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Abstract Precipitation-based drought indices are most commonly used in drought monitoring and early
warning systems whereas impacts of drought are often related to other domains of the hydrological cycle
such as streamflow. Precipitation droughts do not always coincide with streamflow droughts, as the
propagation from precipitation to streamflow is affected by climate, catchment properties, and human
influences. For monitoring in ungauged catchments it is the question to what extent drought indices solely
based on precipitation or other (more recently developed) meteorological drought indices that include
evaporation or snowmelt, have a stronger correlation with streamflow, and whether this correlation is weaker
in catchments where streamflow is altered by human influences. Results of a correlation exercise between
various meteorological drought indices and streamflow showed that the strongest correlation was often
found for meteorological drought indices that include evaporation (especially in drier climates) or snow
processes (especially in colder climates). Most catchments with an indicated presence of human influences
showed a maximum correlation between meteorological drought indices and streamflow that was
comparable in strength to the same correlation for catchments with near-natural flow. However, up to 15% of
catchments with an indicated presence of human influences show weaker correlations. Drought indices
derived from these influenced records with a weaker correlation do not necessarily correspond to reported
drought impacts. In conclusion, knowing which meteorological drought index has the strongest correlation
with streamflow in different climate zones has the potential of improving large-scale drought monitoring
and early warning systems in ungauged areas or regions that lack real-time streamflow availability.

1. Introduction

Over the past few decades, the U.S. have experienced several major drought events (e.g., Sheffield et al.,
2009) that had a negative impact on nature and society (Wilhite et al., 2007). Effective monitoring and early
warning of these drought events enabled improved preparedness and resilience (Svoboda et al., 2002). The
U.S. Drought Monitor (USDM, http://droughtmonitor.unl.edu/) is one of the few large-scale monitoring pro-
ducts that considers streamflow percentiles within its combined drought index. Elsewhere, the large-scale
drought monitoring and early warning systems used for national to multinational identification of regions
at risk and policy decisions are more commonly based on meteorological (precipitation-based) drought indi-
cators (Bachmair, Stahl, et al., 2016). However, the impacts of droughts are often caused by deficits in other
domains of the hydrological cycle, such as streamflow (Van Lanen et al., 2016), and are thus not directly cap-
tured by drought monitoring and early warning systems, which focus on precipitation deficits. Estimating the
hydrological drought hazard from precipitation deficits alone has a number of difficulties. The propagation of
precipitation deficits through the hydrological cycle is modified by varying climate and catchment controls,
as well as human influences, and as such, drought propagation varies between catchments (Van Loon, 2015).
Conversely, indices based on hydrological information such as streamflow may not directly or only represent
the drought as a natural hazard. As shown and discussed in detail for cases in the UK by Tijdeman et al. (2018),
streamflow may show a naturally lagged signal and regulated streamflow may not at all show a drought sig-
nal if regulation mitigates the water deficit in the river. Large-scale maps displaying the drought situation
based on or including streamflow observations may therefore be less straightforward to interpret regarding
the risk of further drought impacts. In the United States, a large number of streamflow records are used
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routinely, for example, within the USDM or directly by U.S. Geological Survey (USGS) WaterWatch to
depict regions at risk from a national or continental point of view. The available information provides an
excellent test bed to investigate more generally the link between meteorological and hydrological drought
indices and to discuss implications for the role of hydrological information in large-scale monitoring and
information portals.

Precipitation and temperature are the main atmospheric drivers of a catchment’s water balance and its def-
icits. Streamflow droughts, defined as below normal streamflow or anomalies (Tallaksen & Van Lanen, 2004),
can be initiated by below-normal precipitation and/or below- or above-normal temperatures (Van Loon &
Van Lanen, 2012). Above-normal temperatures increase the atmospheric water demand, and consequently
can increase the actual evapotranspiration and lower the total water availability and resultant streamflow
(e.g., Vicente-Serrano et al., 2014). It was the combination of low precipitation and high temperature (and
the subsequent high evapotranspiration) that made the California drought between 2011 and 2014 so
severe (Seager et al., 2015). Below-normal temperatures can play a critical role in the time-lag in the propa-
gation of precipitation deficits to streamflow deficits; above-freezing temperatures earlier in the year result
in earlier snowmelt and so an earlier streamflow peak. This may result in streamflow droughts later in the
year when the snowmelt peak is expected, while below-freezing temperatures that are sustained later than
normal can delay the snowmelt peak (Van Loon et al., 2015).

Like temperature, precipitation can follow a seasonal pattern; for example, winters are wetter than sum-
mers in the western United States, but are drier in the central United States. Water availability is there-
fore not constant throughout the year, and the atmospheric demand may be out of phase with
the seasonal precipitation signal (Berghuijs et al., 2014). For example, in the western United States,
high winter precipitation occurs during periods with relatively low potential evapotranspiration and low
summer precipitation coincides with high potential evapotranspiration. In seasonal climates such as these,
antecedent conditions are important for water availability in the dry season as shown by the modeling
study of Van Loon et al. (2014). If a catchment has already experienced drought at the end of the wet sea-
son, there is a low chance of recovery during the dry season. In the case of the 2011–2014 California
drought, below-normal winter precipitation led to low snowpack accumulation in the mountains and mini-
mal refilling of the reservoirs, resulting in additional pressures on water supplies later in the year (Seager
et al., 2015).

In the absence of human influences, such as reservoir operations or groundwater abstractions, climatological
controls have been found to be the dominant control of the streamflow properties (e.g., Berghuijs et al., 2014;
Coopersmith et al., 2012). However, catchment characteristics have also been found to modify streamflow,
especially during periods of low flow. For example, the propagation from precipitation to streamflow is
delayed when precipitation is temporarily stored in lakes, wetlands, or groundwater (e.g., Barker et al.,
2016; Peters et al., 2003; Stoelzle et al., 2014). In the presence of human influences, it is questionable whether
climate is still the dominant control on the propagation from precipitation to streamflow. Human influences
have been associated with both gradual and abrupt changes in low flowmagnitude and timing in the eastern
United States (Sadri et al., 2016). While it is often possible to generalize the natural controls on streamflow, it
can be difficult to generalize the human influences because they can vary in overall impact, timing, and
degree. Reservoir operations and groundwater abstractions can both intensify or mitigate the hydrological
situation downstream (Tijdeman et al., 2018). Rangecroft et al. (2016) showed a decrease in drought occur-
rence and severity after the construction of an upstream reservoir used to secure water availability for agri-
culture downstream. López-Moreno et al. (2009), however, showed an increase in drought occurrence and
severity downstream after the construction of a reservoir that stores water during drought. Van Loon and
Van Lanen (2013) showed an increase in drought duration and severity compared to the natural situation
due to intensive groundwater abstraction whereas Tijdeman et al. (2018) showed an example where ground-
water abstractions were likely used to augment streamflow during periods of drought. Other human influ-
ences such as diversions, instream abstractions, water transfers, or land use change (e.g., urbanization or
intensification or changes in agriculture; e.g., Zhang & Schilling, 2006) also exert a control on streamflow
and consequently on the relationship between precipitation and streamflow. Despite these complexities,
in a human-modified world, it is critical to account for and understand the human influences on streamflow,
especially in densely populated areas where the population may be heavily dependent on surface water for
public water supply, agriculture, or industry.

10.1029/2017WR022412Water Resources Research

TIJDEMAN ET AL. 6006



Many drought indices have been developed and applied to characterize meteorological anomalies, for
example, the Standardized Precipitation Index (SPI; McKee et al., 1993), the Standardized Precipitation
and Evapotranspiration Index (SPEI; Vicente-Serrano et al., 2010; also occasionally used to monitor
agricultural droughts), and the Standardized Snow Melt and Rainfall Index (SMRI; Staudinger et al.,
2014). These standardized drought indices reflect meteorological anomalies aggregated over different
accumulation periods (1, 3, 6, and 12 months are often used). The popularity of meteorological drought
indices (especially the SPI; e.g., Bachmair, Stahl, et al., 2016) is partially related to the near-real-time data
availability of precipitation as gridded products that cover the entire globe, whereas streamflow
measurements are not readily available in many countries in near real-time (Hannah et al., 2011), the
United States being one of the exceptions. As the meteorological drought indices only reflect the meteor-
ological drought hazard (and do not necessarily coincide with the total water availability on (or below) the
ground, due to various climate/catchment controls and any present human influences), it is important to
know which of these factors dominate the propagation of precipitation to streamflow (Van Lanen et al.,
2013), and thus which type of meteorological drought index and accumulation period best reflects the
hydrological situation.

To improve the understanding of drought propagation, a number of previous studies have assessed the
correlation between streamflow and different meteorological drought indices in different regions and cli-
mates across the world at different scales, seeking the type of drought index and accumulation period
with the highest correlation. The majority of these studies focused on catchments with near-natural flow
that are minimally impacted by human influences. For example, higher (summer) correlations between
streamflow and the SPEI (compared to the SPI) were found for a set of Austrian and Iberian Peninsula
catchments (Haslinger et al., 2014; Vicente-Serrano et al., 2014, respectively) as well as for a set of larger
river basins around the globe (Vicente-Serrano et al., 2012). Staudinger et al. (2014) found higher correla-
tions between the SMRI and streamflow (again compared to the SPI) for seven snow influenced
Swiss catchments. In catchments with near-natural flow in the UK, stronger correlations were found
between longer accumulation periods of the SPI (often >6 months) and streamflow in slow responding,
groundwater-fed catchments while streamflow records from fast responding, impermeable catchments
showed the highest correlations with short accumulation periods (often <3 months) of the SPI (Barker
et al., 2016). Human influences have been shown to decrease the correlation between streamflow and
meteorology. Lower correlations were found for the highly influenced basins on the Iberian Peninsula
(Vicente-Serrano et al., 2014). For part of the subcatchments of the Ebro basin containing upstream reser-
voirs, there was an absence of correlation during summer when water levels remain constant in order to
fulfill environmental flow requirements and in winter when winter inflows are stored for summer use
(López-Moreno et al., 2013).

In this study, we use a similar approach to the one discussed above of comparing the correlation of several
meteorological drought indices (SPI, SPEI, and SMRI) with streamflow records for catchments ranging from
near-natural to heavily influenced, located within different climatic regimes of the contiguous United
States. The objectives of this study are as follows:

1. To analyze the relationship between meteorological and streamflow drought indices under previous
studies’ hypothesis that the correlation is:

a. strong in catchments with near-natural flow and;
b. weaker or absent for some of the catchments with human influences

2. To investigate how meteorological drought indices reflect the streamflow signal depending on the time
of year and the climatic setting of the catchment. Hypotheses are the following:

a. Correlations between streamflow percentiles and the SPEI are strongest in the drier regions, especially
in the hotter (summer) months.

b. Correlations between streamflow percentiles and the SMRI are strongest in mountainous and high-
latitude regions, especially in the colder (winter) months.

c. Correlations between streamflow percentiles and meteorological drought indices in the dry season of
climates with seasonality in precipitation are strongest for meteorological drought indices accumu-
lated over long accumulation periods (i.e., that include information about the wet season).
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The first objective aims to elucidate the role of influenced records for use in national to global drought infor-
mation maps. The second objective aims to generate transferable knowledge to regions with less or less
available hydrological information for large-scale drought monitoring. Knowing which meteorological
drought index displays the strongest correlation to streamflow in different climatic settings may help to pro-
vide surrogate indicators for streamflow in ungauged regions.

In the final step of this study, we investigate the link of streamflow drought indices from catchments with
near-natural flow and with potential human influences to the occurrence of reported drought impacts to test
how relevant these drought indices are for monitoring the overall impacts of drought. If this is the case, and
they are available, direct streamflow measurements would generally be preferable over or at least a very
valuable addition to meteorological surrogates.

2. Data and Study Area

The climate of the contiguous United States varies resulting in varying streamflow regimes across the country
(e.g., Berghuijs et al., 2014; Lins, 1997; Sankarasubramanian et al., 2001). In the eastern part of the country, the
total amount of precipitation decreases from east to west and there is no distinct seasonality in precipitation.
In the western and central United States, precipitation varies seasonally (higher in winter/lower in summer
and lower in winter/higher in summer, respectively). Streamflow regimes are influenced by snowmelt and
snow accumulation in the colder northern and high-altitude regions, whereas in the warmer south, atmo-
spheric demand plays a larger role. Besides these natural influences, human influences can also potentially
alter the streamflow regime. Over the entire United States, there are many dams and reservoirs that change
streamflow properties (Graf, 1999; Lehner et al., 2011). Other human influences that affect these streamflow
properties include surface and groundwater abstractions (e.g., Castle et al., 2014), diversions, effluent return
flow, hydro-power production, and trans-basin water transfers (Emanuel et al., 2015). There are also various
regulations and management practices (e.g., related to environmental or drought response plans) that aim
to improve the streamflow conditions, both in the long-term and during drought events.

Meteorological data were sourced from the PRISM data set (PRISM Climate Group, Oregon State University,
http://prism.oregonstate.edu). Gridded daily maximum, minimum, and mean temperature (respectively,
Tmax, Tmin, and Tmean [°C]) and precipitation (P [L/T]) were obtained (4 km spatial resolution), for the period
1981–2009. Catchments from the contiguous United States were selected from the Gages-II data set
(Falcone, 2011) where streamflow records were required to have continuous daily data between 1981 and
2009. Daily streamflow records for selected catchments were downloaded from the USGS website (https://
waterdata.usgs.gov/). As daily PRISM data are available from 1981 and the Hydro-Climatic Data Network
2009 data (HCDN-2009; Lins, 2012) are evaluated up to 2009, the period of analysis was constrained to the
period 1981–2009. The spatial distribution of catchments is presented in Figure 1a. Each catchment was
labeled as either near-natural (n = 511) or potentially influenced (n = 2067), according to the classification
from HCDN-2009.

Figure 1. (a) USGS gauging station locations of selected catchments with near-natural streamflow records (black circles)
and selected catchments with streamflow records that are potentially influenced by different human influences (red
triangles), and (b) example of a catchment boundary (2,252.7 km2), the underlying PRISM grid (4 km resolution), and the
fraction of each PRISM grid cell within the catchment boundaries (indicated by the color).
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Impacts of drought are defined by the U.S. Drought Impact Reporter (DIR, http://droughtreporter.unl.edu/
map/) as “an observable loss or change that occurred at a specific place and time because of drought.”
Such drought impacts may be documented, for example, by the media or in scientific or governmental
reports. The DIR was initiated by the National Drought Mitigation Centre (NDMC) in July 2005 with the pur-
pose of archiving reported drought impacts (Wilhite et al., 2007). Drought impact reports can be submitted
by the general public and are collected in near real time via an online media clipping service. They are then
manually moderated, summarized, and sorted into different drought impact categories (e.g., Agriculture or
Energy), and together with their spatial (e.g., county or state) and temporal (start, end, and reporting date)
information are stored in the impact database (DIR). For this study, drought impact reports from 2005 to
2009 reported at the county-level were extracted from the DIR together with their categorical classification
along with their spatial (i.e., county or counties of impact occurrence) and temporal (start date of reported
drought impact) information.

3. Methods
3.1. Drought Index Calculation

Three meteorological drought indices were derived for each catchment: the SPI, the SPEI, and the SMRI. The
SPI is based solely on precipitation. The SPEI is based on the difference between precipitation and potential
evapotranspiration, where potential evapotranspiration was estimated following the Hargreaves approach
(Allen et al., 1998). The SMRI is based on the sum of precipitation and snowmelt minus snow accumulation.
Snow accumulation, expressed as the amount of liquid water accumulated as snow, occurs when Tmean is
smaller than a threshold temperature of 1 °C, whereas snowmelt, expressed as the amount of liquid water
melted, was calculatedwith a simple temperature indexmodel using amelt factor of 3mm · °C�1 · day�1 (simi-
lar to Freudiger et al., 2014). The different meteorological fluxes were first calculated or derived for each grid
cell (partially or wholly) within the catchment (exemplified for one catchment in Figure 1b) and each daily
time step between 1981 and 2009, and then aggregated over the catchment. The aggregated daily fluxes
were then accumulated over different accumulation periods (n) ranging between n = 1 to n = 12 months.
These aggregated and accumulated fluxes were transformed to their Weibull plotting positions, which were
then transformed to the standard normal distribution (a transformation commonly done for these standar-
dized meteorological drought indices) using the approximation described in Abramowitz and Stegun
(1964) to derive SPIn, SPEIn, and SMRIn.

For the calculation of streamflow percentiles, daily streamflow was first aggregated to monthly average time
series. Months with regularly occurring zero flow (>25%) were excluded (percentage of excluded months
ranges between 0.7% [March] and 2.7% [Septmber]) because it is unhelpful to study streamflow drought
(expressed as an anomaly) under these arid conditions where zero flow reflects normal conditions (e.g.,
Barker et al., 2016). The remaining monthly streamflow records for each catchment and calendar month were
transformed to streamflow percentiles (QP) using their Weibull plotting positions. Similar to the meteorologi-
cal drought indices, streamflow percentiles indicate anomalies for a particular month, e.g., streamflow per-
centiles for January indicate whether January was relatively wet (high values) or dry (low values).

3.2. Link Between Meteorology and Streamflow

For each catchment (j = 1, 2, …, 2578) and calendar month (m = 1, 2, …, 12), yearly time series of monthly
streamflow percentiles QP,j,m (reflecting the entire flow regime) were correlated with yearly time series of
SPIn,j,m, SPEIn,j,m, and SMRIn,j,m records (also reflecting both wet and dry meteorological anomalies) using
Spearman’s rank correlation (ρ). From the 36 calculated correlations for each calendar month (three indices
with 12 accumulation periods), three metrics were selected, namely:

• ρmax,j,m: the maximum correlation found,
• Smax,j,m: the type of drought index (SPI, SPEI, or SMRI) with the maximum correlation, and
• Amax,j,m: the corresponding accumulation period of Smax.

For ease of notation, the month and catchment identifiers (j andm) are omitted from the variable subscripts
in the remainder of this article. Note that Smax can bemultiple drought indices (Smax> 1), for example, if ranks
of two types of meteorological drought indices are tied, which is often the case for short accumulation per-
iods of the SPI and SMRI during the summer.
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3.2.1. Link With Climate Zones
The suitability of the meteorological drought indices and associated accumulation periods to reflect
streamflow in catchments with near-natural flow is expected to vary over the different hydro-climatic regions
of the United States. To test this, each catchment was classified according to (variations of) two climate
classification systems: one that reflects the aridity of a catchment and one that reflects the seasonality
in precipitation.

The aridity of the catchment was reflected by the de Martonne Aridity index (AI, de Martonne, 1926;
equation (1))

AI ¼ PA
TA þ 10

; (1)

where TA is the annual average temperature (°C) and PA the annual average precipitation (mm/year) of the
catchment. The seasonality in precipitation was reflected by the precipitation-seasonality component of
the Köppen-Geiger climate classification (K, modified from the seasonality formulation of Kottek et al.,
2006; equation (2));

K ¼
s if Pmin;sum < 40 and Pmin;sum < Pmin;win and Pmax;win > 3Pmin;sum

w if Pmin;win < 40 and Pmin;win < Pmin;sum and Pmax;sum > 3Pmin;win

f otherwise

8><
>:

: (2)

where s indicates that summers are drier than winters (87 catchments with near-natural flow), w that winters
are drier than summers (101 catchments with near-natural flow), and f indicates the absence of seasonality in
precipitation (323 catchments with near-natural flow). Pmin,sum (Pmin,win) is the minimum average monthly
precipitation of the summer (winter) months, and Pmax,sum (Pmax,win) is the maximum average precipitation
of the summer (winter) months. Note that in order to make the classification scheme more applicable in
the United States, the formulation of the dry winter climate used in this study deviates from the formulation
of dry winter climates in Kottek et al. (2006). Where K is based on a predetermined classification scheme, AI is
continuous. Catchments with near-natural flow were divided over two AI groups with AI < 50 (223 catch-
ments) and AI ≥ 50 (288 catchments). This distinction is subjective and serves an illustrative purpose; it only
separates between relatively drier (not necessarily arid) and wetter (not necessarily very humid) catchments.
Catchment locations and classifications according to both AI and K are presented in Figure S3.
3.2.2. Link With Human Influences
Meteorological drought indices are expected to have a lower correlation with streamflow potentially
affected by human influences. To test this, it is necessary to separate the effect of human influences on
the correlation strength from other factors affecting the strength of this correlation (such as the underly-
ing data or methodological choices). We used the 5th percentile of ρmax of the near-natural streamflow
records (ρ5) as a threshold. Lower correlations are likely a result of various human influences, whereas
for higher correlations, it is less certain whether ρmax is lower than one because of human influences or
because of an imperfect relationship between meteorological and streamflow drought indices. A more
extensive discussion on this as well as the sensitivity to the used ρmax-threshold is presented in the
Supplementary Material (S1). We categorize ρmax for each catchment with potentially influenced flow
and calendar month as follows:

• comparable when ρmax of a potentially influenced streamflow record is above the ρmax-threshold, that is,
higher than the 5th percentile of ρmax for catchments with near-natural flow (ρmax > ρ5),

• weakerwhen ρmax of a potentially influenced streamflow record is below the ρmax-threshold but still signif-
icant (ρsig ≤ ρmax < ρ5), or

• non-significant when ρmax of a potentially influenced streamflow record is non-significant (ρmax < ρsig),
where ρsig is the significance level of Spearman’s rank correlation (here, ρsig ≥ 0.38 for p < 0.05).

3.3. Link With Locally Reported Drought Impacts

Text-based drought impact data obtained from the DIR were processed as follows. First, impacts categorized by
the DIR as Relief, Response, and Restrictions were removed because their occurrence is mutually dependent on
management decisions and deficits in precipitation or streamflow. The spatial distribution of the remaining
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number of reported drought impact occurrences per county between 2005 and 2009 is shown in Figure 2. The
total number of impact occurrences in all counties is 13,308. The total number of impact occurrences per
county varies from 0 to 105 (25th percentile = 0, median = 2, 75th percentile = 5). These impacts were then
transformed to binary time series of impact occurrence/no impact occurrence for each county at a monthly
time step between 2005 and 2009. Counties were intersected with gauging station locations so each
streamflow percentile record was linked to a corresponding binary time series of impact occurrence (when
multiple gauges were located in a county, they were assigned the same county impact occurrence record).
Streamflow percentile values of the month with reported drought impacts in the county of the gauging
station location were graphically compared for catchments with near-natural flow and catchments with

potentially influenced flow (which were further subdivided for each
calendar month according to the correlation categories defined in
section 3.2.2, that is, comparable, weaker, and non-significant).

4. Results
4.1. Link With Climate Zones

For the catchments with near-natural flow (n = 511), which serve as a
natural reference of the investigated links, Figure 3 shows the maxi-
mum correlation (ρmax) between meteorological drought indices
(SPIn, SPEIn, and SMRIn) and streamflow percentiles for each calendar
month. In general, there is good agreement between climate and
streamflow for these catchments; the median of ρmax varies between
0.79 and 0.85 over the calendar months, with upper bounds of the
90% range of ρmax between 0.91 and 0.94, and lower bounds of the
90% range of ρmax between 0.58 and 0.72. For catchments with near-
natural flow, highest correlations are generally found throughout the
country depending on the season, for example, California in winter or
the northeastern United States in summer (Figure 4a). Lower correla-
tions are generally observed in and east of the Rocky Mountains region
in winter and spring and in the southern United States in summer
and autumn.

Figure 3. Maximum correlation (ρmax) between streamflow percentiles and
three meteorological drought indices (SPIn, SPEIn, and SMRIn) of different accu-
mulation periods (n = 1–12 months) for catchments with near-natural flow for
each calendar month.

Figure 2. Number of considered reported drought impacts per county archived by the U.S. Drought Impact Reporter from
2005 to 2009.
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Figure 4. Spatial distribution of the type meteorological drought index (SPI, SPEI, and SMRI) that is most strongly correlated with streamflow percentiles (Smax) for at
least two out of three calendar months (first three columns) and the average maximum correlation strength (ρmax) (fourth column) in a specific season for
catchments with (a) near-natural flow and (b) potentially influenced flow. Rows: seasons; first three columns: separation by ranges of average accumulation period
with the strongest correlation (Amax) in a specific season. The gray symbols show gauging station locations where Smax is not a single drought index for at least two
out of three calendar months in the given season.
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Figures 4a and 5 reveal which meteorological drought index has the
strongest correlation with streamflow percentiles (Smax) for different
calendar months and regions across the United States. For most catch-
ments and calendar months, the SPI is not the index with the highest
correlation. The percentage of catchments for which Smax = SPI varies
between calendar months and is highest in winter (up to 27% in
December), especially for catchments located in and around the state
of Virginia (Figure 4a). The low percentage of catchments for which
Smax = SPI in summer months is partially related to the regular occur-
rence of Smax = SPI=SPEI (Figure 5; SPI is equal to the SMRI when there
is no snowmelt or snow accumulation). At a maximum, Smax = SPI and
Smax = SPI=SMRI account for 35% of the catchments in the summer
months (May–September). The SPEI, which takes into account potential
evapotranspiration, shows the maximum correlation for a large propor-
tion of catchments in these summer months (50–60% between May
and September), especially in the eastern part of the contiguous
United States and in California (Figure 4a). The percentage of catch-
ments with Smax = SPEI is lower (29–36%) in the winter and early spring
months (December–March) and is at a minimum in February (Figure 5).
In this winter and (early) spring period, using the SMRI which considers
snowmelt and snow accumulation results in higher ρmax for a large pro-

portion of catchments (Smax = SMRI for 33–47% of the catchments, especially those catchments located at
higher latitudes or in mountainous areas; Figure 4a). However, even in summer months, Smax = SMRI for
10–15% (Figure 5), particularly for some catchments located in the Pacific Northwest and Rocky Mountains
region (Figure 4a).

The type of meteorological drought index that has the strongest correlation with streamflow percentiles
(Smax) depends on the region’s climatic regime and hence, the geographic location (Figures 4a and 6). For
the drier subset of catchments (AI < 50; Figure 6a), especially those located in the southeastern United
States (Figure 4a), a relatively large percentage of catchments (39–64%) show Smax = SPEI for all calendar
months. The percentage of catchments for which Smax = SPEI is lowest in February when SMRI peaks
(Smax = SMRI for 36% of catchments). Snow accumulation and snowmelt play a larger role in the colder (more
humid) climates (AI ≥ 50). Figure 6b shows a large percentage of catchments with Smax = SMRI for winter and
spring months (January–April, between 49 and 63% percent of the catchments, mainly located in the higher

Figure 5. Type of meteorological drought index that is most strongly correlated
with streamflow percentiles (Smax) for catchments with near-natural flow
(expressed as the percentage of catchments) for each calendar month.

Figure 6. Type of meteorological drought index that is most strongly correlated with streamflow percentiles (Smax) for
catchments with near-natural flow expressed as the percentage of catchments for the subset of (a) drier and (b) wetter
catchments for each calendar month.
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latitude regions in the north as well as the more mountainous regions in the west; Figure 4a). However, even
for these wetter catchments, Smax = SPEI for around 45–60% of the catchments in the summer months
(May–September Figure 6b), particularly for catchments located in the northeastern part of the United
States (Figure 4a).

In light of these general differences in maximum correlation strength and type of meteorological drought
index with the strongest correlation, the question is then how the accumulation period of the meteorological
drought index that is most strongly correlated with streamflow percentiles (Amax) depends on the climatic set-
ting and hence the location within the United States (Figures 4a and 7). The subgroup of catchments in cli-
mates without seasonality in precipitation (K = f; Figure S3a) located in the eastern United States and in the
RockyMountains and the Cascades in thewestern United States shows no visible temporal pattern in the accu-
mulation period with the strongest correlation with monthly streamflow percentiles (Amax; Figure 7a). The
median of Amax for this group is relatively constant for the different calendar months and varies between 1

and 3. The average standard deviation of Amax of the 12 calendar months (sd) for each catchment in this class
is 1.88. For the subgroup of catchments in climates with dry summers and wet winters, mostly the western
United States (West Coast, Sierra Nevada, and high plains) (K = s; Figure S3a), Amax varies more among calendar
months and a temporal pattern is visible. Amax (both median and 25th and 75th percentiles) is generally
shorter in the wetter winter months and longer in the drier summer months (Figure 7b), especially toward
the end of the dry season (median between eight and ninemonths in June–September). The average variation
in Amax across the calendar months is also higher for catchments in this subgroup having a seasonality signal in

precipitation (sd = 2.84). The opposite pattern is observed for catchments in climate regimes having dry win-
ters and wet summers (K = w; Figure S3a), as found in the east part of the Mid-Continent region and the west
part of the Midwest region. In this region, Amax is shorter in summer (median between three to four months)
and longer in winter (median up to seven months) (Figure 7c). The average variation in Amax over the year for

each catchment is again higher than this variation for climates without seasonality (sd = 2.62).

4.2. Link With Human Influences

In summary, the maximum Spearman rank correlation (ρmax) of the meteorological drought indices and
streamflow percentiles for the sample of streamflow records that are potentially altered by human influences
(n = 2067) shows similarities and differences to the values found for the sample of near-natural records
(Figures 4b and 8). For the majority of potenitally influenced records, there is good agreement between
streamflow and meteorological anomalies, with the median (95th percentile) of ρmax varying between 0.78
and 0.86 (0.91 and 0.94) across the calendar months (Figure 8). For the subset of potentially influenced
records that have a comparable ρmax, the type of meteorological drought index and accumulation period

Figure 7. Distribution of the accumulation period of the meteorological drought index that is most strongly correlated with streamflow percentiles (Amax) for
different calendar months and catchments with near-natural flow. Samples grouped into three Köppen-Geiger (K) classes (equation (2), map in Figure S3); (a) no
seasonality in precipitation (K = f), (b) seasonality in precipitation (dry summers/wet winters, K = s), and (c) seasonality in precipitation (dry winters/wet summers,
K = w). Box: percentiles 25, 50, and 75. End of whiskers: percentiles 5 and 95. Points: outliers.
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that has the strongest correlation with streamflow percentiles for differ-
ent calendar months follows similar patterns as those found for catch-
ments with near-natural flow (Figures S4–S6).

However, not all catchments with potentially influenced streamflow
records have correlations comparable to those of catchments with
near-natural flow; the 5th percentile of ρmax of potentially influenced
flows is notably lower, especially in the month July–October
(Figure 8). Where the 5th percentile of ρmax of catchments with near-
natural flow varies between 0.58 and 0.72 for different calendar
months, the 5th percentile of ρmax of catchments with potentially influ-
enced streamflow records varies between 0.38 and 0.63 and is consis-
tently lower. Notably lower correlations are found, for example, for
some catchments in and around Western Nebraska and Eastern
Colorado in winter and spring (Figure 4b). In summer, lower correla-
tions are found in California and around. In addition, individual catch-
ments across the United States were also found to have notably
lower correlations then their surrounding catchments.

For the majority of potentially influenced records and calendar months,
ρmax is classified as comparable to ρmax of near-natural catchments
(Figure 9a). The percentage of catchments with ρmax classified as weaker
(using the 5th percentile of ρmax for each calendar month as a threshold)
varies between 6% (March) and 15% (August). There is a lower percen-
tage of catchments with ρmax classified as weaker in winter and a higher

percentage of catchments with ρmax classified as weaker in summer. The percentage of catchments with
potentially influenced streamflow records with a non-significant ρmax shows a similar pattern: lower in winter
(minimum in February of only 1% of catchments) and higher in summer (maximum in August with 5% of
catchments). The spatial distribution of the records that have at least one month classified with ρmax weaker
or non-significant is displayed in Figure 9b. Of the catchments that have at least onemonthwith ρmax classified
as weaker, a relatively large proportion are located in the western and central United States. Clusters of
catchments with at least one month where ρmax is classified as non-significant are mainly visible throughout
the western United States, in particular, the West Coast and southwestern United States, although smaller
groups are also found in, e.g., the south-northeastern United States. For these catchments with a weaker or
non-significant correlation, the temporal pattern of the type of meteorological drought index and

Figure 8. Maximum correlation (ρmax) between three different meteorological
drought indices (SPIn, SPEIn, and SMRIn) accumulated over 12 different accu-
mulation periods (n = 1–12 months) and streamflow percentiles (ρmax) for
catchments with potentially influenced streamflow records for each calendar
month. The median and 90% range of catchments with near-natural flow
(Figure 3) are shown for reference.

Figure 9. (a) Percentage of potentially influenced catchments with the categorized maximum correlation between streamflow percentiles and three different
meteorological drought indices (SPIn, SPEIn, and SMRIn) accumulated over 12 different accumulation periods (n = 1–12 months) for different calendar months;
see section 3.2.2. (b) Locations of gauging stations with at least one month of the monthly maximum correlation between meteorological drought indices and
streamflow percentiles in the respective correlation categories. Similar graphics for different ρmax thresholds are presented in Figure S1.
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accumulation period that has themaximum correlation with streamflow
also differs from those patterns found for catchments with near-natural
flow, i.e., the pattern is less distinct or even absent (Figures S4–S6).

4.3. Link With Reported Drought Impacts

Streamflow percentile values were generally low when at least one
drought impact was reported in the county of the gauging station,
although there was considerable variabilty in the percetiles recorded
(Figure 10). There are systematic differences for catchments with
near-natural flow, as well as for catchments with potentially influenced
flow from the three groups with different maximum correlations
between meteorological drought indices and streamflow percentiles.
For each group, drought impacts were reported over the entire range
of streamflow percentiles (from driest to wettest). For catchments with
near-natural flow, 50% of the drought impacts occurred with stream-
flow percentiles ≤Q21 and 75% of impacts with streamflow percentiles
≤Q39. These numbers are slightly higher for catchments, and calendar
months for which ρmax was classified as comparable (median = Q25,
75th percentile =Q43). However, the number of catchments in the com-
parable category, and consequently, the number of cases with both a
reported drought impact and a streamflow percentile record in the
county of the reported drought impact (see section 3.3), was notably
higher. Four times as many joint occurrences of streamflow record(s)

in a county of a reported drought impact were found for the potentially influenced records compared to
the records with near-natural flow. The percentiles with reported drought impacts increase for catchments
and calendar months with a correlation category classified as weaker. Half of the impacts occurred with
streamflow percentiles ≤Q39 and 75% of the impacts occurred with streamflow percentiles ≤Q64. Percentile
values are even higher for catchments and months with a correlation category classified as non-significant;
50% of the impacts were reported with streamflow percentiles ≤Q61 and 75% of the impacts were reported
with streamflow percentiles ≤Q79. For the latter category, more than 50% of the reported impacts occurred in
the wetter range of the streamflow percentiles (>Q50).

The geographic distribution of average impact-corresponding streamflow percentiles reveals that in most
regions between 2005 and 2009, drought impacts have occurred at below normal streamflow percentiles
in most regions (Figure 11). In states such as North Carolina or Texas, streamflow percentiles generally indi-
cated below normal anomalies in months with reported drought impacts (average of QP in months with

Figure 10. Streamflow percentile values for months with at least one drought
impact report in the county of the gauging station location, classified by
degree of alteration in maximum correlation (described in section 3.2) using ρ5
and the non-significance level as threshold. N are the number of joint occur-
rences of available streamflow record(s) in the county of a reported drought
impact. Box: percentiles 25, 50, and 75. End of whiskers: percentiles 5 and 95.
Points: outliers.

Figure 11. Average streamflow percentile values of months that had at least one reported drought impact in the county of the gauging station between 2005 and
2009, derived for catchments with (a) near-natural flow and (b) potentially influenced flow. The gray symbols are gauging-station locations in counties without
drought impact reports between 2005 and 2009.
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reported drought impacts <Q25). However, for some regions, drought impacts have occurred at higher
streamflow percentiles. For example, in California, on average relatively normal conditions (average of
QP > Q25) were found in months with reported drought impacts, both for catchments with near-natural
and potentially influenced flow. In some counties, drought impacts were reported in months where stream-
flow percentile values on average indicated relatively wet condition (average of QP > Q75), for example, in
part of New Jersey and some other counties scattered around the United States.

5. Discussion
5.1. Link With Climate Zones

Although the SPI is most often used in large-scale drought monitoring and early warning systems (Bachmair,
Stahl, et al., 2016), it does not appear to have the strongest correlation with streamflow, which is one of the
domains of the hydrological cycle where part of the actual impacts of droughts are experienced (Van Lanen
et al., 2016). In this study, the SPEI showed a highermaximum correlationwith streamflow for a large proportion
of the catchments, especially in the summer months and in the drier regions (Figures 4–6). Stronger correla-
tions of the SPEI were also found in other studies for drier regions such as the southwestern United States
(McEvoy et al., 2012) and Spain (Vicente-Serrano et al., 2012). Furthermore, streamflow percentiles and the
SMRI show stronger correlations, especially in the winter and spring months and in the colder climates
(Figures 4–6), which is comparable to patterns found for some (alpine) catchments in Switzerland
(Staudinger et al., 2014). The SMRI performs well in the western United States (Figure 4), where the importance
of snow accumulation during winter for water availability in the summer is reflected by the use of the Surface
Water Supply Index for drought monitoring and early warning (Shafer & Dezman, 1982). The accumulation per-
iod of the meteorological drought index with the highest correlation with streamflow percentiles revealed a
general pattern related to precipitation seasonality (Figure 7); this best accumulation period varied with the
calendar month with shorter accumulation periods for the wet part of the year and longer periods for the
dry part of the year. Similar differences in accumulation period with the strongest correlation over the wet
and dry season were found for other rivers with seasonal climates, such as the Logone River in central Africa
(Nkiaka et al., 2017) or various rivers across the western United States (Abatzoglou et al., 2014; McEvoy et al.,
2012). This difference in the observational data confirms the importance of initial conditions at the end of
the wet season for streamflow in the dry season found in the model-based study by Van Loon et al. (2014).

Besides the SPI, SPEI, and SMRI, there are a variety of other meteorological drought indices that could have
been considered in this study, including the Palmer Drought Severity Index (PDSI; Palmer, 1965); a drought
index with great heritage, particularly in the United States. However, although the PDSI is derived with the
samemeteorological input, its calculation is substantially different to that of the standardized indicators used
here and the PDSI was therefore not included in this study. For example, as the PDSI is based on a soil water
balance model, it requires additional information on the water holding capacity of soils in the catchment. In
addition, the PDSI is not scalable nor is the PDSI comparable over space or time (Alley, 1984). The comparabil-
ity of the standardized indicators and their relative ease of calculation are attractive qualities in the design
and operation of a drought monitoring and early warning system; so much so, that the SPI is recommended
by the World Meteorological Society for monitoring meteorological drought (Hayes et al., 2011). The selected
meteorological drought indices could have been calculated over more accumulation periods (here they were
constrained to 12 months). However, better correlations may have been obtained in some regions of the
United States if longer accumulation periods were used, as is shown in, for example, McEvoy et al. (2012)
for the southwestern United States (although improvements in correlation were small compared to the cor-
relation obtained with a 12-month accumulation period).

The stronger correlation between streamflow percentiles and the SPEI and SMRI compared to the SPI is pro-
mising especially considering the potential further improvements that can be gained with the better repre-
sentation of potential evapotranspiration/snowmelt and accumulation. For this large-scale assessment, we
used the Hargreaves equation to calculate potential evapotranspiration because it only requires precipitation
and temperature (mean, minimum, and maximum) as inputs, whereas other potential (or actual) evapotran-
spiration estimation methods, such as Penman-Monteith, may be more accurate, although they require more
input data making them challenging to apply for an operational monitoring and early warning system. Other
assumptions were made with regard to the SMRI; the melt factor was fixed to 3 mm · °C�1 · day�1, whereas
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various studies show different optimal melt factors for different locations (e.g., Hock, 2003). A more accurate
representation of the magnitude and timing of snowmelt might improve the daily representation of snow-
melt and thus the correlation between streamflow and SMRI. Future research could aim to improve the meth-
odological choices, however; the stronger correlations between streamflow percentiles and the SPEI and
SMRI (compared to the SPI) achieved with the pragmatic approach used in this study are encouraging for
potential applications in the context of large-scale operational drought monitoring systems, which may have
operational computational and data constraints.

5.2. Link With Human Influences

A strong link was found between meteorological drought indices and streamflow percentiles for the major-
ity of the catchments with near-natural flow (Figure 3). In addition, comparable strong correlations were
found for the majority of the catchments with potentially influenced streamflow (Figure 8). These correla-
tions were mostly comparable, even though there were some differences between the two groups of catch-
ments (i.e., those with near-natural flow and those with potentially influenced flow); for example,
catchments with near-natural flow were more likely to be smaller headwater catchments located in areas
with lower population densities or economic activities. However, a proportion of potentially influenced
records (6–15%; Figure 9a) showed weaker maximum correlations than those found for catchments with
near-natural flow using ρ5 as threshold. The largest proportion of weaker correlations was observed in
the summer months (Figure 9a), which agrees with the lower summer correlations found on the Iberian
Peninsula by Vicente-Serrano et al. (2014) and the expected higher impacts of human activities on stream-
flow in these summer months. The percentage of catchments with weaker correlations found in this study
is relatively low compared to the percentages found for changes in flow magnitude characteristics in other
studies in the United States, for example, the 86% of the catchments studied by Carlisle et al. (2011).

Given that the United States is among the most flow-regulated regions of the world (Lehner et al., 2011), it
was surprising that only 6–15% of the catchments show a lower maximum correlation. One reason is the
low correlation-threshold used to detect human induced changes in maximum correlation. Increasing this
threshold from ρ5 to ρ25 increases the percentage to around 30% of the catchments (depending on the
calendar month) but also increases the uncertainty whether a lower ρmax is caused by human influences
or not (see supporting information S1). Other reasons might be related to the variety of ways human
influences can modify the streamflow (drought) signal. The use of rank correlation was particularly suitable
for this study as it directly compares meteorological and hydrological anomalies, which form that basis of
many drought monitoring and early warning products that mostly use anomaly information (and not
absolute values) to display the drought situation. However, a high maximum correlation does not imply
that the streamflow (drought) record is free of human influences. The strongest effect on the correlation
occurs when human influences counteract the natural situation, for example, compensation flows during
meteorological drought and flood control (holding back water in the reservoir) during high meteorological
anomalies (exemplified in Figure 12b). More subtle changes in correlation can be a result of human induced
trends or step changes (exemplified in Figures 12c and 12d). Strong trends or step changes can diminish
the correlation greatly; however, weak trends or step changes only have a small impact on the correlation
and the diminished correlation caused by these weak trends or step changes could very well fall within the
range of uncertainty defined for catchments with near-natural flow. There are also human influences that
only affect flow magnitude, for example, in the case of constant and systematic abstractions (Figure 12e)
or in the case that abstractions vary as a function of the degree of dryness (Figure 12f). These changes in
monthly flow magnitude do not mean a change in the ranking of monthly flow and do not affect the
correlation. Different studies investigate the absolute and temporal changes in mean, minimum, or
maximum flow and relate these changes to various human activities (e.g., Carlisle et al., 2011; Rice et al.,
2015, 2016; Sadri et al., 2016). Future research could aim to modify these approaches to identify absolute
and temporal changes in drought characteristics, such as drought occurrence, duration, or deficit volume,
something which was beyond the scope of the current study. Furthermore, only looking at the maximum
correlation between streamflow and the meteorology introduces a bias. For example, streamflow in a
responsive catchment with a reservoir might have a weak correlation with a meteorological drought index
accumulated over a short-term accumulation period (as would be expected for a responsive natural catch-
ment; Barker et al., 2016) but may have a strong correlation with a meteorological drought index accumu-
lated over a longer period. Additionally, the correlation is based on the entire flow regime (both wet and
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dry years) and a human-induced reduction in correlation between meteorological and streamflow
drought indices during dry streamflow anomalies might be concealed by a strong correlation during
high flow anomalies.

Clusters of potentially influenced catchments with weaker or non-significant correlations between the
meteorological indices and streamflow (Figure 9b) indicate regions where human influences alter the
drought response. These spatial clusters correspond to locations where human influences were found to
affect streamflow in previous studies, for example, in a comparison between observed and expected (statis-
tically modeled) flow characteristics, Carlisle et al. (2011) found most severe changes in flowmagnitude char-
acteristics in the central and western United States. In a modeling experiment, Emanuel et al. (2015) showed
that the largest deviations from natural flow conditions related to water transfers occurred in the central and
the northeastern United States. For California, He et al. (2017) showed better agreement between observed
and modeled streamflow when different human influences (e.g., different reservoir operations, abstractions,
and irrigation) were added to the modeling framework. For Florida, Schmidt et al. (2001) suggested that the
absence of a relationship between the El Niño–Southern Oscillation (ENSO) and streamflow signals was
related to various human influences (such as dams and effluent return from groundwater pumping).

5.3. Link With Reported Drought Impacts

This study is among the first to use DIR information at the scale of the contiguous United States to validate
whether streamflow drought hazard indicators also reflect the overall impact occurrence of drought as
reported in, e.g., the media. The spatial pattern in the number of reported drought impacts between 2005
and 2009 (Figure 2) matches well with the major drought events in this time frame as archived by the
USDM (http://droughtmonitor.unl.edu/Maps/MapArchive.aspx), such as: the 2006 drought in Texas, the
2007–2008 drought in North Carolina, or the 2007–2009 drought in California. However, besides areas with
major drought events, the paths of some rivers, such as the Missouri river, can be seen in Figure 2. The occur-
rence of these river paths can be related to the way some drought impact reports were spatially aggregated;
that is, if a particular river is affected, the impact report is sometimes aggregated to all counties this river

Figure 12. Different types of human induced modifications of the propagating streamflow signal (hypothetical) and
corresponding effect on the correlation between streamflow and meteorology. (a) No impact (series are identical),
(b) streamflow signal opposes the meteorological signal, (c) trend in the streamflow signal, (d) step change in the
streamflow signal, (e) systematic absolute change in the streamflow signal, and (f) absolute change in the streamflow signal
as a function of the degree of dryness.
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intersects. Thus, even though impacts are on a county level, they might not always represent the local condi-
tions, eventually leading to amismatch between larger scale drought impacts for an entire river length and the
more local streamflow data of small (headwater) catchments. Another bias is introduced because some
drought impacts are observed after the drought event is over. For example, water prices might increase after
a drought event because of lost revenue due to water usage restrictions during the drought event. We filtered
out most of these impacts by removing relief, response, and restriction impacts; however, some misclassified
postevent impact reports may still be among the reported drought impacts. Such postevent impacts are the
reason for a mismatch between streamflow drought indicator and reported drought impacts in, for example,
New Jersey, where drought impacts occurred at relatively high streamflow percentiles (Figure 11).

Despite the biases described above, drought impacts reported in the DIR mainly occur when streamflow per-
centile values are low and thus indicate drought conditions (Figures 10 and 11). For the catchments with
near-natural streamflow records, or for catchments that have a maximum correlation between meteorologi-
cal drought indices and streamflow percentiles that is comparable to that of near-natural catchments, 50% of
the impacts occurred at or below streamflow percentile values of Q21 (catchment with near-natural records)
or Q25 (catchments with comparable correlations). These percentile values approximate the commonly used
monthly variable threshold level for streamflow drought analyses, that is, Q20 (e.g., Andreadis et al., 2005;
Sheffield et al., 2009) and the Q25 percentile threshold level used for the below normal flow category in
USGS WaterWatch. These threshold values are also within the range of the median threshold values for the
occurrence of drought impacts related to hydrology for some federal states of Germany (Bachmair et al.,
2015) and regions of the UK (Bachmair, Svensson, et al., 2016).

Not all potentially influenced streamflow records reflect the reported drought impacts well. For potentially
influenced streamflow records classified with a weaker or non-significant maximum correlation with different
meteorological drought indices, impact reports occur at higher streamflow percentile levels that do not indi-
cate negative anomalies or drought. The occurrence of impacts at higher percentile values is expected for
some of these records, because in case of a weak correlation, the streamflow signal could counteract the
meteorological signal (exemplified in Figure 12b); for example, when reservoir outflow is used to compensate
for low flow further downstream. In that case, the hazard indicator does not match with the overall drought
impact occurrence. Trends and step changes (exemplified in Figures 12c and 12d) could also remove the link
between streamflow drought hazard indicators and reported drought impacts. Strong positive trends or step
changes (e.g., those caused by the construction of a reservoir in the middle of a record) potentially hinder a
streamflow drought index to detect drought conditions. However, overall drought impacts related to other
domains of the hydrological cycle might still occur. Strong negative trends or step changes (exemplified in
Figure 12d), on the other hand, might cause the streamflow records to continuously indicate negative
anomalies. In that case, impacts happen at the expected low streamflow percentiles but the false alarm rate
is likely to be higher. From an overall drought monitoring perspective with the aim of mapping the stream-
flow drought hazard and anomalies, systematic changes (Figures 12e and 12f) are least problematic as per-
centile time series derived from those streamflow records still indicate the climatic variability and
associated drought impacts. However, from a streamflow perspective, the diminished flowmight have severe
impacts on the instream situation and more research to quantitative relationships is needed for recommen-
dations on streamflow-specific drought management. It is therefore important to emphasize that we only
evaluate streamflow records on their capability of reflecting the overall impacts of drought and refrain from
any judgment of whether the diminished correlation is good or bad.

5.4. Potential Improvements for Large-Scale Drought Monitoring and Early Warning

For drought monitoring and decision making at the smaller scale (e.g., river basin), local decision makers will
havemore detailed knowledge about the drought governing processes than what was available in this study.
At the larger scale, for example, national to continental (i.e. the focus of this study), such detailed knowledge
is often not available and generalizable information such as natural patterns and human-induced deviations
from those patterns as presented in this study is extremely useful.

Currently, meteorological (precipitation based) drought indices, such as the SPI, are themost commonly used
in (large-scale) drought monitoring and early warning systems (Bachmair, Stahl, et al., 2016). However,
Van Lanen et al. (2016) stress the need that hydrological drought information should be considered as well,
as it is more closely related to the actual source of the drought impacts. Results of this study confirm the
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benefit of including streamflow information by showing that the actual drought impacts, as reported by
the DIR, often occur at negative streamflow anomalies, for both catchments with near-natural flow and the
majority of catchments with potentially influenced streamflow records (Figures 10 and 11). Thus, there is
merit in using observed streamflow data in large-scale drought monitoring and early warning applications,
and if these data are available and free of large human disturbances, its use should be preferred over the
use of meteorological surrogates. However, there are two main limitations with the use of observed stream-
flow data: (1) it is often not available (in near-real time) for all locations and (2) observed streamflow data are
not necessarily free of large human influences, which, according to our results, can cause a mismatch
between the streamflow drought hazard indicators and the overall (reported) impacts of drought. In those
cases, meteorological drought indices should be used to reflect the hydrological situation. The most suitable
meteorological proxy should be chosen instead of using an arbitrary choice of meteorological indicator and
accumulation period. Our findings show that the most suitable index is often not the most commonly used
SPI, but rather the SPEI or SMRI, and that the best accumulation period also varies, depending on the time of
the year, location, and climatic region.

6. Conclusions

Knowledge about the propagation of anomalies frommeteorological to streamflow droughts across different
climatic regions, and for near-natural and human influenced streamflow records, provides an important basis
for large-scale drought monitoring and early warning information. This study of streamflow records across
the contiguous United States identified meteorological drought indices that best reflect streamflow anoma-
lies. For a large proportion of catchments with near-natural flow, streamflow was most strongly correlated to
the SPEI in the summer months (especially in the drier climates) and to the SMRI in the winter months (espe-
cially in the wetter (colder) climates). Furthermore, a general pattern was observed between the accumula-
tion period of the meteorological drought index that has the strongest correlation with streamflow and
the time of year for climates with seasonal precipitation regimes. Longer accumulation periods of the stan-
dardized indices show stronger correlations in the dry seasons of these seasonal climates, which highlights
their dependence on the initial conditions at the start of the dry season. Knowing which meteorological
drought index and which accumulation period has the strongest correlation with streamflow in different cli-
matic settings may be used to provide a more impact-targeted large-scale drought monitoring and early
warning for ungauged catchments or regions that lack near real-time streamflow data availability.

For catchments where streamflow is potentially altered by human influences, the maximum correlation
between meteorological drought indices and streamflow percentiles was found to be largely comparable
to those correlations found for catchments with near-natural flow. Although a comparable correlation does
not mean that these records are free of other human-induced changes in, for example, flow magnitude, it
has important implications for large-scale drought monitoring and early warning of the overall drought situa-
tion, which often relies on anomaly information. For catchments with either near-natural flow or with a com-
parable correlation between meteorological drought indices and streamflow percentiles, drought impacts in
the county of the gauging station mainly occurred when streamflow percentiles were low. Streamflow per-
centiles of these catchments with potentially influenced streamflow records are thus equally suitable for dis-
play in a drought information system, for example, to portray the regional drought situation.

However, a subset of about 6–15% of the records of the potentially influenced catchments had a weaker max-
imum correlation when considering the group with a lower correlation then the 5th percentile of the maxi-
mum correlation for catchments with near-natural flow. Most weakened relationships were found in the
month of August, that is, in summer, when the impacts of human influences may bemost severe. The analysis
of reported drought impacts and streamflow percentiles for records and calendar months with a weakened
correlation confirms a larger disconnect between meteorological drought indices and streamflow at times of
severe drought. For influenced streamflow records with weaker maximum correlations, corresponding
drought impacts did not necessarily occur at the expected low streamflow percentiles. Hence, streamflow
drought indices derived from these records are less suitable for portraying the overall impacts of drought.
This study consequently suggests that knowing when and where correlations between meteorological and
hydrological anomalies are weaker due to human influences on flow can help to identify suitable streamflow
records for large-scale drought monitoring and early warning information maps.
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