of buildings and objects
other than trees from the LIDAR dataset, results revealed considerable differences between photogrammetry-
and LIDAR-derived methods in variables including mean canopy height (10.5 m and 4.0m respectively), per-
centage occupancy of riparian zones by trees (45% and 16% respectively) and mid-summer fractional pene-
tration of direct radiation (65% and 76% respectively). The generated data on daily direct radiation for 2010
were used as input to a river network water quality model (QUESTOR). Impacts of tree shading were assessed in
terms of upper quartile levels, revealing substantial differences in indicators such as biochemical oxygen demand
(BOD) (1.58–2.19mg L−1 respectively) and water temperature (20.1 and 21.2 °C respectively) between ‘shaded’
and ‘non-shaded’ radiation inputs. Whilst the differences in canopy height and extent derived by the two
methods are appreciable they only make small differences to water quality in the Thames. However such dif-
ferences may prove more critical in smaller rivers. We highlight the importance of accurate estimation of shading
in water quality modelling and recommend use of high resolution remotely sensed spatial data to characterise
riparian canopies. Our paper illustrates how it is now possible to make better reach scale estimates of shade and
make aggregations of these for use at river basin scale. This will allow provision of more effective guidance for
riparian management programmes than currently possible. This is important to support adaptation to future
warming and maintenance of water quality standards.

1. Introduction

The influence that riparian vegetation exerts on river water tem-
peratures and light availability by intercepting incoming solar radiation
has long been studied (Davies-Colley and Rutherford, 2005; Greenberg
et al., 2012; Moore et al., 2005; Webb et al., 2008). Shading is a key
parameter due to the control it exerts over the amount of direct ra-
diation reaching the river surface making it an important consideration
in water quality modelling and management. Solar radiation has direct
effects on rates of primary production of both macrophytes and algae
(Bowes et al., 2016, 2012b; Wood et al., 2012) which is important for
river metabolic regime and is known to be influenced by riparian shade
(Bernhardt et al., 2017). Water temperature also directly influences
river fauna and dissolved oxygen concentrations. Therefore

considerations of shading are of growing importance given the in-
creasing stress on the water environment likely to arise under future
climate. Effective and realistic riparian planting schemes to mitigate
against these unwanted effects will become increasingly valuable and
enhance water ecosystem services (Martin-Ortega et al., 2015). They
will provide alternatives to traditional end-of-pipe solutions arising
primarily from the EU Urban Wastewater Treatment Directive, which
have been assessed through modelling (e.g. at large basin scale across
Europe: Grizzetti et al., 2011).

1.1. Methods for estimating shade

Shade is spatially and temporally heterogeneous. Spatial variations
are related to canopy characteristics (e.g. canopy cover extent, structure
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and tree height) and landscape characteristics (e.g. orientation, hill
shade and channel width) (Li et al., 2012). Temporal effects are related
to seasonal variation of canopy structure and sun position both during
the day and over the year. Traditional methods for estimating reach-
average shade have relied on location and time-specific field mea-
surements (e.g. hemispherical photography or clinometer) taken at a
small number of points along a river stretch which may not be re-
presentative, requiring onerous manual surveying and computation to
extrapolate the results to wider areas (Davies-Colley and Rutherford,
2005; Ghermandi et al., 2009). As a result, these methods fail to capture
the spatio-temporal heterogeneity of shade and introduce high un-
certainty and bias in the estimates of shade. Without access to extensive
remotely captured data, Chen et al. (1998b) identified that spatio-
temporal variation of riparian shade could not be represented ade-
quately for the purposes of simulating stream temperature for two main
reasons: (i) lack of access to basin-wide riparian information (i.e. data
that captured the vegetation characteristics in the basin); and (ii) lim-
ited ability to compute dynamic shading (i.e. algorithms to account for
the geometric relationships between the diurnal arc of the sun, stream
latitude, location and orientation, and the height and extent of all ve-
getation objects). Therefore, there is a need for simple but quantitative
methods for measuring riparian vegetation shading along stream
reaches comprising the two above-mentioned main features (Bode
et al., 2014; Chen et al., 1998b, 1998a; Greenberg et al., 2012; Li et al.,
2012).

As an alternative to measuring riparian shade, estimating radiation
with GIS-based solar models to develop daily time series of incoming
solar radiation could be undertaken. However, this is not a practical
solution due to the inability of the GIS models to account for highly-
chaotic and poorly-understood atmospheric conditions and processes,
requiring the use of observed data to either parametrize the model or
correct the output (Ruiz-Arias et al., 2009). Instead, for purposes of
providing inputs for water quality models it is more effective to pursue
efforts to model shade as a means of correcting observed radiation
(Loicq et al., 2018; Wawrzyniak et al., 2017). Recent technological
developments in data acquisition, greater capacity to handle large
amounts of data and the development and widespread use of GIS sys-
tems, have created the opportunity to simulate the spatio-temporal
variation of this important environmental parameter.

The challenge of obtaining information about spatio-temporal het-
erogeneity of shading was initially overcome using infrared aerial
photographs and GIS technology to develop a model to simulate stream
temperature at a catchment scale (Chen et al., 1998b, 1998a). Their
model calculated the shadow cast on the water surface by riparian
vegetation and topography every hour based on latitude, stream or-
ientation and tree height. Nevertheless the resolution of the aerial
photographs that were used was relatively coarse (1:40,000 infrared
aerial photography) compared to the resolution of remotely captured
data available nowadays (e.g. LIDAR) and their method of data capture
relied on manual digitisation and transfer (Chen et al., 1998a). More
recently, LIDAR data have been used, in conjunction with GIS-based
solar models to estimate the effect of vegetation-cast shade in incoming
solar radiation in the US (Bode et al., 2014; Greenberg et al., 2012), in
the UK (Johnson and Wilby, 2015) and in France (Wawrzyniak et al.,
2017; Loicq et al., 2018). In this way, variation across large areas of
landscape and on river water surface is captured at a high spatial and
temporal resolution. These studies demonstrate the utility of the
growing pool of LIDAR data to characterise vegetation cover (Anderson
et al., 2006; Seavy et al., 2009; Slatton et al., 2007; Greenberg et al.,
2012; Bode et al., 2014; Loicq et al., 2018) for a variety of ecological
and forestry studies. When coupled with GIS tools, the capability of
LIDAR data to capture the canopy structure offers great potential to
provide the radiation inputs required of water quality models.

The last few decades have seen an increase in LIDAR surveys being
commissioned for the production of terrain models, and thus are carried
out during winter to minimise the interference of vegetation on the

ground signal; this data is referred to as leaf-off LIDAR. This has led
many authors to assess the fitness of leaf-off LIDAR data to capture
vegetation structure for ecology and forestry studies (Brubaker et al.,
2014; Gopalakrishnan et al., 2015; Parent and Volin, 2014; Tompalski
et al., 2017; Wasser et al., 2013). Outcomes have been generally fa-
vourable but complications exist. Leaf-off LIDAR may misrepresent the
canopy characteristics, and in addition the data tend to include any
other objects on the ground at the time of capture. Consequently strong
biases may be introduced, yielding an incorrect representation of the
actual canopy structure.

1.2. Use of shade estimates in river eutrophication studies

Recent eutrophication research has identified light limitation, as
induced by riparian shade, to be a very important moderator on the
development of river algal blooms (Bowes et al., 2016, 2012a;
Hardenbicker et al., 2014; Waylett et al., 2013). Establishing riparian
vegetation has been suggested as a more cost-effective means of pre-
venting undesirable eutrophication impacts than reducing nutrient
loads (Bowes et al., 2012a; Hutchins et al., 2010). However, for the
purposes of managing eutrophication, establishment of riparian shade
has traditionally been considered very much of secondary importance
to the mitigation of nutrient inputs, and so modelling approaches to
account for shade have tended to be rudimentary at best. For example,
estimates of tree height and river width taken from phenology studies
and aerial photography respectively (Halliday et al., 2016; Waylett
et al., 2013) have been used to estimate height to width ratios used for
calculating fractional penetration of radiation (Davies-Colley and
Rutherford, 2005; DeWalle, 2010, 2008). The ratio, typically applied as
a static value of the amount shade has been used in conjunction with
estimates of occupancy based on satellite imagery or other land cover
mapping products (Waylett et al., 2013). This pragmatic approach to
estimating shade does not involve any additional computation, but is
achieved at the expense of accuracy, since not taking into account the
spatial and temporal heterogeneities introduces high uncertainty
making its potential to provide management solutions limited.

1.3. Aims and objectives

The aim of this paper is to present and test a pragmatic method for
reducing uncertainty in shade estimates to improve the utility of water
quality modelling to inform management decisions. Developing such an
approach is potentially very powerful as it circumvents the need for
detailed field surveying of shade. The method quantifies average stream
shading from nearby vegetation using high-resolution remotely-ac-
quired data. The approach extends analysis to water quality beyond
temperature simulation alone. The method was also tested on the River
Thames as it has high levels of gross primary productivity due to long
residence times and its water quality is known to be sensitive to shading
(Bowes et al., 2016, 2012b).

The specific objectives of our study are to:

1) assess how well two high resolution elevation data products char-
acterise riparian vegetation;

2) produce daily shade maps using those two datasets (section 3.2);
3) evaluate the consequences of using these two products for water

quality modelling using the QUESTOR model on the river Thames
(Hutchins et al., 2016; Waylett et al., 2013) and comparing these
outcomes to those previously generated using the method of Waylett
et al. (2013) and an application which disregarded shading influ-
ence (section 3.3).

The study is novel in making these comparisons between elevation
data products and assessing their impacts in water quality modelling
scenarios.
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2. Methodology

A detailed description of the methodology developed is provided in
the supplementary information document and is summarised here:

2.1. Area of study

The Thames River Basin (Fig. 1) is situated in the south east of the
United Kingdom and covers an area of 9948 km2 to its tidal limit at
Kingston-Upon-Thames (Marsh and Hannaford, 2008). It consists of a
mixture of rural areas, primarily grassland, arable, and woodland in the
west and south of the region, and urban areas (7%), dominated by
Greater London but also including numerous other towns and cities.
Woodland, predominantly broadleaved, comprises 16% of the basin
area. The basin is underlain by two major aquifers, the Chalk and the
Oolitic Limestones which provide the majority of public water supply
(Bloomfield et al., 2011). The River Thames, the principal water course
has a freshwater extent of 257 km, a mean flow of ca. 78m3 s−1 at the
lowest gauge in the basin at Kingston-upon-Thames, and the mean
annual rainfall is ∼750mm (Marsh and Hannaford, 2008). Recent data
have shown that despite major reductions in phosphorus concentrations
since the late 1990s (Bowes et al., 2012b), the River Thames still suffers
from accelerated phytoplankton growth particularly in the lower
reaches and it has been suggested that light may be a major limiting
factor in this freshwater ecosystem (Bowes et al., 2016). Typically,
nutrient concentrations are high and in recent years, always exceeding
1.4 and 0.09mg L−1 nitrate-N and phosphorus respectively at Wall-
ingford, for example (Bowes et al., 2012a).

2.2. Input datasets description

By processing, merging and re-sampling the data from all available
surveys to give the best possible coverage, using the most recent data
for areas flown in more than one survey, the EA have created LIDAR
Composite Elevation datasets (Environment Agency, 2016). The 1m
LIDAR Composite DTM (LIDAR Composite Digital Terrain Model (DTM)
– 1m, 2016) and the 1m LIDAR Composite DSM (LIDAR Composite
Digital Surface Model (DSM) – 1m, 2016) used for this study (denoted
EA LIDAR DTM and EA LIDAR DSM respectively) composed of surveys
carried out from March 1998 to January 2016. However, most of the
area of study was covered by surveys carried out in the winters of 2005,
2008 and 2009 and in the spring of 2003 (LIDAR Composite Extents
Coverage, 2017).

National Tree Map™ (NTM) (Bluesky International Ltd, 2012) is a
spatial database of the location, height and canopy extent of every
single tree of height equal or higher than 3m1 in England and Wales.
NTM consists of three layers displaying the location of the highest point
of the tree and two polygon layers displaying the tree crown, both as
captured and idealised as a circle (Fig. 1 b).

Other datasets used in the analysis include:

• A polygon defining the Thames river surface extracted from the OS
MasterMap® (MM) Topography Layer (OS MasterMap Topography
Layer, 2015); from Thames headwaters to the tidal limit (at King-
ston-upon-Thames).

• Hourly global radiation and daily sunshine duration observations
from Little Rissington weather station (near Cheltenham, in
Gloucestershire), spanning 2010–2014, were downloaded from
BADC (Met Office, 2006a, 2006b). This station, part of the Met
Office synoptic network, was selected due to its proximity to the
River Thames. It was assumed to be representative of the riparian
area analysed.

2.3. Riparian shading analysis

The processing to create the canopy surfaces, shade maps and
subsequent zonal statistics was performed using ESRI site-package
ArcPy, with all the tasks automated with Python 2.7. The meteor-
ological data were processed using python for data analysis (PANDAS).
The statistical analysis was performed using the python library
Statsmodels.

2.3.1. Definition of riparian zone
The effectiveness of the riparian vegetation to shade streams de-

pends on buffer width, canopy cover, height and density (Brazier and
Brown, 1973; Steinblums et al., 1984; DeWalle, 2010). A literature
review focusing on utility of riparian buffers for protection of fisheries
and wildlife habitats of the Pacific Northwest region (US) (Christensen,
2000) found that riparian buffer widths ranging between 11m and
46m provide between 60 and 100% of shading. Therefore, we have
defined the riparian zone as the 50m area extending on each side of the
river.

2.3.2. Canopy surface models of the Thames riparian zone
Three Canopy Surface Models (CSM) of the Thames riparian zone,

all of 1 m resolution, have been used for the double purpose of calcu-
lating the amount of shade cast by riparian vegetation and then re-
flecting on the suitability of the two raw data sets (i.e. EA LIDAR ele-
vation data and NTM) for this type of analysis.

(i) EA LIDAR DSM (ii) NTM CSM, made by triangulating the tree
high points and actual crown polygons into a canopy height model
(CHM) and adding this to the EA LIDAR DTM (iii) EA LIDAR DSM under
NTM canopy (LIDAR UNTMC), made by extracting the EA LIDAR DSM
values overlapping the NTM actual crown polygons. The CSMs were
processed using ArcGIS spatial tools (see supplementary information
document for details). Supplementary Fig. 2 shows samples of the three
CSM for a small selected area.

2.3.3. Creation of riparian shade maps
Using each of the three CSMs as input to the ArcGIS “Area Solar

Radiation” tool (Fu and Rich, 1999) three sets of daily “duration of
direct radiation” maps at 10-day intervals for the period between 11
February and the 20 June were created. Those grids were used to es-
timate the daily number of hours (as the inverse of the duration of
direct radiation) the river surface was in shade.

2.3.4. Estimation of daily percentage of shading for the Thames
Using the ArcGIS “Zonal Statistics as Table” tool, the “hours of di-

rect radiation” values at the river surface (i.e. all cells of the daily shade
map under the river polygon) were aggregated into a daily average for
the River Thames. The daily maximum number of hours of direct ra-
diation was also extracted (assumed equivalent to the “daylight
length”). The daily hours of shade on the river surface were calculated
by subtracting the average “hours of direct radiation” from the “day-
light length”. The “hours of direct radiation” as a proportion of “day-
light length” is defined as the “fractional penetration (fp)”. They were
then expressed as a percentage of the daily budget. After the summer
solstice (Julian Day 172), i.e. in summer and autumn, the day-to-day
relative position and orientation of the sun and earth follow the same
pattern followed in late winter-spring but in reverse. Hence the same
surfaces have been used for the two sub-periods (pre- and post-summer
solstice), extending the temporal coverage of the study. Finally, a re-
cord of daily shade for the Thames was created by incremental linear
interpolation between the values modelled at 10 day intervals.

This analysis was undertaken for each of the three CSMs. It assumes
that the CSMs are light-tight and the ground under the trees is in total
shade. In reality, light would penetrate through the canopy depending
on its structure and season, so these riparian shade estimates represent
a ‘best-case’ scenario (Greenberg et al., 2012; Johnson and Wilby,

1 NTM classification criteria specify trees over 3m height however the da-
taset includes tree/bushes of height lower than 3m.
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2015).

2.3.5. Estimation of total daily radiation reaching the Thames surface
Hourly global radiation observations (kJ), were converted to watts

and summed to daily values. On the assumption that cloud cover is the
dominant factor in determining the diffuse fraction (Muneer and
Munawwar, 2006), the daily global radiation was disaggregated into
direct and diffuse using a cloud cover factor (Robinson et al., 2017). To
take account of the riparian shading effects of each of the three DSMs,
for each day, the daily fraction of hours of direct radiation reaching the
water surface (spatially averaged as calculated in Sec. 2.3.4) was
multiplied by the total daily direct radiation. The daily amount of dif-
fuse radiation was then added to the ‘corrected’ direct radiation to
generate the radiation input to QUESTOR (Section 2.4).

2.3.6. Canopy occupancy and tree height and area
The percentage of occupancy for a 20m riparian buffer and mean

tree height of each CHM for the whole river were estimated using
ArcGIS “Zonal Statistics” tool. The canopy occupancy estimates in-
cluded the overhang portion of the canopy (i.e. portion of the CHM
overlapping the river surface polygon). In addition, to gain a better
insight on the distribution of individual tree height and area in both the
NTM CHM and the LIDAR UNTMC CHM the extent and height of each
individual tree in these two CHMs was extracted, using the NTM actual
crown polygons as tree definition. Values for the LIDAR CHM were not
reported as statistics on tree height taken from a CHM including objects
other than trees would be misleading.

2.4. Impact of shading on water quality

To quantify the consequences of different daily estimates of riparian
shade, as generated using the three CSMs described above, a model of
river eutrophication was applied for 2010 for the stretch of the Thames
downstream as far as Wallingford (Fig. 1). The model, QUESTOR, and
its application to the River Thames is described elsewhere (Hutchins
et al., 2016; Waylett et al., 2013). It requires as input a daily dataset of

global radiation incident at the water surface. The model calculates the
effects radiation has on water temperature, phytoplankton biomass
(chlorophyll concentration), nutrients and dissolved oxygen con-
centrations at a daily time-step. A set of equations describing the re-
lationships between radiation and these parameters of water quality is
provided the supplementary information document. Further explana-
tion of how the model simulates light attenuation in the water column
is given elsewhere (Hutchins, 2012). To assess the sensitivity of these
river quality factors in response to varying levels of incident radiation
due to the differing effect of the riparian shade cast by each CSM (Sec.
2.3.5) the QUESTOR model was run three times, each using a different
global radiation time series. A further application was made assuming
riparian tree shading to be completely absent. Results from an addi-
tional run are reported based on a typical pragmatic approach de-
scribed in the Introduction, as adopted by Waylett et al. (2013) for the
Thames. This approach assumed 20m tree height and equal incidence
of N-S and E-W trending river channel. The applications represent 27%
tree occupancy as a “best” estimate used by Waylett et al. (2013). The
rest of the parameters were the same for each run, each of which lasted
261 days commencing on 11th Feb 2010.

In order to assess the statistical significance of the effect of shade on
water quality model outputs, differences between the un-shaded and
shaded simulations were quantified and ordinary least-squares regres-
sion modelling undertaken (see supplementary for more information).

3. Results

The canopy characteristics and amount of river shading along the
stretch between Hannington and Wallingford where the water quality
impacts are considered (Table 1) is similar to that calculated for the
entire river (Supplementary Table 1). The results of the data suitability
analysis for the entire length of the Thames reveal differences arising
from the three CSMs. A comparison of the impacts of these three canopy
representations (Applications 1–3) with that arising from a hypothetical
situation where a tree canopy is absent (Application 4) is made.

Shading is slightly more effective in the upper stretch of the River

Fig. 1. a) River Thames from headwaters to the beginning of the tidal zone (Kingston-up-on-Thames) b) Detailed view of National Tree Map (NTM) dataset.
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Thames. For the entire length fractional penetration is higher by 0.03,
0.001 and 0.015 for applications 1–3 respectively. Mean tree height for
both the NTM and LIDAR CHM are slightly lower in the upper stretch of
the Thames (by 0.46 and 0.38m respectively). However, the mean tree
height for the LIDAR UNTMC CHM is, 1.2 m higher for this stretch than
it is for the entire river.

3.1. Canopy height and occupancy estimates

Mean tree height, canopy area and canopy occupancy percentage
yielded by each CHM for the total length of the Thames riparian zone
are shown in Supplementary Table 1. Additionally, to gain an insight
into both the NTM and LIDAR UNTMC canopy structure, individual tree
height and canopy extent yielded by both CHMs were displayed and
compared using boxplots (Fig. 2). The tree height of the NTM polygons
has been plotted (NTM tree height, Fig. 2 a) alongside the tree height
yield by the NTM CHM; the boxplots show that the NTM CHM elevation
is very close to the elevation of the raw data used to generate it. The
plots showed that tree height in both CHMs varied between 2 and 40m;
however, while inter-quartile range of the height was between 6 and
15m for NTM, it was between 4 and 10.5 for LIDAR UNTMC (Fig. 2 a).
The median for NTM, just above 10.22m, is closer to the mean height of
10.55m (Supplementary Table 1). The median height of the LUNTMC
height estimates, though, is 2.4m higher than the mean height.

For the vast majority of the two distributions (i.e. to the upper
whiskers), the NTM CHM yielded larger tree canopy area with values
spreading over a much wider range, (Fig. 2 b). This is consistent with
the percentage of occupancies estimated for the total length of the
Thames riparian zone (Supplementary Table 1). It is also an indication
of the ‘thinness’ of the LIDAR UNTMC CHM due to the lack of leaves.

3.2. Fractional penetration estimated from each CSM

As expected (Table 1; see Supplementary Fig. 3), NTM provides the

most effective canopy: a midsummer fp value of 0.655 corresponds to
5.6 h of shade. Given the large differences in mean tree height and
canopy occupancy the differences in fp between the NTM and the two
LIDAR derived CHMs appear relatively small (Table 1). Visual inspec-
tion of the daily shade maps (Fig. 5) showed that the spatial distribution
of shade along the Thames is variable, with sections of the river passing
through areas of sparse, low (probably shrub) riparian vegetation (e.g.
Fig. 5 b). These riparian areas provide almost no daily hours of shade.

3.3. Water quality modelling

The sensitivity of water temperature, phytoplankton biomass, nu-
trient and dissolved oxygen concentrations in response to varying the
levels of incident radiation (i.e. to mimic the effect of using different
shading estimates) was demonstrated by QUESTOR outputs which were
calculated for the Thames at Wallingford (Table 1). Differences in
chlorophyll, both in terms of the 90th percentile (levels indicative of
elevated summer levels during blooms) and the number of days ex-
ceeding a trigger level indicative of accelerated eutrophic growth of
30 μg L−1 (Hutchins et al., 2010), are not large. In contrast the methods
reveal bigger differences in the upper quartile (typical summer) levels
of BOD and water temperature.

Despite tree coverage along the Thames being fairly sparse and the
river channel being wide, incorporating effects of shade has an impact
on the water quality. This is apparent when comparing the hypothetical
absence of a tree canopy (Application number 4) with the results de-
rived using NTM and LIDAR (Application numbers 1–3). Specifically,
the consequences of considering shade is a reduction of up to 28% and
12% in BOD upper quartile and chlorophyll 90th percentile respectively,
up to 15% fewer days of elevated chlorophyll and up to 1.1 °C reduction
in upper quartile temperature. The differences are substantial, in par-
ticular in terms of the BOD criterion.

The dynamics apparent at a daily level are important to consider.
Shading has the biggest impact on incoming radiation reaching the

Table 1
Summary results (tree data for Hannington to Wallingford 92 km stretch, water quality data at Wallingford).

Application number 1 2 3 4 5
Application name NTM LIDAR LIDAR UNTMC 0% Previous “best” estimate
Fractional penetration (in mid-summer) 0.625 0.707 0.747 1.00 0.816
Mean height (m) 10.09 5.25 5.23 0 20
Total canopy area (km2) 3.01 1.14 0.84 0
Percentage occupancy (20m riparian buffer) 35.5 14.6 11.5 0 27
Chlorophyll 90th percentile (μg/L) 80.5 81.9 82.7 91.0 83.0
Days with chlorophyll over 30 μg L−1 97 98 102 114 93
BOD (upper quartile) 1.58 1.69 1.78 2.19 1.70
Temperature ⁰C (upper quartile) 20.1 20.3 20.6 21.2 20.5
NSE Temperature 0.815 0.797 0.788 0.705 0.815
% error in mean Temperature 7.10 7.97 8.40 11.3 7.71

Fig. 2. Boxplots presenting a) tree height for NTM actual tree polygons dataset and NTM and LIDAR UNTMC CHMs b) canopy area of individual trees for NTM and
LIDAR UNTMC CHMs.
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water surface in May and June, and correspondingly the largest dif-
ferences in water temperature are seen at these times (Fig. 3). Similarly
in May and June chlorophyll and BOD peaks are markedly lower when
shade is considered. Chlorophyll and BOD follow similar patterns
throughout the growing season (due to the linked diurnal cycles of
photosynthesis and respiration). When shading is considered, primary
productivity shows a delayed response to the development of favour-
able conditions (through the spring), being more active later in the
summer. When evaluating the impact of shade on water quality at a
day-by-day level it can be seen that all three water quality parameters
become more substantially reduced under increasing shade (Fig. 4). All
relations are significant, the strongest being for water temperature
(Supplementary Table 2). This is unsurprising. In contrast, relationships
between radiation and primary productivity are likely to be complex
and less immediate. As concentrations of BOD and chlorophyll are often
close to zero there are many days when no influence of shade is seen
despite big differences in radiation (Fig. 4).

Weekly water quality observations (Bowes et al., 2018, 2017) are
generally insufficient to test the goodness of fit of the 90th percentile
model results over the time period of just 261 days. However the upper
quartile water temperature at Wallingford was 19.4 °C, closer to NTM-
derived estimate (Application number 1) than the other estimates in-
cluding the previous “best” estimate from a previous study (Waylett
et al., 2013) (Application number 5). Time-series model performance
for water temperature are reported (Table 1), revealing good fits (NSE
above 0.8) although there is slight but consistent estimation during the
summer. In this context the Waylett et al. (2013) model performs fa-
vourably, but the NTM-derived model (Application number 1) performs
best, demonstrating an appreciably better value for % error in mean
than other applications. When shade is not considered (Application
number 4) model performance is notably worse.

Ground-truth measurements of the tree canopy structure were un-
available. However, daily flow and weekly water quality observations
(Bowes et al., 2018, 2017; Hutchins et al., 2016) have permitted more
general assessment of the skill of the QUESTOR model over longer
periods of time. At Wallingford the values for percentage error in mean
(PBIAS) for an independent period of validation of the QUESTOR model
(2011–2012) were 7.9, −25.7 and 1.1 for water temperature, BOD and
chlorophyll respectively. The NSE values for the study period for flow
and water temperature, determinands that are not calibrated, are 0.975
(at a site 7 km upstream of Wallingford) and 0.815 (Table 1) respec-
tively. All these values are deemed acceptable based on widely-adopted
criteria (Moriasi et al., 2015).

4. Discussion

Relatively low percentages of shade are calculated along the River
Thames. The implications of using both NTM and leaf-off LIDAR data
are not a consequence of the methods, but a reflection of the amount
and characteristics of riparian vegetation in the Thames, which is
generally fairly limited and fairly low in height. The results displayed in
Table 1 represent the outcome of averaging out the variation of the
shade maps into a value for the whole length of the river. Aggregated
summaries of the influence of shade are useful to support national-scale
risk-based approaches to assess the vulnerability of water bodies (e.g. in
terms of eutrophication: Charlton et al., 2017). Calculating whole-river
values serves to generalise and smooth out the effects of the tree shade,
since there are many areas along the Thames with sparse or no vege-
tation. Three specific aspects of the results are discussed in detail below.

Fig. 3. Times series plots for the River Thames at Wallingford showing difference between radiation and water quality (temperature, BOD and chlorophyll) estimates,
in each case assuming (i) no shade (grey lines) (ii) shading using NTM canopy (black lines).

Fig. 4. Scatter plots showing paired daily differences between the (i) un-shaded and (ii) shaded simulations shown in Fig. 3. Best fit lines are defined in
Supplementary Table 2.
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4.1. Tree height and density derived from canopy height models

Differences in tree heights and occupancies derived from the three
CHMs were apparent, due to the LIDAR data having been captured in
winter when deciduous trees are leafless. The differences were as ex-
pected, despite their source data having been captured using different
remote sensing techniques which could make for confounding factors.
Recent publications (Brubaker et al., 2014; Parent and Volin, 2014;
Wasser et al., 2013) have shown that for leaf-off LIDAR, tree height and
cover are generally underestimated, particularly in deciduous canopies;
however, the degree of underestimation can be highly dependent on the
methods used to derive the CHM (i.e. LIDAR composite DSM). Never-
theless, the differences between the NTM and LIDAR UNTMC CHM
heights were large (2–5m when comparing the 25th, 50th and 75th
percentiles) (Fig. 2a). Such large differences in height have only been
reported in the case of deciduous compound trees when comparing
interpolated LIDAR CHM with field measurements (Wasser et al.,
2013). Deciduous compound trees have much larger differences be-
tween their leaf-on and leaf-off canopies than deciduous simple trees.
Riparian trees in the Thames are primarily broadleaf but by no means
exclusively of deciduous compound type (National Forest Inventory
England, 2014), therefore the differences between leaf-on and leaf-off
may not be that large.

The magnitude of the differences arising between methods may be
related to the circumstances of collection of the raw EA LIDAR dataset.
No detailed metadata is provided alongside the LIDAR composite da-
tasets to know how the survey DSMs were created although a method of
interpolation was most likely. In addition, the EA LIDAR composite
elevation datasets have been derived from multiple surveys, carried out
in different years and not always during the same season (Environment
Agency, 2016), using different collection parameters, such as flight
height, pulse density or number of returns (Brubaker et al., 2014).

Furthermore, to create a continuous regional/national coverage at a set
spatial resolution, data of different resolutions were resampled. Re-
sampling adds another processing step consisting of interpolation,
which may have further smoothed the CHM heights. Consequently,
heights from the LIDAR-derived CHMs may considerably underestimate
heights and extent of riparian tree canopies in the Thames (Fig. 5 e-h).
Besides, the resampling done to assemble data of different resolutions
may have accentuated the local variations in the final datasets due to
the variations in the survey capture parameters, which became ap-
parent in a visual analysis (e.g. by comparison of the LIDAR UNTMC
CHM and the NTM CHS in Fig. 5 e and 5 g).

Aside from the differences in percentile levels, height differences are
even larger when comparing the CHM mean heights (Table 1). The
differences, of more than 6m, easily exceed the underestimation arising
from using leaf-off interpolated CHM in deciduous trees plots. This may
be due to other data capture and processing issues, namely that EA
LIDAR DSMs are produced from the last return point data (Orr and
Lenane, 2012). In this respect, Wasser et al. (2013) found that in leaf-off
conditions a large percentage of the last returns represent the ground
rather than the vegetation. This would account for the large under-
estimates of tree height and failure to capture a large number of trees
(lower canopy extent) in the LIDAR UNTMC compared to NTM, as re-
vealed in the areal summaries (Fig. 2b). Moreover, the LIDAR UNTMC
mean height for the whole riparian zone is 2.4m lower than its in-
dividual tree height median (Fig. 2a), which indicates the presence of a
very large number of vegetation objects of low height. The much lower
percentage occupancy in both LIDAR derived CHMs compared to the
NTM CHM (Table 1) provides further evidence that LIDAR missed a
large number of trees/shrubs in the riparian zone. Differences in oc-
cupancy between both LIDAR-derived CHMs, as inferred by Fig. 2, can
be attributed to the presence of other objects in the LIDAR DSM (e.g.
buildings, piers, etc) within the riparian buffer (see Supplementary

Fig. 5. Snapshots of duration of direct radiation (shade maps) on the 172 Julian Day for NTM (a–d) and LIDAR UNTMC (e–h); the snapshots also include the
corresponding CHM, NTM (a–d) and LIDAR UNTMC (e–h). Frames i-l show the difference between the NTM shade map and the LIDAR UNTMC shade map. The CHMs
in frames a-h have been classified according to tree height interquartile values in Fig. 2 a. (For interpretation of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)
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Fig. 2). While those objects can contribute to the blockage of direct
radiation, their presence hampers any assessment of the specific impact
of vegetation.

The choice of data processing method can alleviate some of the
shortcomings of LIDAR; for example upper height percentile LIDAR
estimates have been found to be very close to field measurements
(Hawbaker et al., 2010; Wasser et al., 2013). However, it appears that
EA LIDAR DSM is not particularly suited to estimate the riparian shade
on the Thames, notwithstanding the fact that other LIDAR products
available in UK could be beneficial to this type of analysis. In any case,
our study has also revealed that it is important that available datasets,
no matter their level of access, are accompanied by the necessary
documentation (detailing provenance and content) for confident re-use.

In contrast, the method used to generate a gridded CHM from the
NTM dataset has a very small impact on the tree heights i.e. reduced the
mean max height by 0.2 m (Fig. 2 a). This, together with a coverage
accuracy of more than 90%, provides confidence in the values. Fur-
thermore, NTM has been used by the UK Forestry Commission to de-
liver assessments of tree cover outside large woodlands (Brewer et al.,
2017) and for urban forest inventories (Handley and Doick, 2015).
Therefore, NTM data is more suitable for types of studies such as ours.

4.2. Fractional penetration from canopy height models

As expected, all CSM have the highest fp values in the summer,
when shadows are shorter. However, the impact of underestimating
height and tree occupancy when using leaf-off EA LIDAR DSM is
manifested when considering grids of direct radiation duration. EA
LIDAR DSM gives a higher fp than the NTM by about 6% and 11% for
the EA LIDAR DSM and LIDAR UNTMC data respectively
(Supplementary Fig. 3). The presence of other objects such us buildings
in the LIDAR DSM would account for its lower fp.

Grids of daily duration of direct radiation show how the prevalence
and extent of shading changes downstream along the river with varia-
tions in vegetation cover (tree height and occupancy), river orientation
and river width (Fig. 5 a-d for NTM derived grids and 5 e-h for LIDAR
UNTMC derived grids). Seasonal variations in the sun path are also
important, and this governs the efficiency by which the riparian vege-
tation blocks direct radiation. Blocking effects are more substantial in
spring and autumn when longer shadows means that a larger number of
trees have a height sufficient to block direct radiation to the river
surface. All CSMs show stretches with very sparse or absent vegetation;
or stretches where the vegetation concentrates in the north bank of the
river. Vegetation on north banks casts very little or no shade to the river
which mostly flows from west to east.

The canopy occupancy within 20m of the channel as derived from
the leaf-off LIDAR UNTMC CSM is only one third of that from the NTM
CSM (Supplementary Table 1). Given this large difference, and as only
the trees very close to the river bank provide efficient shade during mid-
summer (e.g. Fig. 5b), it would be logical to have expected the differ-
ence in mid-summer fp to be greater than the 11% difference arising.
Furthermore, over the entire Thames, differences in duration of direct
radiation in mid-summer between each CSM are between one and two
hours. However, close inspection shows that there are localised areas
where there is consistently five or six hours difference (Fig. 5 i), de-
monstrating the efficiency of NTM CSM to capture vegetation.

Even though the NTM CHM is a closer representation of the true
riparian vegetation, only that which is on the riverbank itself is effec-
tive in shading the water surface (Johnson and Wilby, 2015). It is vi-
sually apparent that the EA LIDAR DSM (and thus of the LIDAR UN-
TMC's) signal concentrates along the river banks. In addition to this,
visual comparison of both CHMs showed that the ability of the LIDAR
UNTMC CHMs to capture riparian vegetation varies considerably
throughout its spatial extent. Leaf-off EA LIDAR DSM data captured the
riparian canopy to a high level of accuracy in some stretches (Fig. 5 g).
A close look at the provenance of the surveys that make the EA LIDAR

composite (LIDAR Composite Extents Coverage, 2017) showed that
those stretches had been captured in spring 2003 (i.e. the survey took
place after the leafing period had already started) at resolutions of 0.5
and 1m. These demonstrate high variability in the ability of the EA
LIDAR DSM to record vegetation, which, in turn, could partially explain
why the fp of the EW LIDAR derived CHMs is not as high as expected.

During the summer months, the incoming radiation received during
approximately 60% of daytime comes from solar angles varying be-
tween 30° and 60° (Johnson and Wilby, 2015). This means that for an E-
W azimuth river the shade cast by a tree of average height (10.55m as
estimated using the Thames NTM CHM) would vary from about 17m
(at sunrise/sunset), to merely 5m around mid-day. As the average
width of the Thames is 42m, a patch of trees of average height would
not be enough to shade even half the width of the river. This highlights
that the ratio between the tree height and the river width is a key in-
dicator in determining the effectiveness of the canopy to block direct
radiation (as identified by Davies-Colley and Rutherford, 2005;
DeWalle, 2008, 2010). It could also explain why the difference in mid-
summer fp of the CHMs are not as big as might have been expected from
the large differences in percentage of occupancy (Supplementary
Table 1).

4.3. Suitability of spatial data products for characterising canopies

To summarise, we have tested the suitability of two spatial data
products to capture the spatial variation of vegetation along the area of
study. Differences in the accuracy of each CSM to capture the riparian
vegetation characteristics and thereby to calculate shading effects is
related to:

(i) the time of survey (i.e. leaf-on/leaf-off capture),
(ii) the accuracy of the technique for data capture and
(iii) the post processing to produce elevation surfaces (although in the

case of the LIDAR data product used in this study, it is already
available as elevation surfaces).

Notably the processing of the EA LIDAR DSM data definitively un-
derestimates height. Besides, EA LIDAR DSM data was captured for
general purposes therefore, it contains any object on the surface in
addition to trees. In this respect alone our analysis is very valuable as it
has discriminated between vegetative and non-vegetative objects and
indicated that shade from non-vegetative objects can locally be im-
portant especially in urban areas. Finally, freely available EALIDAR,
was collected primarily for the purpose of mapping ground elevation
and therefore normally undertaken in winter where trees have no
leaves (leaf off LIDAR). Shade would be lower at this time of year. For
these reasons these general purpose LIDAR data need to be used in
combination with other datasets in order to be of use to characterise
vegetation.

4.4. Water quality modelling

Simulations reveal that shading influences water quality in the
Thames (Figs. 3 and 4). Water temperature is reduced. Relationships
between radiation and primary productivity, as illustrated by BOD and
chlorophyll, are more complex and delayed due to the importance of
other factors such as river flow, nutrient supply and biological inter-
actions. The model suggests that shading promotes a slower response in
phytoplankton biomass with peak values reached in July rather than
June when shading is not considered (Fig. 3). Previous work has sug-
gested that mid-summer phytoplankton biomass is lower than might be
expected through QUESTOR modelling (Hutchins et al., 2016) with
blooms rarely seen when temperature increases above 19 °C (Bowes
et al., 2016). Therefore the effects of shading could be more consider-
able than the significant ones suggested by the water quality modelling
undertaken in the present study.
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Although not large, differences in water quality impact arising from
the choice of methodology and data sources for calculating riparian
shade are apparent. The benefits of using the NTM are noticeable. The
differences of simulated water quality for the River Thames at
Wallingford in 2010 (Table 1) reflect the impact of different levels of
light reaching the water column on eutrophication in the river. All five
model runs used the same daily inputs of diffuse radiation (calculated
as the difference between the global values and the direct component).
As a considerable part of the global radiation comprises the diffuse
component, this is likely to explain the somewhat limited level of
variation seen between the summary water quality statistics arising
from use of the different shade data sets.

The effects on water temperature during the summer appear con-
siderable. For the three CSMs (Application numbers 1–3) the upper
quartile values vary by over 0.5 °C. The upper quartile temperature is
estimated to be 21.2 °C when shade is completely absent (4), 1.1 °C
more than the application using NTM canopy (Application number 1).
These differences are substantial. The 90th percentile air temperatures
in the region are expected to increase by between 2.2 and 4.2 °C by the
2050s (Hutchins et al., 2016). Use of NTM data (Application number 1)
rather than LiDAR UNTMC (Application number 3) results in a better
model performance when compared to weekly observations (Table 1).

Differences in chlorophyll levels do not seem to be large. It is likely
this is because limiting conditions are reached periodically. The model
output indicates that phosphorus becomes limiting in late-summer
2010. It becomes most limiting under conditions of least shade. The
consequence of this is that some of the phytoplankton population cra-
shes and is recycled as degradable carbon. This increases the BOD,
which is reflected in the considerable differences in upper quartile BOD
simulated under the various model runs.

The further consequence of this is likely to be a decrease in DO, but
no substantial differences arising between methodologies are apparent
in the mid-River Thames at Wallingford. Model calibration (Hutchins
et al., 2016) suggested low rates of BOD decay upstream of Wallingford
alongside relatively higher rates downstream. It is possible that the
impacts on DO between the model runs may be contrasting further
downstream, but this analysis is out of the scope of the present study.

5. Conclusions

We have presented a methodology to estimate tree height and ca-
nopy extent, thereby allowing the calculation of daily shade, the frac-
tional penetration of radiation and its effect on global incoming ra-
diation for water quality modelling purposes. This methodology
includes the use of high resolution spatial data capable of capturing
riparian canopy structure and a model that simulates the position of the
sun across the sky for hourly or sub-hourly intervals to model the daily
shade over the river surface. It also uses measurements of hourly ra-
diation and daily sunshine duration, which are corrected to account for
the shade effect in order to be input to the water quality model.

The results demonstrate:

• Consideration of riparian shading is important for water quality si-
mulation, as is demonstrated by the big differences arising when
considering or not considering shade (Table 1).

• An increased level of confidence about riparian shade condition in
terms of percent occupancy (proportion of channel length with
trees) and fractional penetration (fraction of direct radiation
reaching the river through the tree canopy) along the River Thames.

• Water quality impacts are sensitive to the level of shade as estimated
using the two datasets. Calculations using EA LIDAR DSM are dif-
ferent to those using NTM (partly due to the seasonal coverage of
the EA LIDAR DSM data).

• Assessing the impacts of using each dataset in turn gave improved
insights into how changing the levels of riparian shade (by planting
or felling trees) might affect the water quality and river ecology.

• Levels of riparian shading along the Thames are low and not very
effective at reducing levels of direct radiation reaching the water
surface.

• Although the modelling was limited in its use of daily shade data
averaged along the whole river length, the high spatial and temporal
resolution of the data presents considerable potential for pin-
pointing and evaluating very specific tree planting scenarios for
water quality gains.

• This methodology allows design of more effective riparian shading
strategies specifically to support water quality objectives based on
location, orientation, effective cover, and distance from the river
bank.

Shading is clearly an important parameter for understanding river
water quality indicators related to eutrophication, such as chlorophyll
and dissolved oxygen concentrations. The GIS-based method developed
within this paper, utilising highly accurate tree data, provides (i) an
innovative means to assess the impact of riparian shading, (ii) a valu-
able tool for estimating impacts of changes in future radiation levels
due to climate change, and (iii) also the potential for targetted planting
of riparian cover to minimise impacts of eutrophication. This will in-
form catchment management best-practise.
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