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Abstract The recently introduced geological entropy concept evaluates spatial order/disorder in the
structure of the hydraulic conductivity (K) field to explain and predict certain characteristics of transport
behavior. This concept is expanded in this work by introducing a novel tool for spatial analysis called
entrogram from which a metric called entropic scale (HS) can be calculated to measure the overall persistency
of patterns of spatial association in a distributed field and to allow robust comparisons between
different spatial structures. The entrogram and the entropic scale concepts are applied here to
investigate the link between solute transport behavior and the spatial structure of K fields modeled as
the distribution of three hydrofacies in alluvial aquifers. Accurate empirical relationships are found
between HS and key transport quantities confirming the clear correlation between transport and the
structure of the K field described in terms of its entropic scale. The entrogram analysis is also applied
to continuous 2-D and 3-D fields having identical lognormal K distributions, but with different
connectivity. Comparisons between the entrograms and the calculated HS values for these fields, as
well as for their corresponding flow velocity distributions, shed light on the key differences among
these structures in 2-D and in 3-D, which in turn explain their dissimilar impact on solute transport.
The entrogram-based interpretation of the transport simulations seems to confirm that the
geological entropy is a promising approach for predicting solute transport behavior simply from a
description of the K field heterogeneity.

1. Introduction

In hydrogeology, upscaling is the process by which the scale of measurement of a certain variable is
mathematically adapted to the required scale of interest for a model-based analysis (e.g., de Marsily et al.,
2005; Wen & Gómez-Hernández, 1996). A variety of upscaling methods have been presented for flow and
solute transport processes, from surrogate and proxy models (Asher et al., 2015; Fiori et al., 2015; Neuman
& Tartakovsky, 2009) to approaches explicitly describing the spatial heterogeneity of the hydraulic
conductivity (K) fields (e.g., Fogg & Zhang, 2016; Sanchez-Vila & Fernàndez-Garcia, 2016). Two main
approaches based on effective descriptions of the K field have been traditionally followed for solute
transport upscaling.

The first approach is at the basis of the traditional theories of stochastic hydrogeology and adoptsmultivariate
normal (MVN; or multi-Gaussian) representations of the log-transformed K (lnK) field. Stochastic theories are
assumed to develop relationships between the hydrodynamic dispersion coefficients in the
advection-dispersion equation and statistics (i.e., the mean KG, the variance σ2lnK , and the integral scale I) of
the lnK field (Dagan, 1989; de Marsily, 1986; Gelhar, 1993; Neuman et al., 1987; Rubin, 2003). The general
applicability of these relationships has been challenged by several studies (Adams & Gelhar, 1992; Cortis &
Berkowitz, 2004; Gómez-Hernández & Wen, 1998; Lee et al., 2007; Liu et al., 2004; Molinari et al., 2015;
Sánchez-Vila et al., 1996; Tompson et al., 1998; Wen & Gómez-Hernández, 1998; Zheng et al., 2011; Zheng &
Gorelick, 2003; Zinn & Harvey, 2003), showing that the stochastic approach may be especially questionable
in highly heterogeneous aquifers in which the K field structure is characterized by connected features of
extreme values. This type of structure cannot be adequately represented by a MVN field (Journel &
Deutsch, 1993), as connected features exert a strong control on groundwater flow and transport behavior
in alluvial systems (Anderson, 1989; Bianchi et al., 2011; Bianchi & Zheng, 2016; Davies & Gibling, 2011; de
Marsily et al., 2005; Dell’Arciprete et al., 2014; Fogg, 1986; Fogg et al., 2000; Fogg & Zhang, 2016;
Weissmann et al., 1999).
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The concept of connectivity has then emerged as a second approach to link transport behavior to the
heterogeneity of the K field. Measures of connectivity (see review by Renard & Allard, 2013) include both
“static” (i.e., those based on the physical properties of the media) and “dynamic” metrics (i.e., those based
on metrics describing flow and transport processes). A series of static and dynamic connectivity metrics have
been proposed (Fernàndez-Garcia et al., 2010; Fiori, 2014; Fiori & Jankovic, 2012; Freixas et al., 2017; Knudby &
Carrera, 2005; Renard & Allard, 2013; Trinchero et al., 2008; Tyukhova & Willmann, 2016a, 2016b; Willmann
et al., 2008). In the recent work of Rizzo and de Barros (2017), for instance, the connectivity of the K field is
quantified with a static metric based on the identification of paths of least resistance (Tyukhova &
Willmann, 2016a), which is subsequently shown to be correlated to the early arrival times of a solute plume.
Connectivity is closely related to the concepts of percolation and critical path analysis (e.g., Harter, 2005; Hunt
& Sahimi, 2017; Stauffer & Aharony, 1994). For instance, by invoking the percolation threshold, Knudby and
Carrera (2006) associated the transmissivity along the paths of least resistance (critical path transmissivity)
to the effective transmissivity of heterogeneous fields. In spite of the development of a large number of
connectivity-based upscaling solutions, the correlation between connectivity metrics and measurable
properties of flow and transport behavior remains in most cases not fully understood, limiting their
applications for predictive purposes.

In recognition of these limitations, Bianchi and Pedretti (2017) introduced an alternative approach based on
the assumption that solute transport behavior is sensitive to the degree of spatial order/disorder in the struc-
ture of the K field. This approach is called geological entropy, and a metric (i.e., the relative entropy index, HR)
based on information entropy concepts (Shannon, 1948) was proposed to quantify the degree of spatial dis-
order. Because the Shannon entropy H can be seen as a measure of unpredictability, it has been extensively
applied to quantify uncertainty, disorder, and randomness in a wide range of disciplines, including hydro-
geology, geostatistics, and related fields (e.g., Chiogna et al., 2012; Journel & Deutsch, 1993; Kitanidis, 1994;
Mays et al., 2002; Ye et al., 2017). In Bianchi and Pedretti (2017), numerical simulations of solute transport
in generic alluvial aquifers with a wide range of heterogeneity (σ2lnK between 1.7 and 28.0, mean lengths of
the facies between 1 and 30m) were performed to analyze the effect of spatial disorder on the first three spa-
tial central temporal moments of the breakthrough curves (BTCs). Empirical expressions were subsequently
developed to describe the correlation between HR and these moments. One of these empirical expressions
provided accurate predictions of the skewness (i.e., the degree of tailing) of the BTCs, suggesting that the
geological entropy approach can effectively predict the occurrence of tailing from information about the K
field heterogeneity.

The potential limitations of the relative entropy index HR as defined in Bianchi and Pedretti (2017) are that it
measures spatial disorder in a distributed field only at the local scale and that the choice of such scale could
be subjective. These limitations can be addressed by means of a new tool for analysis that allows investigat-
ing spatial disorder or HR at all the scales within the domain of interest. However, because it is reasonable to
assume that different spatial distributions display distinctive patterns of spatial disorder at different scales, a
new general unit of geological entropy is also needed for making robust comparisons.

The purpose of this paper is twofold. First, we extend the local-based geological entropy approach by intro-
ducing a new tool for spatial analysis called entrogram and, by its integration, a global metric of spatial order
called entropic scale (HS). As we did for the relative entropy index HR, in this work we will also investigate the
correlation between HS and certain quantifiable characteristics of the transport behavior. The second pur-
pose is to apply entrogram and entropic scale to explain the main conclusion of the recent study by
Jankovic et al. (2017), in which exceptionally detailed simulations of solute transport were performed in
3-D K fields with different patterns of connectivity in the extreme values (high and low). In a previous and very
influential study, Zinn and Harvey (2003) conducted a similar analysis in 2-D, which showed that the BTCs and
in general transport behavior are significantly impacted by the differently connected structures. Contrary to
the conclusions of Zinn and Harvey (2003), the main finding of Jankovic et al. (2017) is that the BTCs calcu-
lated in the different fields are surprisingly similar. This result was interpreted as the indication of a “universal”
transport behavior independent from the structure of the K field, which can be predicted only from knowl-
edge of its first-order statistical parameters (e.g., Fiori et al., 2017). In this work, we will explain the results
between Zinn and Harvey (2003) and Jankovic et al. (2017) through the application of the geological entropy
approach, in particular by measuring, comparing, and analyzing the entropic scales of the different 2-D and
3-D fields and the resulting transport characteristics.
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2. Theoretical Background
2.1. The Concept of Geological Entropy

The concept of geological entropy developed in Bianchi and Pedretti (2017) consists of quantifying the
degree of spatial disorder (or alternatively the opposite, i.e., order) in the structure of the K field to gain
key information for the interpretation and prediction of transport behavior in heterogeneous media. This
quantification is based on the application of the information entropy concepts originally proposed by
Shannon (1948) to measure the average amount of information required to predict the outcome of a ran-
dom process. For a generic random process generating a discrete number of n outcomes with probabilities
p1, p2, …, pn, the Shannon entropy H can be written as follows:

H ¼ �
Xn

i¼1
pi lnpi½ � (1)

H is equal to zero when there is low uncertainty about the process (pi = 1, pj ≠ i = 0), while it is maximum
(H = ln n) when all the outcomes have equal probability (pi = 1/n).

In Bianchi and Pedretti (2017), equation (1) was applied to calculate the local and global entropies of the spa-
tial distribution of a categorical random variable F defined over a grid covering a certain domain of interest. In
particular, the global entropy HG of F was defined as follows:

HG ¼ �
XN

i¼1
pG;i lnpG;i

� �
(2)

where pG, i is the volumetric fraction (i.e., the probability of occurrence) of a certain category i over the
domain of interest and N is the total number of categories of F. Entropy calculations based on equation (2)
can be extended to continuous variables by binning (discretizing) the continuous distribution into classes.
However, the loss of information due to discretization needs to be carefully evaluated as we will discuss later.

For each block of the grid used to discretize the spatial distribution of F, the local entropy HL can also be
defined:

HL lð Þ ¼ �
XN

i¼1
pL;i lð Þ lnpL;i lð Þ

� �
(3)

where pL, i(l) are the local volumetric fractions (i.e., marginal probabilities of occurrence) of the categories of F
within a subdomain whose dimensions are defined by the vector l = lxi + lyj + lzk. The scalar components lx, ly,
and lz are equal to the half-lengths of the subdomains (centered around the grid block) considered for the
local entropy calculation along the Cartesian directions x, y, and z.

2.2. Entrogram Analysis and Entropic Scale Estimation for Categorical Fields

From equation (3), a relative entropy index HR(l)
0
is defined for each grid block and each subdomain defined

by l as follows:

HR lð Þ0 ¼ HL lð Þ
HG

(4)

The relative entropy index provides a measure of spatial disorder. In particular, low values suggest an orderly
structure in which one or a small number of categories of F is more frequent than others at the scale of the
subdomains defined by l. Conversely, higher values suggest disorderly structures in which the local and the
global entropy values tend to be similar because all the categories of F are more or less equally frequent
within the subdomains.

In Bianchi and Pedretti (2017), the local entropy HL and therefore the relative entropy index HR were evalu-
ated at the local scale only and specifically within a subdomain of half-lengths equal to 1.5 grid blocks in each
direction. In this work, the evaluation of HR is extended to all the possible subdomains with half-lengths larger
than 0.5 grid blocks within the domain of interests. In particular, for a set of half-lengths (lx, ly, lz), a number of
random locations are selected within the domain using a quasi-random discrepancy sequence (Sobol LPτ),
and a population of HR(l)

0
values is calculated for each location. This calculation is repeated for different sets

of half-lengths until the dimensions of the subdomains become comparable to those of the entire domain. By
plotting the average values of the populations of HR(l)

0
for the different sets of half-lengths against the
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subdomain dimensions, a variogram-like graph called entrogram is produced, which allows to explore the
behavior of the relative entropy index HR at different scales. Naimi (2015) introduced the term entrogram
for the quantification of the spatial association of both continuous and categorical geographical variables
and presented applications to a digital elevation model and a land cover map. Although the definition of
the entrogram in this work is very different, we decided to maintain the same terminology used by Naimi
(2015) given that both graphs have a variogram-like shape and they are both based on information entropy
concepts. When equal half-lengths are considered along the Cartesian directions (i.e., lx = ly = lz), the omnidir-
ectional experimental entrogram can be defined as follows:

HR lð Þ ¼ 1
ns lð Þ

Xns
i¼1

HR;i lð Þ (5)

where HR,i (l) is the relative entropy index calculated for the i-subdomain of half-length equal to l and ns is the
number of subdomains for which the local entropy HL is evaluated. This number, which belongs to the inter-
val [0, 1], depends on l given that a lower ns is required for a robust estimation of the average HR as the dimen-
sions of the subdomain increase. Similar to the way the classic (semi) variogram or the covariance function of
a random function describes the variability of spatial correlation with distance (Isaaks & Srivastava, 1990), the
entrogram describes the variability of spatial disorder in a discretized field. Moreover, both the entrogram
and certain standard variogram models (i.e., the exponential, Gaussian, and the spherical model) tend to
increase monotonically with distance until they reach an asymptotic value. For the entrogram, this value is
HR(l) = 1, that is, when the local entropy HL equals the global entropy HG.

2.3. Illustrative Example

An illustrative example of the information that can be drawn from the analysis of the entrograms for different
fields is presented in Figure 1, where we show three spatial distributions (A, B, and C) of a generic binary vari-
able F discretized over a regular 50 × 50 grid. The three distributions were generated using a Boolean simula-
tion code (Deutsch & Journel, 1998), which randomly places ellipsoids (shown in white in Figure 1) of different
sizes until a target volumetric fraction is met (i.e., 0.6 for all the structures). For the field A, the radii of the ellip-
soids in both Cartesian directions are equal to one grid block, and therefore, the spatial distribution of F is
very chaotic and disorderly at all scales. This is reflected in a very steep increase of the entrogram calculated
for this field, which starts at a value of HR = 0.9 for a length of only 1.5 grid blocks and rapidly reaches the
HR = 1.0 asymptote. On average, HR > 0.95 is calculated for subdomains with l equal to only two grid blocks,
correctly indicating the lack of an organized structure. Intuitively, one shall expect that the structure of F
becomes more organized as the size of the ellipsoids increases due to the increment in spatial continuity
of these features. This is indeed the case for structures B (radius = 2 blocks) and C (radius = 8 blocks), and
it is correctly reflected by the entrograms of these two structures. In particular, HR values for structure B start
at about HR = 0.6 for a length of 1.5 block and increase monotonically until they reach the asymptote for sub-
domains with l > 13 blocks. The most organized and orderly structure (structure C) is characterized by the
smoothest increment in entropy. This entrogram starts at a value of about HR = 0.15 while HR > 0.95 are cal-
culated only for large subdomains comparable to the entire domain.

2.4. Entropic Scale Calculation

The qualitative considerations drawn from the analysis of the entrogram can be summarized by calculating
the integral of the entrogram to obtain a metric called entropic scale. Given an omnidirectional entrogram
HR(l), the entropic scale (HS) is defined by the following:

HS ¼ ∫
∞

0
1� HR lð Þ½ �dl (6)

To a certain extent, the concept of the entropic scale is similar to that of the integral scale of a covariance
function for a spatial random variable. In fact, they are both measures of spatial persistence. However, while
the integral scale measures the persistence of correlation of a spatial random variable (Rubin, 2003), HS can be
seen as a measure of the persistence of clustering or in other terms of patterns of spatial association.
Therefore, HS can be used as a robust global metric of spatial order, like the CS3 indicator of static
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connectivity derived by Knudby and Carrera (2005). For instance, the HS for the fields A, B, and C in Figure 1
are equal to 0.9, 1.8, and 7.2 grid blocks, respectively. These values, which were numerically evaluated using
the trapezoidal method, correctly rank the degree of spatial order in the three structures (C more orderly than
B and, in turn, B more orderly than A), while being also consistent with the lengths of the axes of the ellipsoids
for each field.

We highlight two points of the proposed approach that need clarification. The first is that because the entro-
pic scale is a global metric that takes into account the spatial structure of the entire field, it relies on the
assumption of stationarity. This is a common assumption, for instance, in theoretical analyses of solute trans-
port in heterogeneous media where the spatial distribution of K field is usually modeled as a stationary ran-
dom variable. However, the assumption of stationarity especially for geological media is not always realistic
(e.g., Rehfeldt et al., 1992) and practically difficult to test for field applications. Therefore, it remains a working
hypothesis (Rubin & Seong, 1994). For nonstationary fields, the relative entropy indicator HR calculated at a
local scale (Bianchi & Pedretti, 2017) could then be a more appropriate measure of spatial disorder. The sec-
ond point is that the calculation of the integral scale requires a discretized model of the spatial distribution of
the property of interest. Therefore, the uncertainty in the estimated entropic scale depends on the model
uncertainty, which originates from various sources including the data, the model parameters, and the model
structure itself (e.g., Refsgaard et al., 2006). Nonetheless, the entrogram and the entropic scale can be calcu-
lated for any discretized spatial distribution regardless of the dimensionality or the modeling methodology
(e.g., deterministic, stochastic, two-point, and multiple-point geostatistics).

3. Application of the Geological Entropy Approach
3.1. Categorical K Fields

One of the objectives of this work is to revisit the results of the analysis presented in Bianchi and Pedretti
(2017) in light of the newly introduced entrogram analysis and entropic scale. In particular, similar to the pre-
vious study, we aim to develop empirical relationships between the entropic scale of the K field and certain

Figure 1. Entrogram comparison for binary systems with identical proportions for the two categories but with different
spatial structures.
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statistics of the BTC that can then be used as upscaled models to predict transport behavior without the need
to solve the flow and solute transport equations. Putting this into practice requires three steps: (1) generation
of the spatial distribution of K using a method of choice; (2) analysis of the geological entropy of the gener-
ated distribution using the entrogram and entropic scale calculation; and (3) predictions of the BTC statistic of
interest using empirical relationships and calculated entropic scale.

The flow and transportmodeling in this study aswell as themethodology for generating the stochastic K fields
are the same as those described by Bianchi and Pedretti (2017), to whichwe refer for details not reported here-
after. Briefly, six groups of synthetic K fields were generated in previous work from the distributions of three
hydrofacies representing typical alluvial environments. These distributions were simulated with the transition
probability/Markov Chain approach (Carle, 1999; Carle & Fogg, 1996). In the present work, we selected a group
of K fields considering nine alluvial-like aquifers characterized by one highly permeable hydrofacies (volu-
metric fraction equal to 0.2), representing mostly coarse grained sediments, embedded in a matrix of low K
sediments (volumetric fraction equal to 0.6). A third hydrofacies is also considered to represent deposits with
intermediate conductivity. Conductivity values are assigned to each hydrofacies resulting in a three-modal
distribution shared by all the K fields with identical univariate σ2lnK equal to 7.3. Nonetheless, each field has
a unique spatial structure (see Figure S2 in Bianchi & Pedretti, 2017) imposed by the horizontal mean length
(Lh) assigned to the most permeable hydrofacies. These lengths vary between 1 and 30 m within the group.

Monte Carlo simulations of groundwater flow and solute transport were conducted for an ensemble of 100
realizations for each K field scenario. Flow was simulated with the finite-difference code MODFLOW-2005
(Harbaugh, 2005), using a grid with block size equal to 1 m × 1 m × 0.5 m, covering a 40-m-thick domain
of area equal to 200 m × 300 m on the horizontal plane. Specified head boundary conditions were set to cre-
ate uniform flow steady-state conditions. Conservative transport behavior in the flow fields was simulated
with the particle-tracking code RW3D (Salamon et al., 2006). The cumulative distribution function (CDF) of
the particle arrival times at a control plane located 250 m down-gradient the injection line was collected
for each simulation and used for the ensemble-based stochastic transport analysis. All transport simulations
embed advection, local mechanical dispersion, molecular diffusion, and homogeneous effective porosity (θ).

To characterize the transport behavior and investigate the link with the entropic scales of the K fields, we con-
sider several statistics directly obtained from the arrival time CDFs. Similar to the approach described in
Bianchi and Pedretti (2017), we first evaluate the median values of the ensemble of centered temporal
moments (mean, variance, and skewness). In addition, in this work we extend the analysis to the median
values of three percentiles of the arrival time CDFs. Two of the chosen percentiles (p = 0.05 and p = 0.95)
describe the early- and late-time arrivals, while the third (p = 0.50) is simply the median of the arrival time dis-
tributions. An estimation of the early- and late-time arrivals is important in the context of groundwater reme-
diation and health risk assessment to define the beginning of contamination at sensible receptors and the
duration of contaminant exposure (e.g., de Barros et al., 2013; Maxwell et al., 2008).

3.2. Continuous K Fields

Numerical experiments of solute transport similar to those performed by Zinn and Harvey (2003) and
Jankovic et al. (2017) are conducted in 2-D and 3-D domains in which the spatial distribution of K is modeled
as a continuous lognormal stationary random function. The objective of this analysis is first to reproduce the
results of the two previous studies and then to test whether the geological entropy approach and, in parti-
cular, the entrograms and entropic scales of these fields can explain the contrasting interpretations of trans-
port behavior in the 2-D and the 3-D fields. In the following sections, we summarize the characteristics of the
conductivity fields and the numerical simulations.
3.2.1. Conductivity Field Structures
Isotropic MVN lnK fields (MVN fields) are generated with a sequential Gaussian simulation algorithm (Remy
et al., 2009). We considered a Gaussian covariance function as in the original work of Zinn and Harvey
(2003), noticing however that the MVN fields generated by Jankovic et al. (2017) were based on spherical
and exponential models instead. The domain for geostatistical simulations is discretized with grids consisting
of 65,536 regular blocks for 2-D fields and of more than 16,777,216 blocks for 3-D fields. For both 2-D and 3-D
fields, the integral scale (I) of the Gaussian covariance function is equal to 8 blocks, and therefore, the lengths
of the domain are equal to 32 I for each Cartesian direction. For each realization, the univariate distribution of
lnK has zero mean and variance σ2lnK ¼ 8, which is also consistent with the maximum variance considered in
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the previous studies. Since the dimensions of our domain are about one third of those considered by
Jankovic et al. (2017), we ensured operating under ergodic conditions by means of Monte Carlo simulations
instead of a single-realization analysis. In particular, 100 realizations of the MVN fields are generated, and all
the results reported hereafter including the entrograms, entropic scales, and simulated transport results are
taken as the average of the ensemble of these realizations. A comparison between the results obtained from
our Monte Carlo based approach and those obtained by Jankovic et al. (2017) is analyzed to gain confidence
about the quality of our results and provide a solid comparison with their study.

For each realization of the MVN field, corresponding connected (CNT) and disconnected (DSC) structures are
generated following the four-step procedure of Zinn and Harvey (2003). These steps transform a MVN field
into a new field having the same univariate distribution of the original field but with different connectivity
of the values on the left or on the right tail of the normal distribution. In particular, the CNT fields are char-
acterized by connected structures of high-K values, while the DSC fields present disconnected high-K zones
and connected patterns of low K. As already noted in Zinn and Harvey (2003) and Jankovic et al. (2017), the
application of the transformation procedure to a MVN field results in a reduction of the original correlation
length. For the fields considered in this work, the integral scales of the CNT and DSC fields (I0) are 1.76 times
smaller than the values of the MVN fields. This value is very similar to the factor equal to 1.86 calculated by
Zinn and Harvey (2003) and somewhat different from the value of 2.94 for fields based on exponential covar-
iance functions considered by Jankovic et al. (2017). We therefore tested the consistency of our analysis, by
considering additional 3-D MVN fields based on an exponential covariance function. We estimated a factor of
2.74, which is similar to the one obtained by Jankovic et al. (2017). To take into account the reduction in inte-
gral scale from the original value of the MVN field based on a Gaussian covariance function, the dimensions of
the blocks of the grid for the CNT and DSC fields were reduced by a factor F = 1/1.76 = 0.59 in each direction
such that the ratio of eight blocks per integral scale I0 and a domain length equal to 32I’ in all the directions
are maintained for these fields.

3.2.2. Numerical Simulations of Flow and Transport
Steady-state uniform groundwater flow in the generated heterogeneous K fields is solved using MODFLOW-
2005. The dimensions of the blocks of the numerical grid are equivalent to those of the grid for the geosta-
tistical simulations. Specified head boundary conditions are applied to the upstream and downstream
boundaries of the domain, while no-flow conditions are applied to the remaining boundaries.

Conservative solute transport is simulated with the semi-analytical particle tracking code MODPATH (Pollock,
2016) based on a linear interpolation scheme of the flow velocities. The two previous studies of Zinn and
Harvey (2003) and Jankovic et al. (2017) investigated the effect of molecular diffusion on transport behavior
in the different structures. Accordingly, the simulations took into account different values of the Peclet num-
ber (Pe). The conclusions regarding the sensitivity of transport with respect to Pe are somewhat different
between the two studies. According to Zinn and Harvey (2003), lower Pe values tend to mask the differences
between the BTCs of the different K field structures, while the BTCs calculated by Jankovic et al. (2017) do not
show significant changes with Pe. Because of these discrepancies, we decided to focus only on the case of
purely advective transport (Pe = ∞) to avoid further complications in the interpretation of the results in light
of the application of the geological entropy approach.

For 2-D transport simulations, 105 particles are injected instantaneously using a flux-weighted scheme along
a line perpendicular to the mean flow direction. The injection line is located at a distance of 2 integral scales
from the upstream boundary and is 26 integral scales long. The location at the center of the domain allows
the presence of two buffer zones of width equal to 3 integral scales at each side for avoiding interferences
between particle paths and the no-flow boundaries (Bellin et al., 1992). For 3-D simulations, the injection is
also flux-weighted and extended along the vertical dimension; the particles are injected within a square with
sides equal to 26 integral scales. For each type of K field structure, the ensemble of 100 distributions of par-
ticle arrival times were collected at the outflow boundary at a distance of 30 integral scales from the injection
zone. The same statistics used for the analysis for the categorical K fields (section 2.2) are used to quantify the
transport behavior in the continuous K fields.

Following Jankovic et al. (2017) based on Fiori et al. (2015), the accuracy of the numerical simulations is tested

through comparisons between the mean advective velocity U calculated from the results of the transport
simulations and the mean of the component of the Eulerian velocity field parallel to the mean flow
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direction (Umean). In each simulation, the components of the Eulerian
velocity field (U = q/θ) are calculated assuming homogeneous effective θ
and by averaging the specific discharge (q) across the numerical grid block
interfaces. The accuracy of the numerical analysis is confirmed by the simi-

larity in the ensemblemean values of the twomean velocities (i.e.,U=Umean

between 0.93 and 0.99; Table 1). A further check on the accuracy of the flow
simulations is provided by the calculation of the effective hydraulic
conductivity (Keff) for each structure. The calculated values (Table 1) are
consistent with the previous numerical estimations (Jankovic et al., 2017;
Zinn & Harvey, 2003) and some theoretical results (Matheron, 1967;
Xavier Sanchez-Vila et al., 2006). A more detailed explanation of these
criteria used to check the accuracy of the numerical simulations is pre-
sented in the supporting information (SI).
3.2.3. Entropic Scale Calculations for Continuous K and U Fields
The entrogram calculation (equation (5)) for a continuous variable requires
that data are first binned into a number of classes. As done in other studies

(e.g., Kang et al., 2017; Le Borgne et al., 2008), the K and U distributions are discretized into N classes of equal
probability by initially defining N + 1 regularly spaced threshold values τi ∈ [0, 1] and then by calculating the
quantiles q (τi) of the continuous data distribution. A given K (or U) value is finally assigned to a certain class Ci
if q(τi) < K < q(τi + 1).

Different values of N were tested in order to determine an optimal number of classes for the entrograms
and entropic scale calculations. Some of the results of this analysis are presented in Figure S1 of the SI
for one of the generated MVN fields. In general, the entropic scale of the K field tends to decrease rapidly
from low N values, and then it stabilizes around a constant value for N > 30. The decrease in spatial order
indicated by the behavior of the entropic scale is consistent with the progressively larger amount of spatial
heterogeneity or information that is taken into account as the number of classes increases. Based on these
results and the fact that the computational time required to calculate the entrogram increases with N, a
value N = 40 is considered optimal for entrograms and entropic scale calculations of the generated
continuous K fields.

4. Results and Discussion
4.1. Link Between Entropic Scale and Transport

We first analyze and discuss the results of the entrogram and entropic scale calculations applied to the group
of categorical K fields. It is recalled that these have identical univariate distribution (σ2lnK = 7.3), but different
structures according to the mean lengths (Lh) in the horizontal plane assigned to the most permeable hydro-
facies in the T-PROGS simulations. The shape of the calculated experimental entrograms (Figure 2a) allows
ranking the fields in terms of spatial disorder in the structure. The higher spatial disorder in the structure
of the K fields with shorter Lh is indicated by a sharp increase of HR at shorter distances. Conversely, the entro-
grams for fields considering higher Lh values tend to reach the HR = 1 asymptote at higher distances.

In Bianchi and Pedretti (2017), we used values of the entrogram at the first lag to quantify the spatial order of
the different K fields and to make comparisons between different structures. We demonstrated that this
approach is effective in ranking different structures at the local scale, and we were able to link this metric
to some characteristics of transport. However, as shown in Figure 2a, the analysis of the entire entrogram
allows a more comprehensive characterization of HR at different distances and of the persistency of spatial
order at different scales. For instance, HR values in the order of 0.95 (high spatial disorder) are reached after
just about three lags (distance = 4.5 m in Figure 2a) for the K field with Lh = 1 m and after about four lags
(distance = 6 m) for the K field with Lh = 2.5 m. These distances indicate that these fields have structures
where there is a 95% probability on average that all the three hydrofacies are represented with their respec-
tive global proportions within a distance of few lags from each point of the domain. Conversely, for more
orderly structures and larger Lh values, the distances at which HR = 0.95 are in the order of 20 to 30 m, mean-
ing that one of the categories is more frequent than the others within distances of 10 to 15 m from
each block.

Table 1
Comparisons Between Metrics for the 2-D and 3D Structures

2-D structures 3-D structures

MVN CNT DSC MVN CNT DSC

HS/I (K field) 0.78 0.92 0.92 0.52 0.66 0.66
HS/I(U field) 0.90 1.13 1.14 0.54 0.71 0.72
U=Umean 0.94 0.99 0.97 0.93 0.96 0.95
Keff/KG 1.01 3.14 0.44 3.54 7.83 1.41
t5 [tUh/I] 7.8 2.0 27.4 1.4 0.8 5.1
t50 [tUh/I] 18.9 5.5 57.0 4.8 2.0 16.4
t95 [tUh/I] 71.7 25.4 130.7 22.2 10.5 47.0
t5 [tU=I] 8.5 6.5 12.6 5.5 6.5 7.6
t50 [tU=I] 20.6 18.1 26.2 18.4 16.1 24.5
t95 [tU=I] 78.2 84.1 60.0 84.9 86.2 70.4
Skewness 25.2 40.3 2.9 46.5 64.2 3.2

Note. MVN = multivariate normal; CNT = connected; DSC = disconnected.
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A more quantitative and rigorous assessment of the degree of spatial
order is provided by the values of HS calculated by applying equation (6)
to the entrograms of the K fields. The resulting values are in the range
between 1.4 m for fields with Lh = 1 and 8.6 m for fields with Lh = 30.
The behavior of the calculated HS with Lh is nonlinear (Figure 2c) with a
steep increase in HS for Lh< 10m followed by less accentuated increments
for larger Lh values. A plot of the ratio Lh/HS against Lh suggests instead a
linear relationship between these two quantities for the considered cate-
gorical K fields (Figure 2c).

We now investigate the correlation between the calculated entropic scales
and the results of the stochastic transport simulations. Median values of
the statistics used to quantify transport behavior are plotted in Figure 3
as a function of the ratios Lh/HS for the different fields. For all these statis-
tics, the relationship between the calculated valuesm and the Lh/HS ratio is
best described by empirical power law functions in the following form:

m ¼ a
Lh
Hs

� �b

þm∞ (7)

where the values of the parameter a, the exponent b, and the asymptotic
value of the metric (m∞) differ for each statistic (Table 1 in the SI). In parti-
cular, the exponent b is negative for every m except for the median skew-
ness of the arrival time distributions. These relationships confirm the
correlation between measurable quantities defining transport behavior
and the degree of spatial order in the K field (Bianchi & Pedretti, 2017)
and show that such correlation still holds when the degree of spatial order
is expressed in terms of entropic scale HS.

The clear correlation between Lh/HS and the 5th (t5) and 95th (t95) percen-
tiles (Figures 3e and 3f), respectively, supports our previous findings and
reinforces the idea that geological entropy could be a very promising con-
cept to be used for predicting transport in heterogeneous media. Previous
studies have explained the earlier than expected arrival of solutes to the
presence of preferential flow paths (Bianchi et al., 2011; Zheng &
Gorelick, 2003) and connectivity of highly conductive sediments in alluvial
aquifers (Knudby & Carrera, 2006; Wen & Gómez-Hernández, 1998;
Willmann et al., 2008). However, only few formal relationships have been
proposed between connectivity metrics and t5 (Fiori & Jankovic, 2012;
Rizzo & de Barros, 2017; Tyukhova & Willmann, 2016a). Late-time transport
behavior has been related tomass transfer and diffusion processes through
low conductive zones (LaBolle & Fogg, 2001), which have been modeled
with non-Fickian transport approaches (Berkowitz et al., 2006; Haggerty &
Gorelick, 1995; Neuman & Tartakovsky, 2009; Zhang et al., 2007). The corre-
lations shown in Figure 3 indicate that the geological entropy approach
based on the calculation of the entrogram and entropic scale can provide
the necessary information to predict both early- and late-time arrivals in
highly heterogeneous alluvial aquifers (σ2lnK≈8) with realistic hydrofacies
distributions. This is true provided that the empirical parameters of the cor-
relation are known. Generalizing the results for universally scalable correla-
tions and fully predictive upscaling are left open for future development.

A final observation of Figure 3 reveals that there could be a threshold above which the considered statistics
(except for the skewness) cease to be dependent on the Lh/HS ratio. For most of the considered fields, it
seems that a value of Lh/HS ≈ 1.5 (shown by vertical dashed lines in Figure 3) can be a general measure to
indicate the end of correlation between m and Lh/HS, although the range of uncertainty from the visual

Figure 2. Entrograms (a), corresponding entropic scales (b), and plots of the
ratio Lh/HS (c) calculated for categorical K fields with different mean lengths
(Lh).
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assessment seems to indicate a fluctuation in the order of ±0.5. In other words, when Lh is more than 1.5
times larger than the entropic scale of the field, the statistics of the arrival time distributions for the
different structures tend to be very similar (m∞). Even for the skewness (skt), which increases
monotonically with the ratio Lh/HS, the value of 1.5 seems to separate the initial part of the curve where
the relationship between skt and Lh/HS is strongly nonlinear from the second part where skt increases
almost linearly with Lh/HS (Figure 3c). Recalling that the calculated values of HS tend to become more and
more similar as Lh increases, the fact that the statistics tend to their respective m∞ values for Lh/HS > 1.5
seems to suggest that transport behavior is more affected by the entropic scales of the different fields
rather than by the mean lengths of the high-K hydrofacies. Moreover, if we assume Lh as a measure of
spatial correlation similar to the ranges of exponential indicator variograms—an assumption that is
supported by the theory of the transition probability/Markov chain approach (e.g., Carle & Fogg, 1996)—
we can postulate that the entropic scale of the K distribution has higher impact on transport than its
spatial correlation. This hypothesis will be further discussed in the next section when we consider
continuous K fields in which the spatial correlation is precisely defined in terms of integral scale.

4.2. Geological Entropy and Solute Transport: When Good Descriptors of Aquifer Heterogeneity
Go Right

The ensemble means of calculated BTCs for the MVN, CNT, and DSC fields are plotted in Figure 4 with two
different normalizations of the arrival times. In the panels at the top (Figures 4a and 4b), the particle travel
time t is made dimensionless through multiplication with Uh/I where Uh is the flow velocity of a

Figure 3. Median values of the statistics of the breakthrough curve calculated for the group of nine conductivity fields as a
function of the ratio Lh/HS. Mean (tm), variance (σ2t ), and skewness (skt) of the distribution of arrival times are presented
in panels (a), (b), and (c), respectively. The 5th percentile (t5), the median (t50), and the 95th percentile (t95) are shown in (c),
(d), and (e), respectively. Solid lines indicate the best-fitted power law expressions (equation (7)).
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homogenous aquifer of conductivity equal to KG (i.e., Uh = KGJ/θ). This type of normalization allows
comparisons between our results and those presented in Figure 7 in Zinn and Harvey (2003) and Figure 4
in Jankovic et al. (2017), although in this work we used Gaussian covariance functions for both 2-D and

3-D fields. In the bottom panels (Figures 4c and 4d), the BTCs are shown as function of tU=I, and therefore,
t is normalized by the mean arrival time t , as in the two previous studies (Figure 8 in Zinn & Harvey, 2003;
Figure 3 in Jankovic et al., 2017). Key statistics for the calculated BTCs considering both normalization
approaches are also reported in Table 1.

Although the modeling analysis in this work is based on ensemble-averaging over 100 Monte Carlo simula-
tions instead of performing one individual ergodic simulation, the results of the transport simulations match
with those by Jankovic et al. (2017), and their main conclusion that the simulated flow and transport are sig-
nificantly less impacted by the K field structure in 3-D fields compared to 2-D simulations is confirmed. For
instance, the early arrival (t5) expressed in normalized time tUh/I for 2-D CNT fields is on average about four
times faster than in MVN fields. Such difference is reduced by about one half in 3-D fields. Similarly, while the
maximum difference in effective K values for 2-D fields is in the order of seven times (DSC versus CNT), a dif-
ference by a factor of 5.5 is calculated for 3-D fields. Similar considerations can be formulated for the majority
of the parameters in Table 1.

We now show how the entrogram-based analysis can explain these results. The entrograms of the different
K and U fields are shown in Figure 5, while the corresponding entropic scales are presented in Table 1 where
they are normalized by the integral scales of the K fields. Note that since the CNT fields are generated by
simply reflecting the values of the DSC field around the zero lnK mean (Zinn & Harvey, 2003), the two struc-
tures are identical in terms of spatial order and therefore their entrograms are overlapped in Figure 5. The
higher connectivity in the DSC and CNT structures is reflected by their HS values, which are about 18% (2-D)
and 25% (3-D) higher than the corresponding values for the MVN fields. The comparison of the entrograms
and the HS values between 2-D and 3-D fields indicates that the 2-D structures have a higher degree of spa-
tial order. In particular, the HS values of the 2-D fields are about 50% and 60% larger for K and U, respectively,

Figure 4. Cumulative breakthrough curves (BTCs) for the different structures in 2-D and 3-D. See the main text for details
about the difference in normalization approach of the arrival time (t) in the top (a and b) and bottom panels (c and d).
MVN = multivariate normal; CNT = connected; DSC = disconnected.
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relative to the corresponding values in 3-D. The lower entropic scales of the 3-D fields can be explained by
the introduction of spatial variability in the third dimension and a consequential increment in
spatial disorder.

Another result from the entrogram analysis is that the HS of the U fields, both in 2-D and in 3-D, are larger than
the corresponding scales for the K fields. Previous numerical and theoretical studies (Ababou et al., 1989;
Bellin et al., 1992; Gotovac et al., 2009; Salandin & Fiorotto, 1998) have shown that for steady-state flow con-
ditions, the variability of the Eulerian velocity field is reduced compared to that of the corresponding MVN K
fields, while the correlation length is enhanced. Smaller variability and increased spatial correlation, which in
turn increases the degree of spatial order in the structure of the U field, is therefore confirmed by the values of
the entropic scales. However, while the HS values of the 2-D U fields are about 15% to 22% higher than those
of the corresponding K fields, this increment in HS is not as evident for 3-D fields. As such, the entropic scales
for U and K 3-D fields tend to be more similar especially for the MVN structure (about 4% difference between
the HS values for the U and K fields) while a 7% difference was calculated for the CNT and DSC structures. This
analysis can explain the results of the transport simulations shown in Figure 4 and shed light on the different
conclusions of Zinn and Harvey (2003) and Jankovic et al. (2017). The different entropic scales for U fields in
fact indicate that over the entire domain, the persistency of zones with similar flow velocities (e.g., preferen-
tial flow paths) is higher for 2-D fields compared to 3-D fields. Consequentially, the impact of fast flow zones
on the resulting BTCs, in particular for what concerns their shapes and the corresponding statistics, is more
pronounced in 2-D fields than in 3-D fields.

It is also noteworthy that the ratio between the integral scale and the entropic scales of the different K fields is
in the range between 1.09 to 1.28 for the 2-D fields and between 1.52 to 1.92 for the 3-D fields. We recall that
an empirical value around 1.5 was found for the categorical fields as the threshold above which the transport
statistics become less significantly impacted by the K field structure. Although we cannot compare directly
the results from the continuous and categorical fields simulations, there seems to be a consistency in the
two examples suggesting that when we compare different K field structures, the larger the ratio between a
measure of spatial correlation (I for the continuous fields; Lh for the categorical fields) and HS, the lower
the impact of the structure on transport. Given that all the analyzed continuous K fields have the same I,
two additional observations can be made: (1) it is confirmed also for continuous K field that the entropic scale
is a fundamental property of the K field controlling transport behavior; (2) because the 2-D and 3-D structures
are different in terms of spatial order and geological entropy, they influence solute transport in different ways
although they all have the same univariate K distribution and covariance function, as well as the same degree
of connectivity in some cases (e.g., CNT in 2-D versus CNT in 3-D).

One last factor to consider is the effect of the injection mode (e.g., Demmy et al., 1999; Jankovic & Fiori, 2010;
Parker & van Genuchten, 1984) on the entrogram analysis. Our analysis adopts flux-weighted injection, which
is more similar to field conditions compared to a uniform (resident) injection. Under flux-weighted injection, a
larger number of particles are initially placed in the high-K zones compared to the low-K zones; as such, the
particle pathlines are not expected to sample the entire K and U fields. Moreover, particles also tend to

Figure 5. Entrogram comparison for the continuous K and Eulerian velocity (U) fields. MVN = multivariate normal;
CNT = connected; DSC = disconnected.
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rapidly transition to high-K zones and travel within them for relatively long distances (e.g., Bianchi et al., 2011;
Le Borgne et al., 2008; Pedretti & Bianchi, 2018) especially if molecular diffusion is not taken into account
(LaBolle & Fogg, 2001). In order to consider this bias in the range of K values relevant to transport behavior,
we first sampled only the K values intercepted by the particle paths and then performed the entrogram
calculations on these subsamples (Figures 6a and 6b). Two fundamental results of this analysis emerge.

The first result is that by evaluating only the K values sampled by the particles, a clear difference is observed
between CNT and DSC fields, which was not recognized by the entrograms of the entire K and Eulerian U
fields (Figure 5). This result suggests the existence of “effective” system’s entrograms to be associated only
to those zones along which transport is actually occurring. Indeed, the “effective” entropic scale is larger
for CNT fields than in DSC, consistent with the more structured transport patterns expected in CNT fields.

The second result is that such “effective” entrograms for the considered structures are significantly more
similar in 3-D than in 2-D. In particular, the different shapes of the effective entrograms and the generally
higher HR(l) values for the 2-D fields (Figure 6a) indicate that in the 2-D simulations the particles traveled
within classes of K values with a significantly lower degrees of spatial order compared to the simulations
in 3-D. Conversely, the effective entrograms for the 3-D fields (Figure 6b) are more similar regardless of
the overall K structure (i.e., MVN, CNT, or DSC) indicating not only that particles traveled within comparable
ranges of K classes but also that the spatial assemblage of these classes have a rather similar degree of spa-
tial order. These observations are further confirmed by the CDFs of the subsamples of K values, which show
a significantly higher variability for 2-D fields compared to 3-D (Figures 6c and 6d). These results strengthen
the knowledge that solutes tend to travel in the upper 15–20% of the K distribution (K classes 32–40 in
Figure 6), which tend to fully percolate in 3-D correlated random fields regardless of their overall structure
(Fogg et al., 2000; Fogg & Zhang, 2016; Harter, 2005). In light of these considerations based on the
entrogram analysis, it becomes not surprising that the impact of the structures is lower for the 3-D fields
relative to the 2-D, which could explain the different conclusions between Zinn and Harvey (2003) and
Jankovic et al. (2017).

Figure 6. Entrograms of the K values intercepted by the particle pathlines in 2-D (a) and 3-D (b) fields and corresponding
empirical cumulative distribution functions (CDFs; c and d).
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5. Summary and Conclusions

The geological entropy approach introduced in Bianchi and Pedretti (2017) is expanded in this work with a
new tool for spatial analysis called entrogram. The entrogram is a variogram-like graph that provides visual
assessment of the variability of the relative entropy index HR at different scales within any type of distributed
field. From the entrogram, a metric called entropic scale (HS) can be directly calculated to measure the persis-
tency of patterns of spatial association or clustering and therefore quantify the global degree of spatial order
in the spatial distribution. In this work, the entrogram and entropic scale analysis is limited to the assumption
of spatial isotropy, but future expansions of these concepts will also include the calculation of directional
components to investigate the effects of spatial anisotropy.

The entrogram and entropic scale tools for spatial analysis were applied to investigate the link between aqui-
fer heterogeneity and solute transport in K fields modeled as the distribution of three categories representing
hydrofacies in alluvial aquifers. These fields consider a range of mean lengths (Lh) for the most conductive
hydrofacies. A clear correlation was found between the entropic scales of these synthetic fields and the
results of solute transport simulations. In particular, empirical power-law functions were found to accurately
describe the relationships between the Lh/HS ratio and the statistics of the distributions of the particle arrival
times. These expressions mean that in line with the previous findings of Bianchi and Pedretti (2017), transport
behavior could be predicted solely from the knowledge of HS and Lh without requiring a solution of the flow
and transport equations. The universal application of these empirical rules requires, however, a clear under-
standing of themeaning of the best-fitting exponents, a task that remains open for future developments. The
results also suggest that there is a threshold, which for the fields considered in this work is in the range
1.5 ± 0.5, above which the considered statistics (with the exception of the skewness) become less sensible
to variations in the ratio between the mean length of the hydrofacies and HS.

Entrograms and entropic scales were also calculated for continuous 2-D and 3-D K field having identical
univariate lnK distributions and different connectivity structures. The calculated entrograms and entropic
scales were consistent with the expected degrees of spatial order in the considered structures. Detailed
numerical experiments similar to those performed by Zinn and Harvey (2003) and Jankovic et al. (2017)
emphasized the difference in the impact of the structure of the K field on flow variability and corresponding
transport behavior for 2-D and 3-D systems. However, this different impact is explained by the variability of
the entrograms and corresponding entropic scales of these structures in 2-D and 3-D, notwithstanding their
identical univariate K distributions, covariance functions, and even expected degrees of connectivity. For
instance, the entropic scales HS and the velocity U fields are higher for the 2-D structures compared to the
3-D ones. This result is an indication of higher persistency in 2-D systems of zones with similar flow velocities
like preferential flow paths, which in turn influence the distributions of the particle arrival times. Moreover,
the entrograms of the K values intercepted by the particle paths for the considered structures are significantly
more similar in 3-D than in 2-D. The entrogram analysis indicates that while in 2-D the particles traveled in a
different range of classes of conductivity and degree of spatial order for each structure, in 3-D, these differ-
ences become less accentuated because in every structure, particles traveled within a narrow range of
high-K classes with similar patterns of spatial association. As such, an “effective” entrogram able to predict
transport could be associated to the zones of the domain sampled by transport. Exploring this issue in detail
is also left open for future development.
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