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contamination risk in groundwater 
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Microbial water quality is frequently assessed with a risk indicator approach that relies on 

Escherichia coli. Relying exclusively on E. coli is limiting, particularly in low-resource 

settings, and we argue that risk assessments could be improved by a complementary 

parameter, tryptophan-like fluorescence (TLF). Over two campaigns (June 2016 and March 

2017) we sampled 37 water points in rural Kwale County, Kenya for TLF, E. coli and 

thermotolerant coliforms (total n = 1,082). Using three World Health Organization defined 

classes (very high, high, and low/intermediate), risk indicated by TLF was not significantly 

different from risk indicated by E. coli (p=0.85). However, the TLF and E. coli risk 

classifications did show disagreement, with TLF indicating higher risk for 14% of samples 

and lower risk for 13% of samples. Comparisons of duplicate/replicate results demonstrated 

that precision is higher for TLF (average relative percent difference of duplicates = 14%) 

compared to culture-based methods (average RPD of duplicates >= 26%). Additionally, TLF 

sampling is more practical because it requires less time and resources. Precision and 

practicality make TLF well-suited to high-frequency sampling in low resource contexts. 

Interpretation and interference challenges are minimised when TLF is measured in 

groundwaters, which typically have low dissolved organic carbon, relatively consistent 

temperature, negligible turbidity and pH between 5 and 8. TLF cannot be used as a proxy for 

E. coli on an individual sample basis, but it can add value to groundwater risk assessments by 

improving prioritization of sampling and by increasing understanding of spatiotemporal 

variability.  
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1. Introduction 

Improving water quality is crucial to the United Nations’ Sustainable Development Goal 6.1, 

ensuring universal access to safely managed drinking water. Globally, 25% of people lack 

access to water free from microbial contamination (JMP, 2017); in Africa, the estimate 

doubles to 50% (Bain et al., 2014). The resulting disease burden is difficult to quantify but 

for low- and middle-income countries, half a million diarrheal deaths recorded in 2012 were 

attributed to microbially contaminated water (Prüss-Ustün et al., 2014). Beyond mortality, 

there are persistent physical and cognitive morbidity impacts, especially for children 

(Guerrant et al., 2002). 

Groundwater usually has better microbial quality compared to surface water, but it can be 

vulnerable to anthropogenic impact. Regional estimates of groundwater microbial 

contamination range from 78% to 97% of unprotected water points and 10% to 41% of 

boreholes (Bain et al., 2014). This contamination has large repercussions because direct 

access to groundwater accounts for a third of global water supply (27.3% protected, 7.4% 

unprotected), coming second only to piped networks (Bain et al., 2014). Work is ongoing to 

better understand and manage groundwater contamination and risk assessment is central to 

that effort (Murphy et al., 2017).  

Assessment of microbial contamination is ultimately concerned with the presence of 

pathogens; however, sampling for pathogens is difficult: there are many types, they 

frequently occur in low concentrations, and differentiating between infectious and non-viable 

organisms is challenging (Cangelosi and Meschke, 2014). As a result, an indicator approach 
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using coliform bacteria has been common for the last century. As a common enteric species 

that is relatively easy to culture,  Escherichia coli (E. coli) is the preferred indicator (WHO, 

2011).  

E. coli are thermotolerant coliforms (TTCs), meaning that they are culturable and ferment 

lactose at 44°C. In addition to Escherichia, the TTC subgroup also includes three other 

genera (Klebsiella, Enterobacter and Citrobacter). The ratio of E. coli to all TTCs is variable 

(Garcia-Armisen et al., 2007; Hamilton et al., 2005; WHO, 2012), but it is not uncommon for 

TTCs to be used as a proxy for E. coli (WHO, 2011). For risk assessment purposes, E. coli 

(or TTC) results are often interpreted by way of a four-tier ordinal risk classification scheme 

based on either most probable number (MPN) or colony forming units (CFU) per 100 mL 

(WHO, 2011). The risk classes are low (<1), intermediate (1-10), high (11-100), and very 

high (>100). 

Although widely regarded as a successful approach, use of E. coli is costly in terms of time 

requirement and consumables. Furthermore, as explained later in this section, the absence of 

E. coli in drinking water cannot be relied upon as a certain indication of safety. In this study 

we show how an additional parameter, tryptophan-like fluorescence (TLF), may help address 

these disadvantages. The TLF peak (centred on excitation/emission at 275/340 nm) is so 

named because it reflects concentrations of compounds that have similar fluorescence 

characteristics as the amino acid tryptophan. The constituents that produce TLF are 

fractionated into three size classes (Baker et al., 2007). The >2.7 µm fraction includes 

particulate organic matter that cause a detrimental apparent signal through scattering of light. 

The middle size class (0.2 µm to 2.7 µm) includes bacteria, which contribute directly to TLF. 

The remaining <0.2 µm fraction are free-form proteinaceous materials produced by bacterial 

metabolism. TLF can be measured in-situ using ultra-violet fluorimetry and is associated with 
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microbial breakdown of labile, or bioavailable, organic carbon (Elliott et al., 2006; Fox et al., 

2017; Hudson et al., 2008). Although labile carbon occurs naturally, faecally contaminated 

water is characterised by intense TLF peaks that can be identified in contrast to natural 

baseline levels (Hudson et al., 2007).  

This is the first groundwater study to compare TLF with E. coli specifically, but previous 

studies have found it correlated with faecal Streptococcus and Clostridium bacteria 

(Lapworth et al., 2008), TTCs in groundwaters (Sorensen et al., 2015a, 2016), E. coli in 

surface waters (Baker et al., 2015; Cumberland et al., 2012), and biological oxygen demand 

in organic waste streams (Carstea et al., 2016; Hudson et al., 2008). These studies help build 

a case for the utility of TLF, but do not provide definitive insight into its relationship with 

pathogens. The relationships between long-used indicators and pathogens remain unclear 

because direct comparisons are difficult and rare (Ferguson et al., 2012; Sorensen et al., 

2015b). In lieu of direct comparisons, one way to consider how TLF and E. coli relate to 

pathogens is by referencing established criteria for an ‘ideal’ microbial contamination 

indicator. 

The World Health Organization (WHO) stipulates five criteria for indicators, they should 1) 

be universally present in faeces at higher concentrations than pathogens; 2) persist in the 

environment and respond to treatment in a similar manner to pathogens but 3) not be 

pathogenic; 4) be simply and inexpensively detected; and 5) not multiply in natural waters 

(WHO, 2011). The first criterion is well met by both E. coli and TLF. The second, less so; E. 

coli can mimic physiologically similar pathogens but viruses and protozoa have different 

transport patterns and superior environmental survival times (Leclerc et al., 2001; Osborn et 

al., 2004). Consequently, the absence of E. coli in groundwater does not guarantee its safety. 

In contrast, TLF in groundwater is strongly associated with <0.2 µm material, potentially 
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giving it a size-based advantage as a more mobile and, therefore, conservative indicator of 

microbial contamination (Sorensen et al., 2016). There is some evidence that TLF is also 

more persistent in the environment than culturable TTCs (Sorensen et al., 2015a).  

TLF is not specific to any one organism and meets the third criterion of being non-

pathogenic. The fourth criterion stipulates simple, inexpensive detection. Typical E. coli 

detection methods rely on a particular enzyme (β-glucuronidase) and require 18 to 48 hours, 

sterile conditions, technical training and a range of consumables. In-situ fluorimetry has 

much lower variable cost by providing immediate results with minimal process steps, training 

and consumables.  

Finally, the fifth criterion, not multiplying in the environment, is not met by E. coli or TLF. 

That non-Escherichia coliforms are present in the environment is a long-standing criticism of 

their use as indicators (Leclerc et al., 2001). For E. coli, many maintain that environmental 

populations are limited and usually out-competed (WHO, 2012) but studies have reported E. 

coli survival and regrowth within tropical and temperate soils (Brennan et al., 2010a, 2010b; 

Fujioka et al., 1998; Solo-Gabriele et al., 2000), sediments (Haller et al., 2009), water (Pote et 

al., 2009), and handpumps (Ferguson et al., 2011). For TLF, natural baseline levels are 

expected when microbial communities and labile carbon are present, but differentiating 

between baseline and contaminated conditions is possible because faecal TLF concentrations 

are high relative to baseline uncontaminated waters (Baker, 2001; Sorensen et al., 2015a). 

Although less than ideal, it is widely held that using E. coli as an indicator is justified; we do 

not disagree. We argue that, being well-matched to the discussed criteria, TLF has potential 

as a complementary parameter. TLF will not replace E. coli as an indicator, but it has 

significant practical advantages for rapid screening and monitoring of microbiological 

groundwater quality. In this study we investigate the usability and effectiveness of in-situ 
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fluorimetry in comparison with cultured faecal indicator bacteria. Our comparison focusses 

on agreement and precision of results.  

We used two different methods for determining E. coli concentrations in our samples and, 

since other studies of TLF in groundwater have used TTCs for comparison, we also analysed 

for TTCs to understand how they compare to E. coli in our context. Based on comparison 

with E. coli results, we determined thresholds for grouping TLF into corresponding ordinal 

risk classes. We used paired ordinal logit cumulative link models to assess the level of 

agreement between the risk classifications generated by the different methods. Our second 

aim was to determine the relative precision of the methods. We did this by inclusion of 

duplicates and replicates in our sampling design. Drawing from our findings and experience 

in the field, as well as the wider literature, we then discuss how TLF can complement E. coli 

sampling and add value to risk assessments. 

2. Methods 

Sampling occurred in rural Kwale County, Kenya, at the end of the wet season (June 2016) 

and before the rains at the end of the dry season (March 2017). Thirty-seven water points 

(WPs) were selected from a total of eighty surveyed sites. They were selected to capture a 

range of contamination conditions and, therefore, included three WP types and a range of 

sanitary inspection scores (Table 1). Scores were calculated using the criteria presented in 

CAWST 2013, which is based on WHO guidance (WHO, 2012). Additional criteria for 

selection were that the WPs drew from unconfined groundwater, were used as drinking water 

sources, and were not chlorinated. The WPs spanned three geological units including 

Pleistocene coral reef, Pleistocene Kilindini sands, and Pliocene Margarini sands (Caswell 

and Baker, 1953; Mumma et al., 2011). 
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2.1. Sample collection and analysis 

Sampling was designed to capture both temporal and spatial variability. Eight WPs (two open 

wells [OWs], three covered wells with handpumps [CWs], and three boreholes with 

handpumps [BHs]) were visited daily (at the same time each day) over three weeks in June 

2016. Five were again visited daily over two weeks in March 2017. Two of the original OWs 

and one BH were not sampled in 2017 because they were dry due to a low water table. 

However, an additional thirty WPs (ten OWs, eleven CWs, nine BHs) were each visited once 

for sampling.  

All the sampled WPs were in regular use and roughly 300 litres were pumped to flush the 

boreholes prior to sampling. At the OWs, samples were drawn with buckets and ropes. Each 

site had its own bucket and rope set and they were triple-rinsed with distilled bottled water 

prior to sampling to minimise the potential influence of contamination from hands or dust. 

Daily field and laboratory blank samples were analysed for quality control to verify that 

secondary contamination and cross-contamination between sites was avoided. 

As detailed in Sections 2.1.1 and 2.1.2, four methods of analysis were used to assess 

microbial contamination including in-situ fluorimetry, compartmental bag tests (CBTs), and 

membrane filtration plate counts (PCs) with two different broths (Table 2).  

Across all the methods, a total of 1,082 samples were tested. Due to time, budget and 

equipment constraints, the number of samples analysed by each method varied. Nevertheless, 

the sampling design enabled comparisons of TLF and E. coli by CBT method (n = 162), E. 

coli by PC method (n = 70), and TTCs (n = 81). Duplicate and replicate testing was also 

included for each method to assess environmental- and method-induced variability, 

respectively. Duplicate samples were collected from the same WP within minutes of each 
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other and laboratory replicates were different aliquots from a single sample (there were no 

laboratory replicates for TLF since it was measured in-situ). 

2.1.1. TLF sampling 

For TLF, in-situ measurement was done using three commercially available UviLux probes, 

LED UV-based portable fluorimeters that measures fluorescence intensity at 280±30 / 

360±50 nm excitation/emission wavelength pairs. The probes express TLF intensity as an 

equivalent concentration of dissolved tryptophan in parts per billion with a detection limit of 

0.01 ppb. Prior to sampling, linear calibration equations were determined for each probe 

using standards of 0, 0.5, 1, 2, and 5 ppb prepared from L-tryptophan (Acros Organics, USA) 

in deionized, sterile water. Post-sampling laboratory work confirmed no calibration drift. 

We followed manufacturer recommended sampling protocols, which have been used in 

previous groundwater studies (Sorensen et al., 2015, 2016, 2018a). Approximately three litres 

of unfiltered water were pumped or poured into a container kept a black box to prevent 

ambient light from interfering with the measurement. The container we used was made from 

stainless-steel and was cleaned with ethanol and triple-rinsed with sample water prior to each 

measurement. Measurement was immediate with readings recorded for approximately three 

minutes. The probe and its sensor window were always kept clean and clear and care was 

taken to ensure that air bubbles did not form on the sensor window during sampling.   

2.1.2. Bacteria sampling 

Collection and analysis of the bacterial samples was carried out in accordance with published 

guidance from the test manufacturers (see Table 2). Samples were collected in sterile 
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purpose-made bags and immediately stored in a cooler box with ice-packs. They were 

transported and processed to begin incubation within two to five hours.  

The CBT method from Aquagenx was chosen for E. coli sampling based on its low cost and 

sample processing time. The CBT approach is relatively new and it uses a statistically 

derived most probable number (MPN) table to estimate E. coli concentrations (Gronewold et 

al., 2017). In contrast, the more established PC methods produce results in colony forming 

units (CFU). We had reason to believe that CBT method performance would be comparable 

to membrane filtration PC methods (Stauber et al., 2014; Wang et al., 2017), but to increase 

confidence we included the m-ColiBlue24 method to compare against our CBT results. Both 

methods measure E. coli based on production of β-glucuronidase.  

We also included the DelAgua method for measuring TTCs using laurel sulphate broth and 

incubation at 44°C. We did this for comparative purposes because the previous studies of 

TLF in groundwater have used TTCs not E. coli specifically (Sorensen et al., 2015a, 2016, 

2018a). 

2.1.3. Physicochemical sampling 

pH, temperature, and turbidity were measured in-situ for all samples. This was necessary 

because in certain ranges these parameters can interfere with TLF signal:  

- Between pH 5 and 8, fluorescence intensity is minimally affected (± 3%), but in more 

acidic waters (pH <4.5) signal quenching can be up to 15% (Reynolds, 2003).  

- Increasing temperature heightens collisional quenching, thereby reducing 

fluorescence intensity (Wehry, 1973) and attenuating TLF signal (Khamis et al., 

2015).  
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- Turbidity over 50 NTU attenuates TLF signal, whereas fine particulates like 

suspended clay and organics can cause a detrimental apparent signal when turbidity is 

less than 50 NTU (Baker et al., 2007; Khamis et al., 2015). 

We needed to determine if it would be necessary to use correction algorithms (as in Bieroza 

and Heathwaite, 2016; Khamis et al., 2015) and / or if we would need to filter turbidity out of 

our samples prior to measuring TLF. We used a combo pH and temperature meter from 

Hanna Instruments (HI-98129) and a portable microprocessor-based turbidity meter from 

ELE International (range 0 to 1000 NTU). Calibration of the meters was checked against 

standard solutions bi-weekly during sampling. 

2.2. Data analysis 

Before commencing analysis of the TLF data, the pH, temperature and turbidity data were 

summarised to confirm lack of interference. The raw TLF data was then corrected for probe 

sensitivity using laboratory-determined linear equations (see Section 2.1.1). Negative TLF 

values indicated concentrations below the probe’s detection limit and were amended to equal 

that limit, 0.01 ppb.  

Non-parametric statistics were used to accommodate ordinal data, reduce the impact of 

outliers and because continuous data were not normally distributed. Kendall’s τ tie-corrected 

rank correlations (Kendall, 1938) were used for initial two-way comparisons of the TLF and 

bacteria results from all methods. Further analysis grouped the bacteria results according to 

the WHO ordinal four-tier risk classification scheme (see Section 1 paragraph 4).  

The TLF results were compared to the ordinal risk class data from E. coli (CBT) using 

Kruskal-Wallis rank sum tests (Hollander et al., 2014). The TLF results were also visually 
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compared to the CBT results using box-and-whisker plots. Based on these plots, the TLF 

results were grouped into ordinal categories. 

The R package ‘ordinal’ (R version 3.4.4) was used to assess pairwise agreement of risk 

classification results between the bacteria methods and TLF results through paired ordinal 

logit cumulative link models (CLMs) with flexible, unstructured thresholds (Agresti, 2010, 

1992; Christensen, 2015). Likelihood ratio tests with an asymptotic χ
2
 distribution were used 

to assess whether the models met the proportional odds assumption (that the relationship 

between two methods being compared is consistent across risk classes). Nominal Monte 

Carlo symmetry tests were also used for pair-wise risk class comparisons to confirm the CLM 

results.  

For each of the four methods, precision was assessed first by relative percent difference: 

𝑅𝑃𝐷 = |
𝑥−𝑦

(𝑥+𝑦) 2⁄
|  × 100%, where x and y represent duplicate or replicate pairs, and second 

by the proportion of pairs indicating equal risk. Since laboratory replicates are not available 

for TLF, replicate variability was assessed by the standard deviation of auto-logged 

measurements, which were recorded for each 2017 sample at a rate of one reading every 

second. 

Finally, temporal variability of results was assessed using time series graphics and geometric 

means of samples from the wet season versus the dry season.  

3. Results 

3.1. Confirming negligible interference 

pH, temperature and turbidity were within ranges that have negligible effects on TLF signal. 

Sample turbidity never exceeded 50 NTU (88% of samples <5 NTU, 98% <20 NTU) and pH 
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was typically neutral or circumneutral (mean 7.0; SD 0.3). Temperature ranged from 27 to 

32°C (mean 29.3°C; SD 0.9°C) and the calibration curves used for data correction were 

generated at 30°C. No temperature correction was made because laboratory work showed 

temperature effects were minimal over the range encountered, especially at low TLF 

concentrations (Figure 1).  

3.2. Comparing TLF and cultured bacteria 

The TLF and bacteria results were correlated. Significant monotonic relationships were 

indicated by Kendall’s τ tie-corrected rank correlations (p < 0.001). However, scatter was 

observed in all the relationships (correlation coefficients shown in Table 3). Due to this 

scatter and since microbial water quality sampling is concerned with assessing risk, further 

analyses grouped the bacteriological data by risk classes. 

The TLF results were compared to the risk class data from E. coli (CBT; n = 162). We tried 

to test for difference in the median TLF values among the E. coli (CBT) risk classes. Kruskal-

Wallis rank sum tests indicated significant differences (χ
2 

= 93 p < 0.001); however, the 

shape and spread of results in each risk class were different enough that the assumption of 

equal distribution was violated. This means that the Kruskal-Wallis test confirmed 

significantly different distributions of TLF results in each risk class but could not compare 

medians.  

TLF did not differentiate between the low and intermediate risk classes, as revealed by visual 

assessment of box-and-whisker plots comparing the TLF results by E. coli (CBT) risk classes 

(Figure 2). Without any information on pathogen presence, samples with low TLF and no E. 

coli (those classified as low risk based on CBT results) were interpreted as representing 

baseline TLF levels under natural, uncontaminated conditions. The results indicate that TLF 
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cannot differentiate between intermediate contamination risk and baseline conditions, noting 

that there was limited data for the intermediate risk class (n = 12). 

The TLF results were divided into three groups using the thresholds of 1 and 3.9 ppb 

indicated by the horizontal lines on Figure 2. These grouped results were then compared to 

corresponding E. coli (CBT) results coded as low/intermediate, high and very high risk. 

There was no significant difference in the probability that TLF would indicate higher or 

lower risk than E. coli (CBT). This result was generated using a paired cumulative link model 

(CLM), which assesses the likelihood that the different methods would produce 

systematically different risk classifications for samples taken from the same WP within 

minutes of each other. The CLM test is directional, producing estimates of either a shift up 

(positive estimate) or down (negative estimate) on the ordinal risk scale. In comparing TLF 

and E. coli (CBT) the effect estimate was only 0.01 (standard error of 0.21; p = 0.98). 

Additional CLMs were run to compare the E. coli (CBT) and TLF results with the E. coli 

(PC) and TTC results (Table 3). Compared to both E. coli (CBT) and TLF, the TTC method 

was found to have a significantly higher probability of classifying samples as higher risk. In 

contrast, the two E. coli methods (CBT and PC) had no significant difference in their 

classifications of samples. The TLF and E. coli (PC) comparison was borderline, possibly due 

to the lower sample size.  

The effect estimates produced by the CLMs were consistent across the risk classes for all 

comparisons except a) TLF and E. coli (PC) and b) TTCs and E. coli (CBT). Consistency of 

effect estimates is determined using post-hoc likelihood ratio tests (LRTs). A significant LRT 

indicates that the effect estimate of a CLM must be interpreted as an average across the risk 

classes. The likelihoods of a) TTCs overestimating risk relative to E. coli (CBT) and b) TLF 

overestimating risk relative to E. coli (PC) may not be the same when contamination is low 
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versus when it is high. This lack of consistency may be due to unequal distribution of 

samples among the risk classes (for example see Figure 3a).   

Nominal Monte Carlo symmetry tests help further explain the results of the CLM tests by 

assessing each defined (n > 0) intersection of risk classes separately (Table 3). TTCs were 

confirmed to overestimate risk relative to E. coli (CBT) and TLF. Relative to E. coli (PC), 

TLF was found to overestimate risk only from low to medium (p < 0.05), not from low to 

high (p = 0.5) or medium to high (p = 0.45). No significant differences (p > 0.05) were found 

in the contingency tables comparing the E. coli methods and TLF with E. coli (CBT). 
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The key result from the CLM tests was that risk indicated by TLF samples was not 

significantly different from risk indicated by E. coli (CBT) samples, except that TLF gives 

resolution at three risk levels instead of four. However, although there was no significant 

directional difference in the TLF and E. coli (CBT) results, there was considerable 

disagreement (Figure 3b). If the E. coli (CBT) risk classification results are used as a starting 

point, 14% of TLF samples indicated higher risk and 13% indicated lower risk. Looking at 

each risk category individually, disagreement ranged from 17% to 30% (Table 4).   

3.3. Determining precision and temporal variability 

The TLF results were more precise than the bacteria results from all three methods. The TLF 

duplicates showed lower relative percent differences (RPDs) and better agreement between 

pairs than the duplicates or replicates of any of the bacteria methods (absolute RPDs shown 

in Figure 4). Agreement here is defined as the proportion of pairs that indicate the same risk 

class. For the TLF data this was based on the three groupings defined in Section 3.2. For each 

TLF sample, standard deviations were calculated for readings auto-logged approximately 

once per second for three minutes each. The average and median of these standard deviations 

were 0.04 and 0.03 ppb, respectively. 

Timeseries analysis of the samples that were collected daily from the same WPs did not show 

any short-term patterns of change in TLF or E. coli (CBT) results. No relationship was found 

between water quality and rainfall events. There was insufficient information to isolate the 

effect of rainfall from other factors and a water level datalogger installed at one of the water 

points (TC06) showed that water table depth changed on a slower timescale than individual 

rain events (measured at a nearby automatic weather station).  
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However, seasonal change was demonstrated by TLF and, to a lesser extent, E. coli (CBT). 

Seasonal geometric means of the TLF and E. coli (CBT) results were calculated for the five 

WPs where daily sampling was conducted in both sampling campaigns (Figure 5). Generally, 

the TLF results indicated less contamination in the wet season (positive RPD) – likely an 

effect of dilution. However, between the two sampling campaigns, one of the sites (TO07) 

was refurbished to reduce ingress of surface water and the TLF results indicated a reduction 

in contamination in the dry season (negative RPD), possibly due to increased protection of 

the well. Changes in water quality between the campaigns were more clear from the TLF 

results than from E. coli. This is consistent with the finding that TLF is a more precise 

measure.  

4. Discussion 

Internationally, focus is on finding a rapid E. coli detection method that reduces chances of 

error and improves capacity for understanding and communicating risk (UNICEF, 2017). 

However, the search for a simple, rapid risk assessment method need not focus exclusively on 

E. coli. TLF has the benefit of speed and other practical attributes, particularly when used for 

groundwater sampling, as discussed in Section 4.1. Despite many positives, however, TLF 

has important limitations (Section 4.2) and is better suited to certain contexts than others 

(Section 4.3). 

4.1. TLF is precise, rapid and practical for groundwater sampling 

The speed and in-situ application of fluorimetry reduces opportunities for analytical 

variability, resulting in greater precision. In contrast, for the bacteria methods, RPDs and 

level of agreement were similar between duplicate pairs and replicate pairs. This indicates 

that analytical variability rather than source material homogeneity was controlling sample 
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precision. Analytical variability may derive in part from bacteria being unevenly distributed 

within samples. Even with agitation, bacteria exhibit small-scale (<10cm) patchiness 

resulting from attachment to particles and aggregation amongst themselves (Kirchman et al., 

1982). Furthermore, E. coli response to growth media and incubation conditions is variable 

(Chang et al., 1989; Leclerc et al., 2001). The CBT test approach also introduces analytical 

variability by statistically estimating results – this method is effective for large sample sizes 

but is less precise for individual samples.  

In addition to precision, positive attributes of in-situ fluorimetry include that it is accessible 

with minimal training for non-technical users; provides quantified, easily displayed results, 

and has minimum process steps with no requirements for reagents, cold chains, sterilization 

or incubation. The probes are battery-powered, lightweight, portable, durable and waterproof. 

They require minimal consumables/packaging and no hazardous materials. The unit cost per 

probe is currently USD 5,000 but the expected lifespan is over 10 years and the cost will 

decrease if demand increases. Additionally, the variable cost of sampling is minimal. 

As potentially interfering factors, pH, temperature and turbidity could complicate the use of 

TLF in some conditions (see Section 2.1.3), but this is less likely when sampling 

groundwater. Unlike surface water, groundwater generally has low turbidity and slow 

changes in temperature. When temperature is relatively consistent, probe calibration is 

sufficient to account for thermal quenching (as in this study). Furthermore, the strongest 

thermal quenching is associated with larger (>1.2 µm) fluorophores (Seredyńska-Sobecka et 

al., 2007). This suggests it may be a bigger issue for turbid surface waters than for typical 

groundwaters, in which TLF is primarily associated with <2.7 µm material: bacteria and their 

metabolites (Sorensen et al., 2016).  
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Although we did not include metal ions in our sampling design, we note that they may also 

interfere with TLF. Metal ions are known to bind with dissolved organic matter and can, 

thereby, form complexes that dampen fluorescence. TLF quenching by addition of metal ions 

like Cu
2+

 and Ni
2+

 has been demonstrated through laboratory work (Tabak et al., 1989); 

however, fluorescence quenching has been shown to vary considerably in different sample 

waters and the extent of TLF quenching by metal ions in natural and even engineered 

environments is not well understood (Henderson et al., 2009; Yamashita and Jaffé, 2008). 

Reynolds and Ahmad (1995) and Heibati et al. (2017) found that metal ion concentration did 

not significantly alter TLF in samples taken from treated sewage effluent and a piped water 

distribution system, respectively. 

4.2. TLF is not an accurate E. coli proxy 

We estimated TLF thresholds that divide samples into groups corresponding with 

low/intermediate, high and very high E. coli risk classes, but were not able to distinguish 

intermediate risk from baseline conditions. Intermediate risk is still concerning from a health 

perspective because, although pathogen hazard is related to indicator concentration, pathogen 

concentrations vary widely at any given indicator concentration and some have minimum 

infective doses as low as a few cells (WHO, 2011; Schmid-Hempel, 2011). This is one reason 

why TLF is not recommended as a replacement for E. coli. Nevertheless, low-cost, practical, 

in-field methods are essential if water quality information is to be available to support 

decision-making in low resource settings (Bain et al., 2012).  

Remembering that E. coli is itself an imperfect indicator, the value of TLF should not be 

anchored solely to its performance relative to E. coli. Understanding how TLF relates to E. 

coli is important, however, because it places TLF results within a familiar risk assessment 
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framework. We found that TLF cannot determine presence/absence of E. coli but could 

differentiate samples with >10 or >100 E. coli/100mL. Our results indicate TLF thresholds of 

1 and 3.9 ppb. However, these values and their associated rates of disagreement with E. coli 

results (Table 4) are not directly applicable beyond our study area. 

Variability in the relationship between TLF and E. coli in different groundwaters makes 

evaluating performance between study areas challenging. Based on 564 surface and 

groundwater samples comparing TLF and TTCs from four different study areas, Sorensen et 

al (2018a) determined thresholds of 1.3 and 6.9 ppb. The differences between our thresholds 

and theirs may be partly due to the use of different data analysis methods, their inclusion of 

surface water as well as groundwater samples, and their use of TTCs instead of E. coli. 

Nevertheless, even with these factors held constant, one would expect varying relationships 

between TLF and E. coli because environmental factors like temperature, pH and turbidity 

impact the two parameters differently.  

An additional environmental factor to consider is the concentration of humic substances. The 

TLF excitation/emission region has overlap with fluorescence from natural organic matter 

derived from soils (Lapworth et al., 2009; Stedmon et al., 2011). Water that is naturally rich 

in humic substances may have a stronger apparent TLF signal that does not correspond to 

higher microbial contamination risk (Sorensen et al., 2018b). However, interactions with 

humic-like substances can suppress protein-like fluorescence (Wang et al., 2015), which 

could potentially have the contrary effect of weakening apparent TLF. The relative strength 

of these effects is not well understood and is likely to vary in different contexts. Fortunately, 

in most European groundwaters, dissolved organic carbon is typically well below the levels 

expected from contaminated conditions (Gooddy and Hinsby, 2008), which will, therefore, be 

distinguishable from the natural baseline. This is expected to hold true for most groundwater 
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at shallow and intermediate depths (0-200 m) globally, with some exceptions occurring in 

unconsolidated sedimentary systems where higher organic matter concentrations are likely 

(BGS-DPHE, 2001). 

Comparisons of TLF results between campaigns should focus on differences from baseline 

rather than absolute TLF values. This means that sampling campaigns must include 

uncontaminated sites so that natural baseline ranges are captured. If comparison to E. coli is 

intended, sampling campaigns will also need to be designed to allow sufficient comparison 

between TLF and E. coli results so that context-specific thresholds can be established. Even 

with context-specific thresholds, it will not be appropriate to use TLF to predict E. coli 

concentrations on an individual sample basis.   

Other substances that fluoresce in the TLF range include polycyclic hydrocarbons, 

pharmaceutically active compounds, and other pollutants from plastic, petrochemical, paper, 

leather and textile industrial processes (Carstea et al., 2016). Presence of these pollutants 

could potentially increase the likelihood that TLF overestimates risk relative to E. coli. 

Nevertheless, these substances pose health risks of their own and also indicate inadequate 

protection of groundwater sources.   

4.3. TLF can enhance pre-screening, monitoring and communication of risk 

Considering the advantages and challenges discussed, we recommend TLF for three 

applications: pre-screening, monitoring, and communication of risk. It is recommended for 

pre-screening because it enables larger datasets to be generated quickly to inform priorities 

for intervention or further investigation. Depending on the purpose of sampling, WPs with 

high TLF could immediately be considered high risk and not a priority for E. coli sampling 

(especially when coincident with high risk WP design/sanitary risk factors). E. coli sampling 
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would be redundant in these cases because a) it is likely that elevated TLF coincides with 

elevated E. coli and b) there are multiple reasons why E. coli methods may underestimate risk 

so elevated TLF warrants high risk classification regardless of E. coli concentration. WPs 

with low TLF during pre-screening may warrant further investigation, especially when 

coupled with high sanitary inspection scores. Pre-screening with TLF could allow 

bacteriological testing to be prioritized more effectively. 

TLF could also be considered for regulatory or surveillance monitoring. In some contexts, 

sampling frequency can be more important than having highly-accurate results (Levy, 2015). 

High-frequency monitoring is needed to identify changes in hazard that would otherwise be 

obscured by short-term fluctuations or missed entirely by low-frequency sampling designs 

(Okotto-Okotto et al., 2015; Levy et al., 2009; Boehm, 2007; Roser and Ashbolt, 2007). 

Precision, coupled with low cost of sampling, make in-situ fluorimetry well-suited for 

ongoing monitoring efforts to understand trends and spikes in risk. For example, based on 

stronger correlations with E. coli, fluorescent dissolved organic matter was shown to be more 

effective than turbidity for online monitoring of influent (groundwater) to a public drinking 

water supply in the UK (Sorensen et al., 2018b). Method-derived variability is unlikely to 

obscure changing TLF concentrations in WPs, which could be caused by a variety of drivers 

like seasonal change in recharge regime, land-use change, interventions to improve WP 

protection, or nearby construction of potentially contaminating facilities like latrines or 

livestock holdings (Lawrence et al., 2001). 

Finally, a third potential application of TLF relates to communicating risk. A formal 

assessment of TLF as a means to communicate risk to stakeholders has not been done, 

however, during fieldwork we found it beneficial that TLF results could be demonstrated 
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immediately for WP users. Different water sources can be compared and changes in water 

quality can be captured and shown in real time. 

5. Conclusion 

Efforts to improve risk assessment must consider the potential of new parameters such as 

TLF. A narrow focus on E. coli limits what is achievable with other knowledge and 

technologies. TLF and E. coli have different strengths and weaknesses as measures of 

microbial contamination risk. Incorporating both in sampling campaigns could improve risk 

estimation.  

TLF has been shown to estimate risk corresponding with low/intermediate, high and very 

high E. coli risk classes, but with disagreement in 27% of samples (13% estimating lower and 

14% estimating higher risk than E. coli). Using E. coli as a reference, TLF is not able to 

distinguish intermediate risk from baseline conditions. However, TLF reflects in-situ 

conditions, minimizing method-induced variability and resulting in greater precision than 

culture-based methods provide. It also has a lower cost of sampling. When applied to typical 

groundwater (low-humic content, relatively consistent temperature, negligible turbidity and 

pH between 5 and 8), TLF may be well suited for a) pre-screening to effectively prioritize 

resources and b) high-frequency sampling to monitor and understand changes in risk. It also 

has potential as a real-time tool for communicating water quality concerns.  

Further work should focus on understanding how TLF relates to pathogens and health 

outcomes, rather than focussing exclusively on its coincidence with E. coli. Better 

understanding of TLF behaviour in different groundwaters and software development for 

processing and presenting TLF data would also be key advancements.  
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Table 1 Summary of sanitary inspection scores for selected water points 

WP Type No. of Sites Selected SI Score (median and range) 

borehole with handpump (BH) 11 2.5 (1 – 5) 

covered well with handpump (CW) 14 3 (0 – 7) 

open well (OW) 12 6 (2 – 9) 
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Table 2 Sample analysis methods and counts (including duplicates and replicates) 

Indicator Method Manufacturer Total 
Samples 

Dups Reps 

TLF In-situ fluorimetry CTG, Surrey, UK 291 129 0 

E. coli CBTs  Aquagenx, North Carolina, USA 410 96 72 

E. coli PC (m-ColiBlue24 
broth) 

Hach, Colorado, USA 176 52 54 

TTCs PC (laurel sulphate 
broth) 

DelAgua, Surrey, UK 203 21 21 
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Table 3 Results of Kendall’s τ tie-corrected rank correlations and cumulative link models 

(including post-hoc likelihood ratio and symmetry tests) 

Comparison n 

Kendall’s 

τ 

correlation 

coefficient  

CLM 

effect 

estimate 

CLM 

standard 

error 

CLM 

p value 

LRT 

ratio 

LRT 

p value 

Symmetry 

test 

p value 

TLF and 

E. coli (CBT) 
162 0.59 0.01 0.21 0.98 0.2 0.68 >0.05 

TLF and 

E. coli (PC) 
70 0.59 0.61 0.32 0.05 10 0.001 

<0.05; 

0.5; 0.45 

TTCs and 

TLF 
81 0.57 1.50 0.32 <0.001 0.7 0.41 <0.05 

TTCs and E. 

coli (CBT) 
161 0.74 1.16 0.21 <0.001 8.1 0.02 

<0.05 or 

undefined 

E. coli (PC 

and CBT) 
70 0.74 -0.09 0.31 0.78 2.6 0.28 

>0.05 or 

undefined 
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Table 4 Sample counts and disagreement for TLF vs. E. coli (CBT) risk classifications 

 

TLF Risk TLF Disagreement  

Low Medium High  [-] [+] 

E. coli Risk Low/Int 59 14 1 -- 20% 

 High 11 24 8 26% 19% 

 Very high 2 8 35 22% -- 

E. coli 
Disagreement  

 

[-] -- 30% 20%   

[+] 18% 17% --   
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Highlights: 

 Tryptophan-like fluorescence (TLF) can complement E. coli as a risk indicator. 

 Both TLF and E. coli distinguish low/intermediate, high and very high risk sources. 

 TLF has negligible method-induced variability, unlike bacteriological analyses. 

 TLF is useful for pre-screening, monitoring and demonstrating risk in groundwater. 
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