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A B S T R A C T

Siphonophores are a diverse group of hydrozoans (Cnidaria) that are found at most depths of the ocean - from
the surface, like the familiar Portuguese man of war, to the deep sea. They play important roles in ocean eco-
systems, and are among the most abundant gelatinous predators. A previous phylogenetic study based on two
ribosomal RNA genes provided insight into the internal relationships between major siphonophore groups. There
was, however, little support for many deep relationships within the clade Codonophora. Here, we present a new
siphonophore phylogeny based on new transcriptome data from 29 siphonophore species analyzed in combi-
nation with 14 publicly available genomic and transcriptomic datasets. We use this new phylogeny to re-
construct several traits that are central to siphonophore biology, including sexual system (monoecy vs. dioecy),
gain and loss of zooid types, life history traits, and habitat. The phylogenetic relationships in this study are
largely consistent with the previous phylogeny, but we find strong support for new clades within Codonophora
that were previously unresolved. These results have important implications for trait evolution within
Siphonophora, including favoring the hypothesis that monoecy arose at least twice.

1. Introduction

Siphonophores (Figs. 1 and 2) are among the most abundant gela-
tinous predators in the open ocean, and have a large impact on ocean
ecosystems (Choy et al., 2017; Pagès et al., 2001; Pugh, 1984; Pugh
et al., 1997; Purcell, 1981; Williams and Conway, 1981). Siphono-
phores, which belong to Hydrozoa (Cnidaria), are found at most depths
in the ocean, with the deepest recorded species found around 4,300m
(Lindsay, 2005). The most familiar species is the Portuguese man of war
Physalia physalis, which floats at the surface and can wash up con-
spicuously onto beaches (Totton, 1960). Most species are planktonic,
living in the water column, where some grow to be more than 30m in

length (Mackie et al., 1987). There is also a small clade of benthic si-
phonophores, Rhodaliidae, that are tethered to the bottom for part of
their lives (Pugh, 1983). There are currently 187 valid described si-
phonophore species (Schuchert, 2018).

Siphonophores remain poorly known, in large part because they are
fragile and difficult to collect. They have, however, been of great in-
terest for more than 150 years due to their unique structure and de-
velopment (Mackie et al., 1987; Mapstone, 2014). Like many other
cnidarians, they are colonial: they grow by incomplete asexual re-
production. Each colony arises from a single embryo that forms the
protozooid, the first body. One or two growth zones (Fig. 2) then arise
and asexually produce other genetically identical zooids that remain
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attached (Carré, 1967, 1969; Carré and Carré, 1991, 1993). In some
species additional zooids are added outside the growth zone along the
siphosomal stem (Siebert et al., 2013). The zooids are each homologous
to a solitary animal, but are physiologically integrated (Dunn and
Wagner, 2006; Mackie et al., 1987; Totton, 1965). Siphonophores differ
significantly from other colonial animals in their colony structure and
development – their zooids are highly functionally specialized and ar-
ranged in precise, repeating, species-specific patterns (Beklemishev,
1969; Cartwright and Nawrocki, 2010). Zooids are specialized for a
range of functions, including feeding, reproduction, or swimming
(Fig. 2) (Dunn and Wagner, 2006).

Understanding the unique ecology, morphology, and development
of siphonophores requires a well-resolved phylogeny of the group. The
relationship of siphonophores to other hydrozoans has been difficult to
determine (Cartwright et al., 2008; Cartwright and Nawrocki, 2010;
Kayal et al., 2013, 2015, 2018; Zapata et al., 2015), but there has been
progress on their internal relationships. A phylogeny (Dunn et al.,
2005) based on two genes (16S, 18S) from 52 siphonophore taxa ad-
dressed several long standing questions about siphonophore biology,
including the relationships of the three historically recognized groups,
Cystonectae, Physonectae, and Calycophorae. Cystonectae was found to
be sister to all other siphonophores, while Calycophorae were nested

within “Physonectae”. The name Codonophora was given to this clade
of “Physonectae” and Calycophorae (Dunn et al., 2005).

Major questions remained after this early work, though. In parti-
cular, there was little support for important deep relationships within
Codonophora. Understanding these relationships is key to resolving the
evolution of several traits of importance, including sexual systems
(monoecy versus dioecy) and the gain and loss of particular zooids,
such as palpons (Fig. 2). Here we present a broadly sampled phyloge-
netic analysis of Siphonophora that considers transcriptomic data from
33 siphonophore species and 10 outgroup species (2 outgroups were
subsequently excluded due to poor sampling). Using 1,423 genes, we
find strong support for many relationships found in the earlier phylo-
geny (Dunn et al., 2005), and also provide new resolution for key re-
lationships that were unresolved in that previous study. Using this
phylogeny, we reconstruct the evolutionary history of characters cen-
tral to the unique biology of siphonophores, including zooid type, life
history traits, and vertical habitat use.

2. Material and methods

All scripts for the analyses are available in a git repository at
https://github.com/caseywdunn/siphonophore_ phylogeny_2017. The

Fig. 1. Photographs of living siphonophores.
Colored circles correspond to the clades shown
in Fig. 3 as follows: Cystonectae (A and B), Ca-
lycophorae (C–G), Apolemiidae (H), and Clade A
within Euphysonectae (I-K). (A) Rhizophysa ey-
senhardtii, scale bar= 1 cm. (B) Bathyphysa con-
ifera, scale bar= 2 cm. (C) Hippopodius hippopus,
scale bar= 5mm. (D) Kephyes hiulcus, scale
bar= 2mm. (E) Desmophyes haematogaster, scale
bar= 5mm. (F) Sphaeronectes christiansonae,
scale bar= 2mm. (G) Praya dubia, scale
bar= 4 cm. (H) Apolemia sp., scale bar= 1 cm.
(I) Lychnagalma utricularia, scale bar= 1 cm. (J)
Nanomia sp., scale bar= 1 cm. (K) Physophora
hydrostatica, scale bar= 5mm. Photo credits: S.
Siebert (C,H,I,K), S. Haddock (A,D,E,F), R.
Sherlock (B), MBARI (G), C. Munro (J). (For in-
terpretation of the references to colour in this
figure legend, the reader is referred to the web
version of this article.)
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most recent commit at the time of the analysis presented here was
1501118c with tag “paper_v2”.

2.1. Collecting

Specimens were collected in the north-eastern Pacific Ocean,
Mediterranean, and the Gulf of California (see Table 1). Collection data
on all examined specimens, a description of the tissue that was sampled
from the colony, collection mode, sample processing details, mRNA
extraction methods, sequencing library preparation methods, and se-
quencing details are summarized in the file Supplementary data 1 (also
found in the git repository). Monterey Bay and Gulf of California spe-
cimens were collected by remotely operated underwater vehicle (ROV)
or during blue-water SCUBA dives. Chelophyes appendiculata and Hip-
popodius hippopus (Fig. 1C) specimens were collected in the bay of
Villefranche-sur-Mer, France, during a plankton trawl on 13 April 2011.
Available physical vouchers have been deposited at the Museum of
Comparative Zoology (Harvard University), Cambridge, MA, the Pea-
body Museum of Natural History (Yale University), New Haven, CT, or
had been previously deposited at the Smithsonian National Museum of
Natural History, Washington, DC. Accession numbers are given in
Supplementary data 1. In cases where physical vouchers were un-
available we provide photographs to document species identity (see git
repository: https://github.com/caseywdunn/siphonophore_phylogeny_
2017/tree/master/supplementary_info/photographic_vouchers).

2.2. Sequencing

When possible, specimens were starved overnight in filtered sea-
water at temperatures close to ambient water temperatures at the time
of specimen collection. Subsequently, mRNA was extracted directly
from tissue using a variety of methods (Supplementary data 1):
Magnetic mRNA Isolation Kit (NEB, #S1550S), Invitrogen Dynabeads
mRNA Direct Kit (Ambion, #61011), Zymo Quick RNA MicroPrep

(Zymo #R1050), or from total RNA after Trizol (Ambion, #15596026)
extraction and through purification using Dynabeads mRNA
Purification Kit (Ambion, #61006). In case of small total RNA quan-
tities, only a single round of bead purification was performed.
Extractions were performed according to the manufacturer’s instruc-
tion. All samples were DNase treated (TURBO DNA-free, Invitrogen
#AM1907; or on column DNase treatment with Zymo Quick RNA
MicroPrep). Libraries were prepared for sequencing using the Illumina
TruSeq RNA Sample Prep Kit (Illumina, #FC-122-1001, #FC-122-
1002), the Illumina TruSeq Stranded Library Prep Kit (Illumina, #RS-
122-2101) or the NEBNext RNA Sample Prep Master Mix Set (NEB,
#E6110S). We collected long read paired end Illumina data for de novo
transcriptome assembly. In the case of large tissue inputs, libraries were
sequenced separately for each tissue, subsequently subsampled and
pooled in silico. Libraries were sequenced on the HiSeq 2000, 2500, and
3000 sequencing platforms. Summary statistics for each library are
given in the file Supplementary data 2. All sequence data have been
deposited in the NCBI sequence read archive (SRA) with Bioproject
accession number PRJNA255132.

2.3. Analysis

New data were analysed in conjunction with 14 publicly available
datasets (Chapman et al., 2010; Dunn et al., 2013; Fidler et al., 2014;
Lehnert et al., 2012; Philippe et al., 2009; Putnam et al., 2007; Sanders
and Cartwright, 2015; Sanders et al., 2014; Zapata et al., 2015), with a
total number of 43 species. Sequence assembly, annotation, homology
evaluation, gene tree construction, parsing of genes trees to isolate
orthologous sequences, and supermatrix construction were conducted
with Agalma (commit 6bd9988, running BioLite commit 784edc6)
(Dunn et al., 2013; Guang et al., 2017). This workflow integrates a
variety of existing tools (Altschul et al., 1990; Enright et al., 2002;
Grabherr et al., 2011; Katoh and Standley, 2013; Langmead and
Salzberg, 2012; Li and Dewey, 2011; Li et al., 2009; Sukumaran and
Holder, 2010; Talavera and Castresana, 2007) and new methods.

Two outgroup species, Atolla vanhoeffeni and Aegina citrea, were
removed from the final supermatrix due to low gene occupancy (gene
sampling of 17.0% and 17.3% respectively in a 60% occupancy matrix
with 3379 genes). The final analyses presented here consider 33 si-
phonophore species and 8 outgroup species. This includes new data for
30 species. In the final analyses, we sampled 1,423 genes to generate a
supermatrix with 80% occupancy and a length of 395,699 amino acids
(Fig. S1).

We used ModelFinder (Kalyaanamoorthy et al., 2017), as im-
plemented in IQTree v1.6.3 (Nguyen et al., 2015), to assess relative
model fit. ModelFinder selected JTT+Empirically counted frequencies
from alignment+ FreeRate model with 7 categories based on the
Bayesian Information Criterion. To assess the robustness of our results,
we conducted phylogenetic analyses using multiple software programs,
methods (Maximum likelihood (ML) and Bayesian Inference (BI)), and
models (including the model selected by ModelFinder and several other
commonly used models). Maximum likelihood (ML) analyses were
conducted with RAxML v8.2.0 (Stamatakis, 2006) and IQTree v1.6.3
(Hoang et al., 2018; Nguyen et al., 2015). Bayesian Inference (BI) were
conducted with Phylobayes v. 1.7a-mpi (Lartillot et al., 2009). Se-
quence alignments, sampled and consensus trees, and voucher in-
formation are available in the git repository. Tree figures were rendered
with ggtree (Yu et al., 2016).

RAxML ML analyses were conducted on the unpartitioned super-
matrix using the WAG+Γ model of amino acid substitution (Fig. 3A).
RAxML bootstrap values were estimated using 1000 replicates. IQTree
ML analyses were run under JTT+Empirically counted frequencies
from alignment+ FreeRate model with 7 categories, the best model
identified by ModelFinder, and the commonly used models
GTR+Optimized base frequencies+ Free rate model with 6 categories
and WAG+Optimized base frequencies+ Free rate model with 6

Fig. 2. Schematic of the siphonophore Nanomia bijuga, oriented with the
anterior of the colony at the top of the page, and the ventral side to the left.
Adapted from http://commons.wikimedia.org/wiki/File:Nanomia_bijuga_
whole_animal_and_growth_zones.svg, drawn by Freya Goetz. (A) Overview of
the whole mature colony. (B) Inset of the pneumatophore and nectosomal
growth zone. A series of buds give rise to nectophores. (C) Inset of the sipho-
somal growth zone. Probuds subdivide to give rise to zooids in repeating units
(cormidia). The gastrozooid (specialized feeding polyp) is the posterior-most
zooid within each cormidium.
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categories (Fig. S10).
BI was conducted in phylobayes using two different models: fixed-

state WAG+Γ (Fig. S12) and CAT-Poisson (Fig. S11). Eight chains were
run under the CAT-Poisson model. Four chains were run under
WAG+Γ, these runs did not converge (maxdiff=1, mean-
diff=0.0130273). The CAT-Poisson runs did not converge (max-
diff=1, meandiff=0.0565898). Closer inspection revealed that chain
1 and chain 3 were stuck in local maxima with low likelihood relative
to other chains after 1,405 and 4,695 iterations. These two chains were
excluded from the analyses, and the results presented here are based on
the remaining 6 CAT-Poisson chains (maxdiff=1, mean-
diff=0.0185032). Visual inspection of the traces indicated that a burn
in of 400 trees was sufficient for all CAT-Poisson runs. This left 17,893
trees in the CAT-Poisson posterior.

We used the Swofford-Olsen-Waddell-Hillis (SOWH) test (Swofford
et al., 1996) to evaluate two hypotheses (Fig. 3C, S2): (i) “Physonectae”
is monophyletic (Totton, 1965); (ii) monoecious species are mono-
phyletic (Dunn et al., 2005). The sexual mode of Rudjakovia is un-
described, but preliminary observations suggest that they are mono-
ecious, so we include Rudjakovia as a monoecious species in this test.
We used SOWHAT (Church et al., 2015a) dev. version 0.39 (commit
fd68ef57) to carry out the SOWH tests in parallel, using the default
options and an initial sample size of 100 (analysis code can be found in
the git repository). For each hypothesis we defined a topology with a

single constrained node that was inconsistent with the most likely to-
pology (Fig. 3). We used a threshold for significance of 0.05 and fol-
lowing the initial 100 samples, we evaluated the confidence interval
around the p-value to determine if more samples were necessary.

Morphological character data used in trait mapping were obtained
from the literature or direct observation of available voucher material.
Depth distribution data were queried from the MBARI VARS database
(http://www.mbari.org/products/research-software/video-annotation-
and-reference-system-vars/) (Schlining and Stout, 2006). We used sto-
chastic character mapping to infer the most probable evolution of traits
on the tree in R using the phytools package (Huelsenbeck et al., 2003;
Revell, 2012). For continuous character traits, model fit was tested
using fitContinuous in the geiger R package. Subsequent analyses were
conducted in R and integrated into this manuscript with the knitr
package. See Supplementary Information for R package version num-
bers.

3. Results and discussion

3.1. Species phylogeny and hypothesis testing

The phylogenetic relationships recovered in this study received
strong support across analysis methods (Fig. 3A), with a couple of lo-
calized exceptions (Fig. 3B and S11). All of the ML analyses were

Table 1
A complete list of specimens used in this work, information from already published datasets added where available. New data indicated by Y, blank fields indicate
that data were already published. For the species not on SRA, a link to the data is included in supplementary data 1.

New data Species Depth (m) Lat Lon SRA Number

Y&N Nanomia bijuga 414/387 36.60 N 122.15 W SRR1548376;SRR1548377;SRR871527
Y Bargmannia elongata 412/805/636/818 36.12 N 122.67 W SRR1548343–47
Y Frillagalma vityazi 407 36.69 N 122.05 W SRR1548362;SRR1548363;SRR1548364
Y Apolemia rubriversa 767 36.70 N 122.05 W SRR1548342
Y Chelophyes appendiculata 3–20 43.696 N, 7.308 E SRR1548354
Y Chuniphyes multidentata 327 36.79 N 122.00 W SRR1548355
Y Cordagalma sp 252 36.70 N 122.06 W SRR1548356
Y Erenna richardi 1044 36.61 N 122.38 W SRR1548360
Y Forskalia asymmetrica 253 36.80 N 122.00 W SRR1548361
Y Hippopodius hippopus 3–20 43.69 N 7.315 E SRR1548371
Y Kephyes ovata 452 36.36 N 122.81 W SRR1548372
Y Lilyopsis fluoracantha 320 36.69 N 122.04 W SRR1548373
Y Lychnagalma utricularia 431 36.69 N 122.04 W SRR1548374
Y Marrus claudanielis 1427 36.07 N 122.29 W SRR1548375
Y Undescribed sp. L 1463 36.70 N 122.57 W SRR1548381
Y Desmophyes sp. 1363 35.48 N 123.64 W SRR1548358
Y Resomia ornicephala 322 35.48 N 123.86 W SRR1548382
Y Rhizophysa filiformis 10 27.23 N 110.46 W SRR1548383
Y Stephalia dilata 3074 35.62 N 122.67 W SRR1548384
Y Apolemia lanosa 1073 36.70 N 122.08 W SRR6512857
Y Apolemia sp 461 36.60 N 122.15 W SRR6512854
Y Bargmannia amoena 1251 36.70 N 122.08 W SRR6512862
Y Bargmannia lata 1158 36.067 N 122.30 W SRR6512863
Y Rudjakovia sp 334 36.00 N 122.42 W SRR6512851
Y Stephalia sp 3255 36.39 N 122.67 W SRR6512855
Y Physophora gilmeri 242 36.36 N 122.40 W SRR6512853
Y Halistemma rubrum 313 24.68 N 109.90W SRR6512852
Y Athorybia rosacea 3–20 22.92 N 108.36 W SRR6512856
Y Diphyes dispar 3–20 35.93 N 122.93 W SRR6512850;SRR6512858–61;SRR6512864;SRR6512867–68

Agalma elegans 3–20 35.56 N 122.55 W SRR6512865;SRR6512866
Physalia physalis 0 13.831 N 129.943 W SRR871528
Abylopsis tetragona 3–20 43.696 N, 7.308 E SRR871525
Aegina citrea 36.697177 N 122.054095 W SRS893439
Aiptasia pallida SRR6967; SRR6967; SRR6967
Alatina alata 12.151891 N 68.278002 W SRR1952741
Atolla vanhoeffeni 36.707311 N 122.061062 W SRR1952729
Clytia hemisphaerica 43.696 N, 7.308 E N/A
Ectopleura larynx SRR923510
Hydra magnipapillata N/A
Hydractinia symbiolongicarpus SRX474878
Nematostella vectensis N/A
Podocoryna carnea SRR1266262
Craseoa lathetica 1530 SRR871529
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congruent with each other, regardless of model and software used (Fig.
S10). These ML results were also congruent with the Phylobayes BI
WAG+Γ analyses (Fig. S12). The Phylobayes BI CAT-Poisson result
(Fig. S11), however, had a strongly supported topology that differed
(Fig. 3B) from the ML topology in localized regions as described below.
The fact that the Phylobayes BI WAG+Γ is consistent with the WAG
(and other) ML analyses suggests that the different topology recovered
in the Phylobayes BI CAT-Poisson analyses is due to the different model
rather than different software or methods. Here we take the con-
servative approach of considering relationships that differ between the
Phylobayes BI CAT-Poisson analyses and other analyses to be un-
resolved.

Most clades are consistent with those found in a previous study
based on two genes (16S and 18S ribosomal RNA) (Dunn et al., 2005).
Relationships that receive strong support in both include the placement

of Cystonectae as sister to Codonophora (the clade that includes all
other siphonophores), the placement of Apolemiidae as sister to all
other codonophorans, and the placement of Calycophorae within the
paraphyletic “Physonectae”. Multiple nodes that were not resolved in
the previous two-gene analysis receive strong support in the present
1,423-gene transcriptome analyses. There is strong support for Pyr-
ostephidae as sister to all other non-apolemiid codonophorans. We
provisionally refer here to Pyrostephidae as the clade including Rud-
jakovia sp., although sampling of Pyrostephos vanhoeffeni is needed in
order to determine if Rudjakovia sp. falls within Pyrostephidae or is
sister to it. Within the clade that is sister to Pyrostephidae, we find two
main clades, Calycophorae and a clade we here name Euphysonectae
(Fig. 3A). It includes the remaining non-apolemiid, non-pyrostephid
“Physonectae”. We define Euphysonectae as the clade consisting of
Agalma elegans and all taxa that are more closely related to it than to
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Diphyes dispar.
In ML analyses and BI WAG analyses, Euphysonectae consists of two

reciprocally monophyletic groups that we here provisionally refer to as
Clade A and Group B (Fig. 3A). In BI CAT-Poisson analyses, Group B is
paraphyletic (Fig. 3B). The presence of an involucrum, a fold around
the base of the cnidoband (Totton, 1965), is a potential synapomorphy
for Clade A. Species of Clade A also have a descending mantle canal
within the nectophores (Figs. S6 and S18), a structure that is also
present in some calycophorans. Members of Clade A are also mono-
ecious (Fig. 5). There is not a clear synapomorphy for Group B. Within
Group B there is high support for the placement of Erenna richardi in ML
analyses and BI WAG (Figs. 3 and S12), but it is placed as sister to Clade
A in BI CAT-Poisson analyses (Fig. 3B). More taxon sampling will be
required to determine the relationship of species within this group.

Within Clade A, Physophora gilmeri along with Lychnagalma utricu-
laria (Fig. 1I) (both not included in the previous phylogeny) are sister to
Agalmatidae, a clade restricted to Agalma, Athorybia, Melophysa, Ha-
listemma and Nanomia (Dunn et al., 2005; Pugh, 2006). In the rDNA
study, P. hydrostatica (the presumed sister species to P. gilmeri) was
sister to Forskaliidae with low support. The position of Cordagalma
cordiforme (=C. ordinatum) (Pugh, 2016) was previously unresolved,
while in this analysis Cordagalma sp. is in a clade with Forskalia asym-
metrica, falling outside of Agalmatidae. Placement of Cordagalma

outside Agalmatidae is consistent with previous analyses of molecular
and morphological data (Dunn et al., 2005; Pugh, 2006).

Within Calycophorae, taxon sampling is less comprehensive here
than in the previous study. The caly cophoran relationships that can be
investigated, however, are in broad agreement with the previous ana-
lysis. Calycophorans have in the past been split into two groups,
prayomorphs and diphyomorphs, based on morphology after Mackie
et al. (1987). As in the previous study, the results presented here in-
dicate that the prayomorphs are paraphyletic with respect to the di-
phyomorphs. In the previous study, the relationship between C. lathe-
tica and the clade including H. hippopus was unresolved. In this study,
Craseoa lathetica and Desmophyes sp. are sister to Hippopodius hippopus
in ML and BI-WAG analyses with high support, while in BI CAT-Poisson
analyses, H. hippopus is sister to Lilyopsis fluoracantha and the diphyo-
morphs (Figs. 3B and S11).

Using the Swofford-Olsen-Waddell-Hillis (SOWH) test (Swofford
et al., 1996), we evaluated the following two alternative phylogenetic
hypotheses against the most likely tree topology (Fig. 3C): (i) mono-
phyletic Physonectae, (ii) monophyletic monoecious siphonophores. In
both tests the alternative hypothesis was rejected (p-value < 0.01,
confidence interval: < 0.001–0.03, Fig. S2).

The broad taxon sampling and more extensive gene sampling of this
phylogeny provide new evidence for the relationships between major
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siphonophore clades within Codonophora, specifically between
Pyrostephidae, Calycophorae, and the newly named Euphysonectae.
This opens up new questions about key relationships within both
Calycophorae and Euphysonectae – where future transcriptome sam-
pling efforts should be focused. Within Euphysonectae, two clades
(Clade A and Group B) are hypothesized, although there is weaker
support for Group B (Fig. 3A and B). Expanding sampling of species that
probably fall in Group B, including other Erenna species, rhodaliids, and
relatives of Undescribed sp L, will greatly expand our understanding of
these two groups and perhaps provide evidence of Group B synapo-
morphies. Similarly, within Calycophorae, increased taxon sampling is
needed. This study, and the previous phylogenetic study (Dunn et al.,
2005), suggest that the prayomorphs are paraphyletic, but for slightly
different reasons given the different sampling of the analyses. In Dunn
et al. (2005), a clade of prayomorphs including Praya dubia (Fig. 1G),
Nectadamas diomedeae, and Nectopyramis natans (not included in this
study) were found to be sister to all other calycophorans, while in this
study, the prayomorph Lilyopsis fluoracantha (not included in the pre-
vious study) is found in a clade including diphyomorph calycophorans
that is sister to all other prayomorphs. Expanded transcriptome se-
quencing, particularly P. dubia or a nectopyramid, but also extensive
sampling across the major prayomorph and diphyomorph groups, will
expand our understanding of relationships within Calycophorae. This
will be especially important for understanding trait evolution within
Calycophorae, for example, the release of eudoxids (Fig. 4), or the ar-
rangement of male and female zooids along the stem (see Section 3.2
below).

3.2. Evolution of monoecy

In all siphonophores, each gonophore (sexual medusa that produces
gametes) is either male or female. Within each siphonophore species,
colonies are either monoecious (male and female gonophores are on the
same colony) or dioecious (male and female gonophores are on dif-
ferent colonies). Previous analysis suggested that the common ancestor
of siphonophores was dioecious, and was consistent with a single gain
of monoecy within Codonophora and no secondary losses (Dunn et al.,
2005). The better-resolved tree in the current analyses indicates that
the evolution of monoecy is more complicated than this. The two clades
of monoecious siphonophores, Calycophorae and Clade A (Fig. 3A), do
not form a monophyletic group. This is because Group B, which con-
tains dioecious species, is also descended from their most recent
common ancestor. The SOWH test strongly rejects the placement of the
monecious clades Calycophorae and Clade A as a group that excludes
Group B (Figs. 3C and S2). The positions of the only two taxa from
Group B that were included in the previous analysis (Dunn et al., 2005),
Erenna and Stephalia, were unresolved in that study. This difference in
conclusions regarding trait evolution, therefore, does not reflect a
contradiction between alternative strongly supported results, but the
resolution of earlier polytomies in a way that indicates there has been
homoplasy in the evolution of monoecy.

The distribution of monoecy is consistent with two potential sce-
narios (Fig. 4). In the first, there is a single shift from dioecy to monoecy
along the branch that gave rise to the most recent common ancestor of
Calycophorae and Euphysonectae, followed by a shift back to dioecy
along the branch that gave rise to Group B. In the second, monoecy
arose twice: once along the branch that gave rise to Clade A and again
along the branch that gave rise to Calycophorae.

Ancestral character state reconstructions favor the hypothesis that
monoecy arose twice (Figs. 5A and S13), once in Calycophorae and
once in Clade A. This is consistent with differences in the arrangements
of male and female gonophores in the two clades. In Clade A, male and
female zooids are found within the same cormidium (a single reiterated
sequence of zooids along the stem, see Fig. 2). In these species, the male
and female zooids are placed at different but well defined locations
within the cormidium. Meanwhile in calycophorans, each cormidium

bears either male or female gonophores. In this form of monoecy, the
male and female cormidia can either occur in an alternating pattern, or
there can be several male or female cormidia in a row. In either case,
male and female zooids are found at the same corresponding locations
within the cormidia. One known exception to this can be found in
abylid calycophorans, where both male or female gonophores may be
found within the same eudoxid (Carré, 1967). In sum, homoplasy in
sexual system evolution along with variation in the spatial arrangement
of gonophores within a colony suggest that siphonophores have evolved
different ways to be monoecious. The sexual system and cormidial ar-
rangement of Rudjakovia is undescribed, although preliminary ob-
servations suggest that this species may be monoecious and that
monoecy arose a third time in the Pyrostephidae. A detailed re-
description of Rudjakovia would help clarify this.

Both Calycophorae and Clade A have a large proportion of shallow
water species (see Section 3.6), suggesting that there may be an asso-
ciation between habitat depth and sexual mode. Similar independent
transitions from gonochorism (separate sex) to hermaphroditism (both
sexes in the same individual) have been identified in shallow-water
scleractinian corals (Anthozoa, Cnidaria) (Kerr et al., 2011). To test this
hypothesis, a more extensive taxon sampling of the Calycophorae is
needed.

Within Calycophorae there are additional variations of the sexual
mode: in Sulculeolaria (not included in this phylogeny) colonies appear
to present a single sex at a time. However they are monoecious and
protandrous, with female gonophores developing after the release of
male gonophores (Carré, 1979). Environmental influences may also
play a role in determining the expressed sex. Colonies of the calyco-
phoran Chelophyes appendiculata collected in the field always bear both
male and female gonophores, whereas when kept in culture only go-
nophores of one sex are maintained (Carré and Carré, 2000). This
suggests a high plasticity of the sexual state in some calycophoran taxa
and underlines the need for caution when evaluating the state of this
character in rarely collected species.

3.3. The evolution of zooid types

One of the most striking aspects of siphonophore biology is their
diversity of unique zooid types (Beklemishev, 1969; Cartwright and
Nawrocki, 2010). For example, Forskalia and other physonects have at
least 5 basic zooid types (nectophore, gastrozooid, palpon, bract, and
gonophore), and in some species, there can be nine zooid subtypes (4
types of bract, male & female gonophores) (Pugh, 2003). Here we re-
construct the evolutionary origins of several zooid types on the present
transcriptome-based tree (Fig. 4).

Nectophores (Fig. 2) are non-reproductive propulsive medusae. In
Codonophora, the nectophores are localized to a region known as the
nectosome (Fig. 2B), which has its own growth zone, and they are used
for coordinated colony-level swimming. Planktonic cystonects like
Bathyphysa sibogae and Rhizophysa filiformis (Fig. 1A) instead move
through the water column using repeated contraction and relaxation of
the stem, and in the case of B. sibogae, use modified flattened gastro-
zooids with wings (called ptera) to increase surface area and prevent
colony sinking (Biggs and Harbison, 1976). Nectophores are also pre-
sent within the gonodendra (reproductive structures) of cystonects, and
are thought to propel the gonodendra when they detach from the
colony (Totton, 1960, 1965). It is not clear whether the nectophores
found within the siphosome of the cystonects are homologous to the
nectophores borne on the nectosome of codonophorans. Similarly, the
homology of the special nectophore associated with gonophores of the
calycophoran Stephanophyes superba is also unclear (Chun, 1891). In
this study, we only consider the evolution of the nectosome, and not the
presence/absence of nectophores. The present analyses, as well as the
analyses of Dunn et al. (2005), are consistent with a single origin of the
nectosome (Figs. S5 and S17).

Within the nectosome, the nectophores can be attached along the
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dorsal or ventral side of the stem, following the orientation framework
of Haddock et al. (2005). The apparent placement of the nectophores on
opposite sides of the nectosome occurs through twisting of the stem
during development. Our ancestral reconstructions for this character
(Figs. S7 and S19) suggest that ventral attachment of nectophores was
the ancestral state in Codonophora, and that dorsal attachment has
independently evolved twice – once along the stem of Agalmatidae and
once along the stem of Pyrostephidae. The functional implication of
dorsal vs. ventral attachment is not clear.

Bracts are greatly reduced zooids unique to siphonophores, where
they are only present in Codonophora (Fig. 4). Bracts are functional for
protection of the delicate zooids and to help maintain neutral buoyancy
(Jacobs, 1937). Some calycophorans are able to actively exclude sulfate
ions in their bracts to adjust their buoyancy along the colony (Bidigare
and Biggs, 1980). Bracts were lost in Hippopodiidae, some clauso-
phyids, Physophora hydrostatica (Fig. 1K), and in Gymnopraia lapislazula.
These patterns of loss are not captured in this study, as most of these
species are not included in the present phylogeny. In species without
bracts, other zooids appear to fulfill the roles of buoyancy control and
protection. In P. hydrostatica, enlarged palpons surround all other si-
phosomal zooids and move in a coordinated manner to inflict a pow-
erful sting (Totton, 1965). While in Hippopodius hippopus the necto-
phores play a role in maintaining neutral buoyancy and possibly also in
defense, by bioluminescing and blanching in response to stimuli
(Fig. 1C shows the blanching of nectophores) (Bassot et al., 1978).

Palpons are typically defined as modified reduced gastrozooids
(Mackie et al., 1987). In many species palpons are thought to play a role
in digestion and circulation of the gastrovascular fluid, while other
species may use them for defense (e.g Physophora) or sensory functions
(Totton, 1965). Palpons are subcategorised based on their location -
palpons that are associated with gonodendra are termed gonopalpons
(typically with a reduced tentacle, called a palpacle); palpons found
along the stem of the siphosome are termed palpons (typically having a
palpacle); and palpons found along the stem of the nectosome are

termed nectosomal palpons (as in Apolemia) (Siebert et al., 2013;
Totton, 1965). It is not clear how structure and function differs among
different palpon subtypes, and a detailed histological investigation of
palpons found at different locations within species is needed. For this
reason, here we only assess the presence or absence of palpons as a
category, without assessing subtypes of palpons. This presumes that
palpons located at different regions in the colony are derived from other
palpons rather than each arising de novo by independent modification
of gastrozooids, a hypothesis that itself could be challenged upon closer
histological examination of palpon diversity.

We reconstruct palpons as present in the common ancestor of si-
phonophores (Figs. 5B and S14), retained in most species, but lost three
times independently in the branches leading to Bargmannia and Rud-
jakovia sp., in calycophorans, and in Marrus claudanielis and Un-
described sp. L. It remains to be clarified if small buds associated with
nectophores within the nectosome of Bargmannia species (Dunn, 2005)
actually correspond to reduced palpons. The pyrostephid Pyrostephos
vanhoeffeni (not sampled) has modified tentacle-less palpons (termed
oleocysts), but the relationship between this species and Rudjakovia sp.
is not yet known, so the exact patterns of loss within Pyrostephidae (here
provisionally including Rudjakovia sp.) remain unclear. Within the ca-
lycophorans, one species Stephanophyes superba (not included in this
phylogeny) has polyp-like zooids that have been described as palpons
(Totton, 1965), but the exact identity of this zooid is not clear and
needs further morphological examination.

3.4. The gain and loss of the pneumatophore

The pneumatophore (Fig. 2A) is a gas-filled float located at the
anterior end of the colony, which helps the colony to maintain its or-
ientation in the water column, and plays a role in flotation in the case of
the cystonects (Church et al., 2015b; Mackie, 1974; Totton, 1965). It is
not a zooid, as it is not formed by budding but by invagination at the
aboral end of the planula during early development (Carré, 1969;
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Garstang, 1946; Leloup, 1935). Recent descriptions of the neural ar-
rangement in the pneumatophore of Nanomia bijuga suggest it could
also gather information on relative pressure changes (and thus depth
changes), helping regulate geotaxis (Church et al., 2015b). The ances-
tral siphonophore had a pneumatophore (Fig. 2B), since both cystonects
and all “physonects” possess one (Fig. 4). The pneumatophore was lost
in Calycophorae and never regained in that clade. Calycophorans rely
on the ionic balance of their gelatinous nectophores and bracts to retain
posture and neutral buoyancy (Mackie, 1974).

3.5. The gain and loss of tentilla

Gastrozooids (specialized feeding polyps) have a single tentacle
attached to the base of the zooid that is used for prey capture (with the
exception of Physalia physalis, which has separate zooids for feeding and
prey capture, and rhodalids, where some tentacles are used to anchor to
the substrate and do not participate in feeding). As in other cnidarians,
stinging capsules, arranged in dense batteries of nematocysts, play a
critical role in prey capture. In many siphonophore species these bat-
teries are found in side branches of the tentacle, termed tentilla
(Fig. 2A). Outside of Siphonophora, most hydrozoans bear simple ten-
tacles without side branches. It is still an open question whether the
common ancestor of Siphonophora had tentilla. The only siphonophore
species regarded as lacking tentilla are P. physalis, Apolemia spp.
(Fig. 1H), and Bathyphysa conifera (Fig. 1B). Since B. conifera is the only
member of the Rhizophysidae (and of the Bathyphysa genus) lacking
tentilla, we assume this is a case of secondary loss. When we reconstruct
the evolution of this character on the current phylogeny, 70% of si-
mulations support a common ancestor bearing tentilla, with two in-
dependent losses leading to Physalia and Apolemia (Figs. S3 and S15).
However, this leaves a 30% support for a simple-tentacled common
ancestor followed by 2 independent gains of tentilla in the branches
leading to Rhizophysidae and non-apolemiid codonophorans.

How we define absence of tentilla, especially for Physalia physalis, is
also important. The tentacles of this species, when uncoiled, show very
prominent, evenly spaced, bulging buttons which contain in the ecto-
derm functional nematocytes (carrying mature nematocysts) used by
the organism for prey capture (Hessinger and Ford, 1988; Totton,
1960). Siphonophore tentilla are complete diverticular branchings of
the tentacle ectoderm, mesoglea, and gastrovascular canal (lined by
endoderm). Physalia’s buttons enclose individual fluid-filled chambers
connected by narrow channels to the tentacular canal, lined by en-
doderm (Bardi and Marques, 2007). This suggests they are not just
ectodermal swellings, but probably reduced tentilla. When we define P.
physalis as tentilla bearing, the results for the character reconstruction
lead to a more robust support for a tentilla-bearing common ancestor
followed by independent losses of tentilla in the branch leading to
Apolemiidae (Figs. S4 and S16), and in Bathyphysa conifera. The ap-
plication of phylogenetic methods to the evolution of tentillum mor-
phology would be a crucial step towards understanding the evolution of
these structures, and their relationship with the feeding ecology of si-
phonophores.

3.6. The evolution of vertical habitat use

Siphonophores are abundant predators in the pelagic realm, ranging
from the surface (Physalia physalis) to bathypelagic depths (Figs. 4, S8,
S20) (Mackie et al., 1987; Mapstone, 2014). The depth distribution of
siphonophore populations is not always static, as some species are
known to be vertical migrators, although this is within a relatively
narrow depth range (< 100m) (Pugh, 1984). Some species such as
Nanomia bijuga exhibit synchronous diel migration patterns (Barham,
1966). Using the present phylogeny, we reconstructed the median
depth changes along the phylogeny under a Brownian Motion model
(Figs. S8 and S20), which had the strongest AICc support (compared to
non-phylogenetic distributions, and to Ohrnstein-Uhlenbeck). This

model indicates a mesopelagic most recent common ancestor, with
several independent transition events to epipelagic and bathypelagic
waters. There was only a single transition to benthic lifestyle on the
branch of Rhodaliidae, and a single transition to a pleustonic lifestyle
on the branch of P. physalis. There is evidence that habitat depth is
conserved within some clades, with the exception of Calycophorae
which have diversified across the water column (Figs. S8 and S20).
Under the ML topology, depth appears to be phylogenetically conserved
in Euphysonectae after the split between Clade A (shallow-living spe-
cies) and Group B (deep-dwelling species) (Fig. S8), while under the BI-
CAT topology, a mesopelagic common ancestor is predicted, with a
transition to epipelagic waters in Clade A (Fig. S20); however several
shallow-living species that likely belong in Group B were not included
in this analysis. The present sampling is also not sufficient to capture
significant variation in depth distributions between closely related
species. Previous studies have shown that many species that are col-
lected at the same locality are found to occupy discrete, largely non-
overlapping depth distributions, including between species that are
closely related (Pugh, 1974). This suggests that vertical habitat use is
more labile than it appears and may be an important mechanism in
siphonophore ecology. The observed variation in depth distribution
could be attributed to any of the correlated environmental variables
(i.e. temperature, chlorophyll, oxygen). Temperature has been hy-
pothesized to impose physiological limits to the dispersal of some
clausophyid siphonophores (Grossmann et al., 2015). Since most of our
specimens were sampled only in the Monterey Bay region, our analyses
of the local oceanographic and depth distribution data cannot disen-
tangle the effects of these different variables on the vertical distribu-
tions.

This reconstruction (Figs. S8 and S20) only included depths re-
corded using an ROV, thus it excludes many other independent colo-
nizations of the epipelagic habitat. The ROV observations are reliable
below 200m, and no quantitative measurements were made on SCUBA
dives. Species such as Nanomia bijuga, Hippopodius hippopus, Athorybia
rosacea, Diphyes dispar, and Chelophyes appendiculata are often en-
countered blue water diving less than 20m from the surface (Fig. 4).
We also reconstructed the median depth changes along the phylogeny
using median depths of 20m for all species collected by SCUBA diving
or via a shallow trawl (Figs. S9 and S21), and still find support for a
mesopelagic ancestor. It should be noted, however, that H. hippopus and
C. appendiculata were both collected in the bay of Villefrance-sur-mer,
France, where an upwelling is known to bring deeper species closer to
the surface (Nival et al., 1976). Additionally, while we are confident
about many of the species IDs in the VARS dataset, it is difficult to
distinguish Kephyes ovata and K. hiulcus from images alone and the
distribution likely includes data points from both species. Halistemma
rubrum distributions were obtained from cruises in the Gulf of Cali-
fornia, where the only Halistemma species collected by ROV is H. ru-
brum. Where we could not be certain of species identifications in the
VARS dataset, we only included a few data points from specimens that
were collected and identified.

4. Conclusions

Using phylogenomic tools we were able to resolve deep relation-
ships within Siphonophora with strong support. We identify the clade
Euphysonectae as the sister group to Calycophorae. Our results suggest
that monoecy arose at least twice, based both on phylogenetic re-
construction and differences in the way monoecy is realized in different
clades. We are unable to fully capture some of the complex patterns of
zooid gain and loss within Codonophora, which will require greater
taxon sampling and improved morphological understanding of many
poorly known species. The improved resolution presented in this study
suggests that an important next step in understanding siphonophore
evolution will be targeting molecular sampling within Euphysonectae
(where we sampled 13 of 62 valid described species that likely belong
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to the group) and Calycophorae (where we sampled 9 species in a clade
of 109 valid described species) to further resolve the internal re-
lationships within these clades.
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