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ABSTRACT Diel vertical migration (DVM) behaviour in swarms of Antarctic krill 

(Euphausia superba Dana, 1850) is notoriously variable, with swarms being found at a range 

of depths and in different shapes, sizes, and packing concentrations throughout the day-night 

cycle. Because social aggregation can potentially serve the same purpose as DVM in 

minimising predation risk, krill may use both strategies to varying extents. Diel variation was 

examined in swarm depth, length, perimeter, area, thickness, and packing concentration 

across 4,130 open-ocean swarms in the Scotia Sea during summer. Inter-relationships 

between each of the swarm descriptors were complex but multivariate analyses identified 

pairings in levels of similarity between area and perimeter, thickness and packing 

concentration, and depth and length. Second-stage analysis further identified diel cyclicity in 

these relationships. Swarm parameters were more variable than depth over the diel cycle, 

identifying swarming to be the primary diel response to which DVM is a secondary 

contributor.   

Key Words: behaviour, diel vertical migration (DVM), echosounder, Southern Ocean 

 

INTRODUCTION 

In amassing in swarms that are often hundreds of metres in length, and hundreds of thousands 

of tonnes in biomass, Antarctic krill (Euphausia superba Dana, 1850) form some of the 

largest aggregations of biomass in the animal kingdom and it is a behaviour that dominates 

their ecology (Hamner & Hamner, 2000). Krill are noted for their pronounced diel vertical 

migrations (DVMs) in which vertical distances, sometimes of the order of hundreds of 

metres, are traversed each night and day (Tarling et al., 2001). Although there may be some 

advantages in exhibiting both swarming and DVM, it raises the question of whether both are 

necessary, given that they are being driven by the same trade-off between energetic demand 
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and predator avoidance (Ritz, 1994). This overlap in function leads to some complex 

outcomes in terms of variable patterns of vertical migration and swarm structure over diel 

cycles (Godlewska, 1996) that have proven difficult to predict (Alonzo & Mangel, 2001; 

Cresswell et al., 2009). Understanding these interactions is nevertheless fundamental to 

predicting how this species will respond behaviourally to changes in its environment 

(Smetacek & Nicol, 2005). 

Even the earliest studies of DVM in Antarctic krill noted its variability. Marr (1962) 

stated that there was no obvious pattern in the vertical movements of krill swarms, with 

subsurface swarms liable to be encountered at any depth to 150 m virtually at any hour of the 

day or night. Hardy & Gunther (1935) also refer to apparently erratic vertical movement of 

krill. Some subsequent studies have nevertheless reported a pronounced difference in krill 

swarm depth over diel cycles. Nast (1979), for instance, calculated a mean depth of 20 m 

during the night and 136 m during the day. Witek et al., (1981) found swarms moved 

upwards at dusk to the upper 40 m and downwards at dawn to around 90 m. Further studies 

have noted periods of dispersion during night-time and a consolidation back into swarms 

during the day (Kalinowski, 1978; Everson, 1983). There are even reports of reverse 

migration, where swarms are closer to the surface during the day than at night (Kalinowski & 

Witek, 1985). For every study that has distinguished a DVM pattern, however, there is 

another that fails to find any diel change in vertical position or levels of dispersion 

(Shulenberger et al., 1984; Daly & Macaulay, 1988; Higginbottom & Hosie, 1989; Azzali & 

Kalinowski, 2000; Lowe et al., 2012) 

In an attempt to resolve this complex picture, Godlewska (1996) carried out a major 

synthesis of acoustic and net catch data across a number of ocean sectors. She noted that a 

number of vertical migration patterns existed in different environments or under different 

circumstances, but, underlying this, she proposed that there was a universal pattern which 
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could be modelled with a periodicity of 12 or 24 h. According to Godlewska (1996), adults 

are more likely to exhibit a 24 h migration cycle over large amplitudes, whereas juveniles 

have a greater tendency to have 12 h cycles and shallower migrations. Furthermore, when 

food is scarce, migrations are shallower and have a 12 h cycle, but a 24 h deeper migration 

cycle is reverted to when food is abundant. In a model of feeding activity in relation to depth 

and time of day, however, Morris & Ricketts (1984) found that neither stomach nor 

hepatopancreas nor gut fullness varied with depth and only stomach fullness showed any 

significant variation with time of day, concluding that the links between feeding, swarming, 

and vertical migration are tenuous. 

Variability in diel rhythmicity is also exhibited at the individual level. Gaten et al., 

(2008) maintained Antarctic krill in activity-monitors exposed to either constant darkness or a 

light-dark cycle and found complex rhythms made of two circadian components, one shorter 

than 24 h and one longer than 24 h. Furthermore, krill did not display a robust 24 h rhythm 

even under a light-dark cycle, which suggests that light may not be a dominant coordinating 

factor (Zeitgeber). 

 Cresswell et al., (2009) modelled the trade-off between packing concentrations and 

vertical position in the water column in terms of relative risk to predators and accessibility to 

surface productivity. Individuals migrating deeper and packing closer experienced lower 

predation risk but at the cost of lowered feeding success. By contrast, individuals moving 

closer to the surface and becoming more dispersed achieved a greater reward from feeding 

but at a greater risk. This conceptual approach benefits from considering the interactions 

between DVM and swarming since neither acts in isolation from the other. The study 

nevertheless found a lack of responsiveness in the swarming parameter (i.e., packing 

concentration) indicating that either the costs or benefits of this trait were not fully captured 

in the model or there are further swarm parameters that may be more responsive. For 
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instance, Tarling et al., (2009) found swarm length, thickness, area, and distance to nearest 

swarm neighbour as all being responsive to changes in environmental conditions.  

Although net sampling in early studies has provided a great deal of information about 

the Antarctic krill, the greatest focus of research in the last decades has been through the use 

of active acoustics (Watkins et al., 2004; Tarling et al., 2009; Krafft et al., 2012). Acoustic 

surveys can cover large distances rapidly and now incorporate sophisticated multifrequency 

techniques which enable Antarctic krill to be distinguished from other types of swarming 

pelagic organisms (Madureira et al., 1993a, 1993b, Korneliussen et al., 2009). Furthermore, 

swarm detection algorithms can analyse the echograms for features meeting the set criteria 

for Antarctic krill swarms (e.g., SHAPE Shoal Analysis and Patch Estimation System; 

Coetzee, 2000), generating swarm inventories that can amount to thousands of swarms that 

are each measured in multiple dimensions, including perimeter, length, area, thickness, depth, 

and backscattering strength. These advances do not completely obviate the need for net 

samples, which are still required to assess typical individual size and age structures of 

populations with which to generate target strength models and estimate packing 

concentrations (Demer & Conti, 2003, 2004). Advances in acoustics and processing 

nevertheless mean that analyses at the level of swarms can be performed over extensive 

temporal and spatial extents using objective methods. 

We analysed the structure and depth of Antarctic krill swarms over diel cycles using 

acoustic data collected continuously over a large-scale survey of the Scotia Sea (Fig. 1). This 

sector of the Southern Ocean is suited to this type of study since more than 30% of the 

circumpolar population of krill is found within it (Atkinson et al., 2008) and it covers a range 

of environmental conditions in, for instance, temperature (0 to 5oC), distance from sea-ice 

and land (0 to 1000s km), and levels of primary productivity (0.2 to 3 mg m-3) that are likely 

to influence swarm structure (Tarling et al., 2009), making it likely that a wide variety of 
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swarm structures will be encountered. Our study only considered the open-ocean situation 

(>100 km from nearest land) to avoid confounding our analyses with inshore influences on 

swarm structure, as these can be considered to be a special case (Klevjer et al., 2010). 

Multivariate statistical analyses were performed in order to synthesise variability across a 

number of swarm structure parameters so as to reveal any dynamics in the relationship 

between swarm structure and swarm depth over diel cycles. In particular, we employed a 

two-stage technique following Clarke et al., (2006) where, firstly, we considered multivariate 

relationships between swarm descriptors (e.g., length, depth, packing concentration, and other 

factors) and, secondly, we determined how these relationships change over hourly intervals 

across the diel cycle. Our overall aim was to evaluate the relative influences of swarming 

behaviour and DVM on diel variability in open-ocean krill swarms.  

 

METHODS 

General survey details  

A survey encompassing eight transects was carried out by the RRS James Clark Ross across 

the Scotia Sea between 9 January and 16 February 2003 (Fig. 1). The majority of transects 

were transited at speeds of 5 to 10 knots, depending mainly on ice conditions. Acoustic data 

were collected continuously over the 24 h cycle using a Simrad EK60 echosounder 

(Kongsberg Maritime AS, Horten, Norway) connected to hull-mounted split-beam 38 kHz, 

120 kHz, and 200 kHz transducers. Only data from the 38 kHz and 120 kHz transducers were 

analysed to identify krill swarms to a maximum depth of 300 m. The beam angles, and hence 

sampling volumes, of both these frequencies were the same (7°) so allowing direct 

comparisons to be made for the purposes of swarm identification across most depths. An 

offset of the two sounders means, however, that the beams were not overlapping at depths 

shallower than 25 m. Although this could lead to the misidentification of some krill swarms, 
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we worked on the assumption that swarms of that shape, size, and backscattering strength 

were unlikely to be anything other than Antarctic krill in this part of the Southern Ocean. The 

surveys encompassed both open-ocean and shelf regions, but all shelf data (data < 100 km 

from nearest land) were excluded from the present analysis. 

Krill net sampling  

A number of swarms were captured by net sampling to ground-truth the acoustic records, 

principally for the purpose of establishing an acoustic target strength for krill. Krill swarms 

were located using the Simrad echosounder and then sampled with a rectangular midwater 

trawl (RMT8). The RMT8 was rigged with two remotely operated opening/closing nets, 

which had the capacity to sample separate swarms in close vicinity to one another. A random 

subsample was made from each catch to assess the body length frequency, sex composition, 

and maturity status of the sampled swarm. Krill body length was measured from front of eye 

to tip of telson. Sex and maturity categorisations were based on the scheme of Makarov & 

Denys (1980). Krill sampling took place mostly during the hours of darkness.  

 

Acoustic data and processing  

An acoustic system calibration was undertaken at Stromness Bay (54°9.44ʹS, 36°41.99ʹW) on 

17 February 2003 using the standard sphere method (Foote et al., 1987, 1990). Calibration 

was carried out with a 60 mm copper sphere for the 38 kHz transducers and a 23 mm copper 

sphere for the 120 kHz transducers (see Tarling et al., 2009 for details). 

Raw acoustic data from the 38 kHz and 120 kHz transducers were processed using 

Sonardata Echoview version 4.0 following the protocol of Hewitt et al., (2004) with the aim 

of excluding all backscatter not attributable to krill aggregations. Background noise levels 

were estimated and subtracted from the 38 kHz and 120 kHz echograms (Watkins & Brierley, 

1996). Filters were applied to exclude the upper 13 m of the water column and depths below 
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the detected bottom (where applicable) and other “bad data” resulting from interference or 

bad weather. Smaller spikes were removed from the data by restricting the final swarm 

detection to those regions of the echogram where the 7 × 7 (pings × samples where the ping 

interval was 1.5 s and sample length, 0.1867 m) convolution filtered data were above a 

threshold of –80 dB at 120 kHz. A threshold of –70 dB at 120 kHz was used in the 

subsequent swarm delineation, as advised by Lawson et al., (2008). 

Krill swarm delineation  

A swarm detection algorithm was applied to the processed 120 kHz echogram data using 

Sonardata Echoview version 4.0 “School detection module” (Sonardata Pty, Tasmania, 

Australia), which employs a SHAPES algorithm (Coetzee, 2000). This algorithm identifies 

data points that can be determined as “swarm candidates”, which are groups of cells that meet 

minimum criteria for length and height. These individual swarm candidates are then linked 

together to form a larger swarm candidate if the horizontal and vertical distances between 

them are less than the specified maximum linking distances. After any linking has been 

carried out, swarms are recognised if the final swarm candidates are larger than the defined 

minimum total swarm length and height. With a ping interval of 1.5 s, and standard cruising 

speed of 10 knots, the minimum horizontal resolution was around 7.5 m. We set the 

minimum total swarm length to 15 m, which is double the minimum horizontal resolution. 

Transmit pulse duration was 1024 µs, giving an approximate pulse length of 1.5 m and a 

minimum vertical distance between 2 resolved targets of ~75 cm. The minimum total swarm 

height was set to 2 m, which was again double the minimum level of resolution. As swarm 

candidate dimensions must logically be smaller than or equal to the total swarm size 

parameters, minimum swarm candidate length and height were set to 10 m and 1 m, 

respectively. The maximum horizontal linking distance was set to 15 m, following Woodd-

Walker et al., (2003), and the maximum vertical linking distance was set to 5 m. Swarms 
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where the relative school length image compared to the beam width (Nbi) was less than 1.5 

were excluded from the dataset, following Diner (2001). 

Swarms were detected from the 120 kHz echograms, and physical and acoustic 

descriptors for the detected swarm-regions were exported from both 38 and 120 kHz data. 

These dimensions were corrected for known beam geometry according to the system of Diner 

(1998) within Sonardata Echoview 4.0. These swarms were then interrogated to determine 

whether or not they were krill using a variable ΔSv120-38 identification technique (CCAMLR, 

2005) following the steps outlined in Tarling et al., (2009), including the allocation of 

different krill total lengths to different survey regions in line with corresponding net catch 

results. This had a relatively minor influence on estimated krill target strength (TS) across the 

survey grid, with minimum values of -76.63 dB and maximum, –74.48 dB, equal to a 

difference of 0.45 individuals m–3 at the survey average Sv value of –63.64 dB.  

Swarm descriptors  

A number of physical properties for each swarm were calculated (Fig. 2), including 1) swarm 

depth (m), 2) swarm thickness (m), 3) swarm length (m), 4) swarm perimeter (m), and 5) 

swarm area (m2). Each of these parameters was corrected according to its beam geometry 

following the system of Diner (1998). A further descriptor, 6) packing concentration 

(individuals m–3), relies on the estimation of the target strength (TS) of individual krill, which 

was carried out using the SDWBA model described in Tarling et al., (2009). Although there 

are a number of other parameters that can be used to describe swarms, our choice reflects 

major axes of variability in water column position, shape, and internal organisation. We 

standardised these variables as a fourth root transformation given wide numerical ranges and 

large levels of variability within certain parameters. This was preferred to other 

transformations (e.g., log(1+x)) since it is less severe on large abundances and is also 

invariant to scale change when calculating similarity matrices (Clarke et al., 2014). 

mk:@MSITStore:C:%5CProgram%20Files%20(x86)%5CSonarData%5CEchoview4%5CEchoview.CHM::/Using_Echoview/About_beam_geometry.htm
mk:@MSITStore:C:%5CProgram%20Files%20(x86)%5CSonarData%5CEchoview4%5CEchoview.CHM::/Reference/Schools_module_references.htm
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Data analysis  

The general approach to data analysis was to examine relationships between the six swarm 

descriptors over the population of 4,130 swarms. We then sought to determine the influence 

of time of day on these patterns on these relationships by dividing the datasets into hourly 

intervals and making intercomparisons of similarity in swarm-descriptor relationships. We 

maintained time in GMT, relative to which local time was offset by –3 h. Day-time during the 

period of study was between 0600 and 0000 h GMT, night-time, 0200 to 0400 h, dusk, 0100 

h and dawn, 0500 h, local midday was at 1500 h, local midnight, 0300 h.  

To establish relationships in patterns of variability across the whole swarm dataset, 

we used the analytical package Primer 7 (version 7.0.11, Primer-E, Plymouth, UK). We 

provide an overview of the analytical steps in Figure 2. A resemblance matrix was generated 

to determine levels of similarity between swarm descriptors using Euclidean distance. The 

resemblance matrix was subsequently subjected to cluster analysis using average linkage with 

a SIMPROF test to determine the level of significance in the identified structure. The same 

resemblance matrix was also examined using non-metric multi-dimensional scaling (nMDS). 

Two and three-dimensional ordinations were generated and overlaid by the SIMPROF groups 

identified in the cluster analysis.  

To examine the influence of time of day on these relationships, the fourth root 

transformed dataset was split up according to the hour of observation and a resemblance 

matrix generated for each of the 24 datasets using Euclidean distance (Fig. 2). The resulting 

24 resemblance matrices were then subjected to a second-stage analysis in which a further 

resemblance matrix based on the Euclidean distance data was generated by determining the 

pairwise Spearman rank correlation coefficient between hours. Hierarchical clustering and 

nMDS were used to visualise structure in the data, with the level of correlation separating the 
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main clusters in the former being projected onto the latter to aid inter-comparison of the two 

techniques (only nMDS was subsequently plotted).  

The second-stage analysis identified four principal groups that were interrogated 

further to identify what separated the groups as regards patterns of variability in swarm-

descriptor variables and the interrelationships between them. The fourth root transformed 

dataset was split according to these four groupings, and Euclidean distance resemblance 

generated for each group, subsequently visualised with hierarchical clustering (not plotted) 

and nMDS and overlaid by SIMPROF groups. The contribution of each of the six swarm 

descriptors to the level of dissimilarity between the four groups was examined using SIMPER 

analysis of Euclidean distance similarity coefficients.  

 

RESULTS 

There were some clear relationships between the six descriptors, particularly between 

perimeter and area, length and area, and length and perimeter (Fig. 3). Depth did not appear 

to have a strong relationship with any other swarm descriptor apart from length, although 

there was considerable scatter at mid-depth intervals. Thickness exhibited a non-linear 

positive relationship with area and perimeter and a more diffuse positive relationship with 

packing concentration (individuals m–3). Packing concentration did not exhibit strong 

relationships with any other swarm descriptors.  

Hierarchical cluster analysis combined with SIMPROF found significant structure 

within the data, identifying three significantly different groups of swarm descriptors (Fig. 4). 

A major division between swarm descriptors occurred at a group average distance of 121.5, 

where the swarm descriptors divided into two branches. In one branch, perimeter and area 

were significantly linked at a group average distance of 58.5. In the other branch, significant 
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linkages were apparent between thickness and packing concentrations (individuals m–3) and 

between depth and length at distances of 48.0 and 56.0, respectively. 

Non-metric MDS, superimposed with group structure identified by SIMPROF, 

similarly showed a distinct separation into the same three pairs of swarm descriptors (Fig. 5). 

The relative distances between these pairs were smallest between thickness and packing 

concentration (individuals m–3) and largest between perimeter and area. Each pair was 

separated almost equidistantly from the other two.  

A second-stage analysis examined the relationship between the Bray-Curtis similarity 

matrices generated for each hourly interval. This derived a second-stage correlation matrix 

that was analysed by hierarchical clustering and non-metric MDS. This generated two major 

groups, bounded by a correlation level of 0.87, and two outliers (Fig. 6). The larger of the two 

groups contained all hourly intervals between 0600 h and 0000 h, which corresponded to all 

the hours of local daylight. The latter contained the intervals, 0200 h, 0300 h, and 0400 h, the 

local hours of darkness. The two outliers corresponded to local dusk (0100 h) and local dawn 

(0500 h). 

Further non-metric MDS analyses carried out on each of the four time-period 

groupings (day-time, dusk, night-time, and dawn) revealed changes in the ways the swarm-

descriptor pairs related to each other (Fig. 7). In the day-time group (0600 to 0000 h), the 

relationship closely resembled that seen in the original analysis (Fig. 5), with three distinct 

groups, identified as being significantly different by SIMPROF. In the night-time group 

(0200 to 0400 h), thickness and packing concentration (individuals m–3) remained 

significantly different to depth and length and both pairs were significantly different to both 

area and length. In the dawn outlier (0500 h), perimeter and area remained significantly 

different to depth and length and both pairs were significantly different to thickness and 

packing concentration. In the dusk outlier (0100 h), thickness and packing concentration were 
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significantly different to the new pairing of length and area, and both pairs were significantly 

different to both depth and length. Overall, the relationship between swarm descriptors 

altered over the diel cycle, with the pairings of thickness and packing concentration and 

perimeter and area showing the greatest sensitivity to the diel cycle. 

When considering the swarm descriptors that contributed most to the dissimilarity 

between the four time-period groupings, it was apparent that perimeter, area and packing 

concentration consistently made the greatest contributions, with length, thickness, and depth 

being more similar between time-period groups (Table 1). Perimeter and area were the 

greatest contributors to dissimilarity between day and night, as well as between day and dusk 

and night and dusk. Levels of dissimilarity between dawn and the other three time-period 

groups were more influenced by packing concentration in combination with area. Out of the 

six parameters, depth mostly ranked fifth in terms of its contribution to dissimilarity between 

time-period groups with the exception of night versus dawn, where it was ranked fourth and 

contributed 8% to total dissimilarity levels.  

To provide an overview of the patterns of change between swarm parameters over the 

diel cycle, we plotted their respective means (± 95% CI) for each time-period group (Fig. 8), 

with parameter values further detailed in Table 2. These summaries were determined in the 

raw, untransformed values. It is apparent that there are distinct increases in packing 

concentration at dawn (0500 h) and dusk (0100 h) relative to typical day-time or night-time 

values, which explains the high contribution of packing concentration to levels of 

dissimilarity between dawn and the other time-period groups. Meanwhile, values for 

perimeter and area were four to five times higher during day-time than the other time-period 

groups which underpins the dominant contribution of these two parameters to dissimilarity 

levels between day-time and night-time and day-time and dusk. Dusk values for perimeter 

and area were similarly around 20% higher than those observed at night-time, which again is 
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reflected in these two parameters being the largest contributors to dissimilarity levels between 

those respective time-period groups. Changes in depth between the time-period groups were 

of a smaller magnitude but indicate an approximate doubling of depth during the night-time 

to 80 m from an average day-time depth of 40 m. Depth during dusk and dawn was 

intermediate between these two values.  

 

DISCUSSION 

We considered how depth and the structure of open-ocean swarms of the Antarctic krill 

altered over diel cycles. Our approach was, firstly, to perform non-parametric multivariate 

analyses on a number of measures of swarm structure, as well as swarm depth, to determine if 

there were any natural relationships between these swarm descriptors. We then investigated 

in what ways these relationships altered over the course of the diel cycle. Considered 

individually, each of the swarm descriptors exhibited a rather complex pattern of change and 

variability over the course of the 24-hour cycle. The multivariate analyses identified 

relationships between these swarm descriptors and the ways in which these relationships 

altered at key periods of the diel cycle. Our study revealed that when swarm descriptors are 

considered in combination, krill exhibit some relatively coherent diel behavioural patterns.  

Vertical migration  

In terms of the depth distribution of swarms, we observed a pattern of reverse migration with 

swarms being closer to the surface during the day compared to at night, and dusk and dawn 

having intermediate depths. The difference in day and night depths was nevertheless around 

40 m, with average swarm depth during night being around 80 m whereas in the day it was 

around 40 m but with a much larger degree of variability. Although small in relation to total 

ensonified volume, this depth change may still be quite an important difference to air-

breathing predators (Croxall et al., 1988, Boyd et al., 1994). The dusk and dawn levels of 
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variability were similar to night-time, with average depths of around 50 m and 70 m, 

respectively. One possibility is that swarms during night-time move out of the ensonified 

region and go either deeper than 250 m or shallower than 13 m. Demer & Hewitt (1995) 

found that krill biomass estimated from acoustic surveys dropped during night-time, most 

likely as a result of krill migrating above the depth of the echosounder transducer on the 

ship’s hull. Although this cannot be ruled out, one would expect at least the bottom parts of 

these swarms to be resolved by the echosounder. The vast majority of resolved swarms at 

night-time were well below the top 40 m, with very little evidence of swarms in the top few 

metres of the echograms. Similarly, if swarms did migrate below 250 m at this time, there 

was no indication of a transition to deeper depths in the hours of dusk and dawn, given that 

average swarm depths during these times were around 50 m and 70 m, respectively. A further 

possibility is that krill within swarms closer to the surface disperse to a level where they are 

no longer resolvable by the swarm detection algorithms. They may also be harder to detect 

nearer the surface because of the reduced sampling volumes closer to the transducer. 

Kalinowski & Witek (1983), in their spatially extensive study of Antarctic krill 

vertical migration patterns, found that, although the classical vertical migration pattern of 

descent at dawn and ascent at dusk was evident in the majority of regions, a reverse migration 

pattern was found around South Georgia. Marr (1962) and Everson (1982, 1983) also 

reported situations where there were distributions that were shallower during the day than at 

night. In all these case studies the reverse migration occurred in rather limited spatial regions. 

The reverse migrations we describe appear to occur over a wide region of the Scotia Sea as 

well as the offshore regions close to South Georgia, a considerably greater geographic region 

than considered in any previous studies.  

Across the realm of pelagic organisms, reverse DVM has mainly been reported for 

smaller species, such as copepods, predated on by tactile predators such as ctenophores that 
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are themselves avoiding predation by high-performance visual hunters (Ohman, 1990; Frost 

& Bollens, 1992). Tactile predation is not known to be a major source of mortality in 

Antarctic krill populations. Another source of non-visual predation, however, is from baleen 

whales, which locate their prey acoustically. Willis (2007, 2014) considered the potential 

impact of increasing levels of whale predation on krill behaviour using state-dynamic trade-

off models. He assumed that whales may present an equal if not greater threat in the deeper 

layers as they do at the surface and, accordingly, the models predicted that krill would spend 

a greater period of time in the surface layers when whales became the dominant source of 

mortality. This does not explain, however, why distributions become deeper during the night. 

Satiation sinking during the hours of darkness may contribute to deeper average night-

time distributions and potentially a drop in the overall biomass contained within swarms as 

they tend towards less aggregated formations. Tarling & Thorpe (2017) identified diel 

changes in downward velocities imparted by krill swarms, which they interpreted as an 

indication of greater levels of satiation sinking during night-time. Assuming that feeding 

increases as soon as light levels drop, a descent in swarm depth may result through the 

sinking of individuals within swarms and possibly a shrinkage in swarm size as individuals 

on the peripheries descend beyond the body of the swarm. It is also expected, however, that 

individuals return to the surface layers once digestion has taken place in order to resume 

feeding (Pearre, 2003). The mixed layer throughout much of the Scotia Sea is relatively deep, 

ranging between 40 m and 106 m, with euphotic depths that can reach beyond 80 m (Korb et 

al., 2012) and deep chlorophyll-a maximum levels sometimes between 70 m and 90 m 

(Holm-Hansen et al., 2004). Thus, a return to the surface may not be strictly necessary since 

krill swarms may be capable of feeding as successfully in their deeper night-time positions of 

around 80 m as in the shallower positions they occupy during the day.  

Swarm-descriptor relationships  
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To consider the complexities of the individual patterns of diel variability in swarm-descriptor 

values, we invoked non-parametric multivariate analytical techniques. These analyses were 

carried out in two stages, the first establishing relationships between swarm descriptors and 

the second considering how these relationships changed on an hourly basis over the diel 

cycle. At the first level, it was apparent that there were significant differences between certain 

pairs of parameters, with perimeter paired with area being significantly different to length 

paired with depth, and both these being significantly different to packing concentration paired 

with thickness. At the second level, what emerged was a pattern of clustering according to the 

four cardinal periods of the diel cycle, namely day-time, dusk, night-time, and dawn. In 

essence, time of day had a large effect on how each swarm descriptor related to its partner as 

well as to other swarm descriptors. In the day-time group, which contained by far the longest 

period of time (0600 to 0000 h GMT, a total of 18 h), the relationships remained similar to 

those established across the entire dataset. The structure of these relationships was 

nevertheless quite different at night-time as well as at dusk and dawn.  

Further insight into how swarm-descriptor relationships alter over diel cycles was 

given by SIMPER analysis, which identified those swarm descriptors that are responsible for 

the greatest levels of dissimilarity between respective groups. Perimeter, area, and packing 

concentration were found to be the most dissimilar between the four cluster groups (day, 

dusk, night, and dawn). Specifically, the major response between the day-time and night-time 

groups was an alteration in swarm area and perimeter. Meanwhile, during both dusk and 

dawn, packing concentration appeared to make a major contribution to dissimilarity levels.  

There appears to be two major changes regarding the day-to-night difference in the 

area-to-perimeter relationship. Firstly, both of these swarm descriptors become considerably 

smaller in the night-time group, being around 20% of average day-time values. Secondly, the 

relative relationship alters, with perimeter increasing in relation to area during the night. 
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Night-time swarms thus decrease in size and adopt an alternative shape compared to those 

typical of day-time.  

The occurrence of smaller swarms during the night than during the day suggests that 

swarms break up into smaller units during night-time. The break up and dispersion of swarms 

during night-time has been previously reported by Everson (1982, 1983) in waters around 

South Georgia, while Zhou & Dorland (2004) reported that swarms in Crystal Sound, 

Antarctic Peninsula, were smaller during the night than during the day. The increased 

perimeter-to-area relationship indicates that either swarm shape has changed or the edge of 

the swarm has become more intricate (or rough). Shapes that increase perimeter relative to 

area generally involve elongation of one axis relative to another, but neither length nor 

thickness altered in a manner consistent with such a pattern and, in fact, length became 

shorter during the night. It thus appears that the swarm edge became rougher in night-time 

swarms. This could be in response to a relaxation of threat of predation, allowing individuals 

to aggregate more loosely and increasing roughness at the swarm edge, as modelled by 

Brierley & Cox (2010). Individuals may also be feeding more actively at night and 

performing satiation sinking (see above). Rougher perimeters may also result from 

individuals at the swarm edges increasing nearest neighbour distances to operate their feeding 

baskets.  

The second-stage analysis also identified a significant crepuscular response, where 

swarm-descriptor values during dusk and dawn appeared to be very different to those during 

day and night. Probably the most dramatic change was in packing concentration which 

increased from average values of around 25 individuals m–3 during both day and night to 

values that were, on average, 75 and 150 individuals m–3 at dusk and dawn, respectively. One 

potential explanation is that the acoustic target strength of the krill changed between the 

different phases of the day as a result of changed orientation of the krill relative to the 
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echosouder. This was invoked by Everson (1982) in relation to an 8 dB difference between 

day-and-night values of a krill patch monitored continuously for five days. Demer & Hewitt 

(1995) considered changed orientation to be responsible for high densities which occurred a 

few hours after sunrise and shortly prior to sunset. How orientation changes at dusk and dawn 

to affect target strength nevertheless remains unknown.  

The higher estimated packing concentrations during dusk and dawn may otherwise be 

an accurate reflection of smaller nearest-neighbour distances within krill swarms during those 

periods. Such behaviour is consistent with greater levels of predation threat (Olson et al., 

2013), which may occur during the intermediate light levels of the crepuscular periods. From 

a predator’s perspective, intermediate light conditions are antipredation windows when light 

is sufficient for planktivorous fishes to locate prey but insufficient to render these fishes 

vulnerable to piscivores. For instance, in considering the interaction between the Arctic 

euphausiid Thysanoessa inermis (Krøyer, 1846), and the planktivorous fishes, the Norway 

pout Trisopterus esmarkii (Nilsson, 1855) and Maurolicus muelleri (Gmelin, 1789), 

Kaartvedt et al., (1996) found that their relative vertical distributions changed across a front 

where levels of light attenuation changed abruptly. Planktivores were more likely to be found 

in the krill layers in the intermediate light levels on one side of the front, where they could 

presumably feed at less risk from their predators. Myctophid fishes are known to feed on 

Antarctic krill (Saunders et al., 2015) and are themselves a major dietary item of penguins 

and seals (Cherel et al., 2010), making crepuscular periods potentially key times for 

myctophids to feed on their prey. In turn, the antipredation response of krill may drive the 

more densely packed formations observed at these times. 

Swarming and DVM as a dual strategy  

The diel cycle of light is probably the most predictable environmental change that pelagic 

animals experience, yet there has been very little consensus between Antarctic-krill studies 
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about the diel response of these organisms (Everson, 1983, Morris & Ricketts, 1984, 

Godlewska, 1996). Here we considered whether a robust diel behavioural cycle could be 

revealed through assessing both DVM and swarming as part of a dual strategy in balancing 

the trade-off between predation threat and individual physiological needs. Our approach was 

to consider swarming through the inclusion of multiple variables measuring size, shape, and 

the concentration of individuals. The depth at which the swarm resides was not given special 

status but considered as just one further swarm descriptor that was added to the matrix of 

possible diel responses. The data suggested that krill behaviour varied over the course of the 

diel period, and that these changes in behaviour were reflected in a clear diel change in the 

ways in which the combination of these swarm descriptors related to each other. The analysis 

was also able to identify the swarm properties that varied the most to this diel response, with 

area, perimeter, and packing concentration being the most dissimilar between the four phases 

of diel cycle. Although a diel change in depth was apparent, with swarms appearing to be 

shallower during the day than at night, its total range was rather small (around 40 m) and the 

day-time depth showed considerable variability. DVM made only a minor contribution to the 

repertoire of krill swarm behaviour over the diel cycle. As an overall strategy, it thus appears 

that Antarctic krill within swarms exhibit a distinct diel response that is dominated by the 

swarm size, the roughness of the swarm-edge, and how regularly they are organised within 

the swarm. Depth can often be highly variable and appears to be only a secondary contributor 

to the diel response. 
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Table 1. Swarm descriptors with the greatest percentage contributions to average (SD) 

dissimilarity between respective time-period groups. The top two contributors to dissimilarity 

are shown for each time period group as well as Depth, which is included for comparative 

purposes.  

 

Swarm descriptor Average 
dissimilarity (SD) 

Contribution 
% 

Rank 

Time-period group        Night vs Dawn 
Individuals m–3 2.57 (0.47) 43.63 1st 
Area 1.51 (0.65) 25.55 2nd 
Depth 0.49 (0.75) 8.35 4th  

       Night vs Day 
Area 3.23 (0.25) 38.11 1st 
Perimeter 2.82 (0.25) 33.32 2nd 
Depth 0.57 (0.76) 6.74 5th   

       Dawn vs Day 
Area 3.05 (0.25) 32.57 1st 
Perimeter 2.60 (0.23) 27.79 2nd  
Depth 0.41 (0.65) 4.33 5th   

      Night vs Dawn 
Area 1.63 (0.48) 26.12 1st 
Individuals m–3 1.62 (0.49) 25.93 2nd 
Depth 0.65 (0.82) 10.37 5th  

      Dawn vs Dusk 
Individuals m–3 2.69 (0.53) 39.14 1st 
Area 1.63 (0.51) 23.65 2nd 
Depth 1.35 (0.74) 7.14 5th  

       Day vs Dusk 
Area 3.34 (0.26) 34.51 1st 
Perimeter 3.27 (0.28)  33.73 2nd 
Depth 0.33 (0.62) 3.38 5th  
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Table 2. Average (95% CI) values for swarm descriptors in each of the 4 time-period groups.  

 

 

 

 

 

 

 

 

 

 

 

Time-period 
groups 

Number 
of swarms 

Depth (m) Length (m) Thickness (m)   Perimeter (m) Area (m2) Individuals m-3 

Night 190 
79.87 
(8.41) 

46.24 
(4.94) 

5.65 
(0.67) 

217.40 
(36.98) 

103.60 
(24.74) 

32.49 
(18.13) 

Dawn 58 
64.58 

(12.88) 
42.06 
(5.04) 

6.63 
(1.30) 

199.01 
(39.25) 

127.78 
(45.75) 

158.63 
(109.92) 

Daytime 3779 
38.37 
(0.87) 

107.94 
(14.50) 

6.62 
(0.23) 

717.01 
(155.08) 

540.28 
(146.79) 

26.09 
(2.16) 

Dusk 103 
45.21 
(8.18) 

76.88 
(31.70) 

4.64 
(0.72) 

263.45 
(108.74) 

128.72 
(71.10) 

77.07 
(34.60) 
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Figure legends 

Figure 1. Cruise track along which swarm identification was performed. The locations of 

swarms of Euphausia superba used in our analyses are marked with circles. Bathymetry is 

shaded in 1000 m intervals. The mean sea ice edge during January and February 2003 is 

marked (dashed line); SG is South Georgia, AP, Antarctic Peninsula  

Figure 2. Schematic diagram of the second-stage multivariate analysis procedure, following 

Clarke et al., (2006). The first stage considers the dissimilarity between swarm descriptors 

across all time periods. The second-stage analysis produces an nMDS plot that summarises 

the concordance in pattern of time periods with similar relationships between swarm 

descriptors.  

Figure 3. Scatter plots of each of the swarm-descriptor variables against each other. Swarm- 

descriptor data have been pre-treated with a fourth root transformation.  

Figure 4. Hierarchical cluster analysis of swarm-descriptor variables over the entire datasets 

of swarms, using group average linkage. Red lines indicate significant linkages in the data 

structure, as determined by a SIMPROF test (Primer version 7.0.11). 

Figure 5. Non-metric multi-dimensional scaling (nMDS) on swarm-descriptor variables over 

the entire dataset of swarms using a Kruskal fit formula to minimise stress in the projections. 

The nMDS is overlaid by ellipsoids representing significant linkages in the data structure 

identified by a SIMPROF test (Primer version 7.0.11). 

Figure 6. Non-metric multi-dimensional scaling (nMDS) of a second-stage analysis (Clarke 

et al.,, 2006) formulated within Primer (version 7.0.11) on swarm descriptor variables split 

into hourly intervals and each analysed to determine resemblance matrices. A Kruskal fit 

formula was used to minimise stress in the projections. The nMDS represents a subsequent 

analysis of these matrices, based on the generation of a further resemblance matrix 
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considering levels of similarity between each hourly interval. The plot is superimposed by 

ellipsoids which represent the level of correlation separating the main clusters in an 

accompanying hierarchical cluster analysis (87%). Numbers refer to hourly intervals, which 

are in GMT. Local noon was 1500 h, local midnight 0300 h.  

Figure 7. Non-metric multi-dimensional scaling (nMDS) of swarm-descriptor variables using 

a Kruskal fit formula to minimise stress in the projections. The original data set was split into 

four time-period groups based on the outcome of the second-stage analysis, namely day-time 

(0600–0000 h), dusk (0100 h), night-time (0200–0400 h), and dawn (0500 h). Each of the 

nMDS plots is superimposed by ellipsoids representing significant linkages in the data 

structure identified by a SIMPROF test (Primer version 7.0.11).  

Figure 8. Mean and 95% confidence intervals of the swarm descriptors for swarms occurring 

within each time-period group.  
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