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Abstract 6 

Thermal conductivity is required when designing ground heating and cooling schemes, 7 

electrical cable conduits and tunnel ventilation. In England these infrastructures are often 8 

emplaced within the Chalk. To improve knowledge on chalk thermal conductivity, over the few 9 

scattered measured values, estimates have been made from multi-component mixture models 10 

based on the mineral composition, porosity and the structure of the Chalk. The range in mid 11 

values for the thermal conductivities is 1.78-2.57 W m-1 K-1 where the lowest values are for the 12 

Upper Chalk. Variations in porosity are the main factor for the variation in thermal conductivity. 13 

The effect of fracturing is to reduce the bulk thermal conductivity, but the reduction is small for 14 

fractures that are saturated. For an averagely fractured chalk with 60% fracture saturation, the 15 

reduction in thermal conductivity is around 22% for a thermal conductivity of 2.15 W m-1 K-1. 16 

In the near surface zone, where fracture apertures will be at their greatest and unsaturated 17 

conditions may prevail for part of the year, the seasonal variation in thermal conductivity may 18 

be significant for infrastructure design. 19 

Introduction 20 

Thermal conductivity is the capacity of a material to conduct or transmit heat (Somerton, 21 

1992). It is an essential parameter to the understanding of the movement of heat by conduction 22 

in the subsurface. The design of infrastructure, such as ground heating and cooling schemes, 23 

electrical cable conduits and tunnels requiring ventilation, need accurate estimates of thermal 24 

conductivity. It is measured by steady state or transitory methods that measure a temperature 25 

change created by an applied heat flow through a sample of rock or through the greater rock 26 
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mass. In some rocks, thermal conductivity is anisotropic and for crystalline rocks it decreases 27 

with increasing temperature.  28 

Chalk is a very fine-grained soft, white limestone containing a very high percentage of calcium 29 

carbonate (CaCO3) with some marl bands and flint (Hancock, 1975). The Chalk Group in 30 

England was deposited in two lithological and faunal provinces ascribed to a southern province 31 

(Southern England) and a northern province (north Lincolnshire and east Yorkshire) with an 32 

intermediate region in East Anglia. The intermediate region is often referred to as being part 33 

of the southern province. This Technical Note presents modelled values of thermal 34 

conductivity for the English Chalk as a method of capturing the regional variations in a more 35 

systematic manner than is possible from the few, scattered, measured values. 36 

Laboratory derived thermal conductivity 37 

Most measured thermal conductivity values on the Chalk have been undertaken in the 38 

laboratory using a needle probe or the divided bar apparatus on drill chippings. Such 39 

measurements are only representative of chalk at a specific location and only give a matrix 40 

value as opposed to a bulk value that would include the influence of marl bands, flint and 41 

fracturing. The majority of these laboratory measurements were taken as part of the 42 

‘Investigation of the geothermal potential of the UK’ programme and are presented as mean 43 

values in Table 1. It should be noted that these measurements were made before the adoption 44 

of the new Chalk stratigraphy (Hopson, 2005; Mortimore, 2001, 2011) and hence are 45 

referenced to the old stratigraphy of Upper, Middle and Lower Chalk and this is maintained 46 

throughout this Technical Note, however the correlations between the old and new Chalk 47 

stratigraphy are shown in Table 2. The data in Table 1 suggest that in the southern province 48 

the Upper Chalk has the lowest thermal conductivity with a range of values for the Middle and 49 

Lower Chalk. Combining all the data gives a Chalk (undifferentiated) thermal conductivity of 50 

1.86 W m-1 K-1 for the southern province. The Chalk of the northern province is attributed with 51 

a much higher thermal conductivity (3.27-3.83 W m-1 K-1), possibly indicating a clear distinction 52 

between the southern and northern chalks. However, the thermal conductivity of CaCO3 is 53 
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around 3.59 W m-1 K-1 (Clauser and Huenges, 1995) and hence this would only be possible if 54 

the chalk had no porosity or a significant quantity of an impurity of high thermal conductivity. 55 

As these data are only from the Cleethorpes borehole there is also the possibility of a 56 

systematic error in the measurements and this will be explored in the sections below. 57 

Lithology and structure of the Chalk 58 

The new Chalk stratigraphy also classifies the Chalk into the White Chalk subgroup (broadly 59 

Middle and Upper Chalk) and the Grey Chalk subgroup (Lower Chalk) (see Table 2). The 60 

White Chalk is homogeneous and contains greater than 95% CaCO3 (Mortimore 2012). In the 61 

southern province the non-carbonate fraction is dominated by quartz, montmorillonite, illite, 62 

muscovite and some glauconite (Hancock, 1975; Morgan-Jones, 1977). In the northern 63 

province the White Chalk is described as 98% CaCO3 with the non-carbonate fraction 64 

dominated by montmorillonite and illite with small amounts of detrital quartz and feldspar (Gale 65 

and Rutter, 2006). The Grey Chalk is a marly chalk with a high proportion of terrigenous 66 

sediment that decreases upwards (Allen et al., 1997). Destombes and Shephard-Thorn (1971) 67 

produced a calcimetry profile of the Grey Chalk of the southern province. It showed the content 68 

of CaCO3 increasing from around 45% to 90% from the base to the top of the Grey Chalk. The 69 

non-carbonate fraction comprises clay minerals with some silt grade quartz and authigenic 70 

pyrite in the southern province (Jones and Robins, 1999) and small amounts of detrital quartz 71 

and feldspar in the northern province (Gale and Rutter, 2006). 72 

The porosity of the chalk is known to be generally high due to sedimentation and 73 

resedimentation processes during diagenesis (Bloomfield et al., 1995), although its matrix 74 

permeability is low due to unusually small pore diameters and pore throat sizes (Allen et al., 75 

1997). Regional variations in chalk porosity based on over 2000 porosity tests are reported by 76 

Bloomfield et al. (1995) who split the data into four geographical areas comprising southern 77 

England, Thames and Chilterns, East Anglia and northern England (see Figure 1). Maximum 78 

mean porosity of 38.8% was found for the southern province Upper Chalk and a minimum 79 
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mean of 18.9% for the northern province Middle Chalk. The permeability of the chalk arises 80 

from fracture flow which is generally only developed towards the top of the aquifer due to 81 

fracture closure and reduced groundwater movement, and hence reduced dissolution, at 82 

depth (Allen et al., 1997). The two dominant fracture sets are parallel to bedding or at a high 83 

angle to bedding. In the southern province Bevan and Hancock (1986) described vertical joint 84 

spacings in the range 0.1-1.0 m, Younger and Elliot (1995) measured joint spacings parallel 85 

and normal to bedding with ranges of 0.08-1.0 m and 0.11-2.0 m respectively and Mortimore 86 

(2012) reported vertical joint spacings of 0.16-1.16 m. In the northern province Patsoules and 87 

Cripps (1990) reported vertical joint spacings in the range 0.15-0.33 m. There are few direct 88 

observations of fracture apertures, but in the southern province Mortimore (2012) reports 89 

apertures of 1-4 mm, and Younger and Elliot (1995) inferred apertures in the range 0.45-0.9 90 

mm from the geochemical modelling of radon activity. From measurements along a single 91 

bedding plane fracture in the southern province Bloomfield (1996) reported apertures from 92 

0.5-23.5 mm although the larger apertures were attributed to solution processes. In the 93 

northern province, Patsoules and Cripps (1990) measured apertures in the range 0.1-0.6 mm. 94 

Marl bands occur throughout the Chalk. They can be up to several centimetres thick and some 95 

are laterally continuous for several hundreds of kilometres (Allen et al., 1997). The marl seams 96 

have been used extensively as marker horizons for correlation purposes (Mortimore 1986). 97 

They are generally considered to be derived from contemporary airborne volcanic ash falls 98 

and are rich in smectite (Allen et al., 1997). However, Wray and Jeans (2014) reported that 99 

many of the marl seams only contain 3-10% of non-carbonate minerals and may be of detrital 100 

origin and that the volcanically derived marl seams are more appropriately described as 101 

bentonites. Published data on the percentage of the Chalk that is comprised of the marl bands 102 

is lacking. However, Gale and Rutter (2006) report that the upper unit of the Upper Chalk of 103 

the northern province (Flamborough Formation) has numerous marl seams typically 1 to 3 cm 104 

in thickness that occur with an average frequency of almost one per metre, but that this is far 105 

more abundant than in the underlying Chalks. This implies a maximum marl band content of 106 
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around 3%. From data presented in Mortimore (2011) the marl band content in the Upper 107 

Chalk of the southern province may be around 1.5%. 108 

Flint is associated with chalk and is found in layers parallel to bedding or as scattered discreet 109 

nodules (Allen et al., 1997). Flint is a variety of chert, sometimes referred to as 110 

cryptocrystalline quartz, comprising very fine quartz crystals arranged in a random mosaic 111 

leaving a number of minute cavities filled with water (Hancock, 1975). The layers generally 112 

occur as sheets, which are usually thin (1 – 5 cm) or as layers of nodules (5 -15 cm thick) 113 

(Mortimore, 2012). In the sheets, flint has replaced subhorizontal and/or subvertical shear 114 

planes, whilst the nodules have been shown to be the infills of burrow systems of animals that 115 

lived on the sea bed (Bromley, 1967). Where the flint nodules are so abundant that they 116 

coalesce into a more or less continuous bed, they are referred to as a tabular flint. In the 117 

southern province the Lower and Middle Chalk are generally flintless, whilst there are 118 

numerous flint bands within the Upper Chalk (Allen et al., 1997). It is similar in the northern 119 

province (generally flintless Lower and Middle Chalk), but the lower formation (Burnham 120 

Formation) of the Upper Chalk has frequent flint bands, compared to the upper formation 121 

(Flamborough Formation) which is flintless. In the coastal area of Holderness there is an 122 

additional unit above the Flamborough Formation, called the Rowe Chalk Formation that 123 

contains flint bearing beds (Gale and Rutter, 2006). Mortimore and Wood (1986) report a flint 124 

maximum that is seen across the southern and northern provinces and occurs near the top of 125 

the Turonian stage (near the base of the Upper Chalk; see Table 2). As with the marl bands, 126 

the flint layers have been extensively mapped and used as marker horizons for 127 

lithostratigraphic correlations. However, there is very little published data on the quantity of 128 

flint within the chalk. Dornbusch (2005) and Dornbusch et al. (2006) calculated flint 129 

percentages within the Upper Chalk of the southern province from digital photographs of the 130 

cliffs between East Sussex and Kent. They found the percentage decreased from around 4.5% 131 

to 1.5% from the base (Lewes Chalk Formation) to the top (Culver Chalk Formation) of the 132 

Upper Chalk, indicating an average of around 3%. Mortimore (2012) reported an assessment 133 
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of flint from the top of the Upper Chalk of the southern province (Culver Chalk Formation) as 134 

part of the Shoreham Harbour tunnel site investigations. The spacing of flint bands was found 135 

to range from 1.23-2.33 m with flints 15-20 cm across. Analyses showed that flint percentages 136 

were likely to be 5% or greater. 137 

Modelling of Chalk thermal conductivity 138 

The modelling is based on multi-component mixture models, as summarised by Clauser 139 

(2006). Due to their well-defined compositions, the thermal conductivities of minerals show a 140 

much smaller variance than rocks and can be combined with the thermal conductivities of the 141 

saturating fluids to estimate the thermal conductivity of the rock. For randomly composed 142 

mixtures, such as the matrix of the rock, the geometric mean model is preferred. In this case 143 

the geometric mean thermal conductivity of an n-component system is the product of the 144 

thermal conductivity of each component raised to the power of its fractional component, i.e., 145 





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i

iim
1

  146 

where λm is the mean matrix thermal conductivity, λi is the thermal conductivity of the ith 147 

component and φi is the fractional proportion of the ith component. 148 

Chalk comprises a bedded sequence in which the matrix is layered with marl and flint bands. 149 

When the heat flow is perpendicular to the layers (i.e. geothermal heat flux, seasonal 150 

temperature changes) the thermal conductivity is calculated with a harmonic mean model, i.e., 151 
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where λl is the mean layered thermal conductivity, λi is the thermal conductivity of the ith layer 153 

and φi is the fractional thickness of the ith layer. In the event of any vertical contacts within the 154 

chalk, i.e. vertically orientated fractures where the heat flow is parallel to the fractures, the 155 
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layered thermal conductivity is modified with an arithmetic mean model to derive a bulk thermal 156 

conductivity, i.e., 157 
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where λb is the mean bulk thermal conductivity, λi is the thermal conductivity of the ith vertical 159 

component and φi is the fractional width of the ith component. Mixing models are not based 160 

on physical models and so do not take into account factors such as the geometrical 161 

relationships between the different mineral components and so all have their limitations. Most 162 

of the multi-component mixture models work to within 10% – 15% accuracy (Clauser, 2006). 163 

Hence, the modelling strategy has been to derive a bulk thermal conductivity by a sequential 164 

application of the mixture models. Figure 2 shows a schematic diagram of the chalk used in 165 

the modelling. The matrix thermal conductivity has been derived by combining the mineralogy 166 

and porosity (that is assumed to be water filled) with a geometric mean model. The marl and 167 

flint bands were then taken into account to generate a layered thermal conductivity with the 168 

harmonic mean model. Finally, the influence of fracturing has been considered with a minimum 169 

and a maximum jointed/fractured model in which the proportion of space occupied by the 170 

fractures has been estimated. For the minimum fracture case it has been assumed that the 171 

bedding plane fracture spacing is 1 m and the fractures have an aperture of 0.1 mm, creating 172 

a minimum proportional space of 0.0001. Vertically orientated fractures are assumed to have 173 

a spacing of 1 m and an aperture of 0.5 mm, creating a minimum proportional space of 0.0005. 174 

For the maximum fracture case the bedding plane fracture spacing is 0.05 m with an aperture 175 

of 0.7 mm, creating a maximum proportional space of 0.014. The vertical fractures are 176 

assumed to have a spacing of 0.1 m with an aperture of 5.0 mm, creating a maximum 177 

proportional space of 0.05. To calculate the bulk thermal conductivities a series of models 178 

have been run in which the proportion of facture space increases from the minimum to the 179 

maximum case, with the bedding plane fractures incorporated with the harmonic mean model 180 
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and the vertical fractures with the arithmetic mean model.  In addition separate models were 181 

run for fracture saturations of 0%, 20%, 40%, 60%, 80% and 100%. 182 

Results 183 

Table 3 lists the input data used to derive the matrix and layered thermal conductivities for the 184 

Upper, Middle and Lower Chalk in the southern and northern provinces. The thermal 185 

conductivities attributed to the model components are listed in Table 4. Thermal conductivity 186 

ranges have been derived and are quoted as minimum, mid and maximum values. For the 187 

input data, porosity ranges are from Bloomfield et al. (1995) and comprise the 10th, 50th and 188 

90th percentiles of the measured populations except for the northern England Lower Chalk 189 

which is from Barker (1994) and comprises the mean with minimum and maximum porosities 190 

estimated as two standard deviations from the mean. Flint ranges in the Upper Chalk are 191 

1.5%, 3% and 15% with the maximum value estimated from Mortimore and Wood (1986). The 192 

marl seams have not been considered over a range as the thermal conductivity of the marl 193 

seam (2.05 W m-1 K-1; see Table 3 for its composition) is similar to chalk and over the low 194 

percentages of marl from the seams has minimal effect on the chalk bulk thermal conductivity. 195 

The layered thermal conductivities are tabulated in Table 5. These can be considered as the 196 

bulk thermal conductivities if the effect of fracturing is not taken into account. 197 

In order to illustrate the effect of fracturing, a fracture model was run for the mid-range thermal 198 

conductivity of 2.15 W m-1 K-1 from Table 5. The results are presented in graphical form in 199 

Figure 3 as thermal conductivity against fracture space by proportional volume for a range of 200 

fracture saturations. It has been assumed that there are no fracture fillings, such as 201 

fragmented flint, clay coated gravel or sand sized aggregates of chalk clasts as reported by 202 

Bloomfield (1996). 203 

Discussion 204 
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The range in mid values for the layered thermal conductivities is 1.78-2.57 W m-1 K-1 where 205 

the lowest values are for the Upper Chalk due to the higher porosities observed in both the 206 

southern and northern provinces. The highest thermal conductivities are for the northern 207 

England Middle Chalk due to the lowest porosities. The effect of the marl seams on the thermal 208 

conductivity is negligible and that of flint, only in regions of flint maximum. Increasing the flint 209 

volume from 3-15% increases the thermal conductivity by around 5-6%. In the northern 210 

province Upper Chalk, the Flamborough Formation is flint free, resulting in a modelled range 211 

in thermal conductivity of 1.71-1.81-2.31 W m-1 K-1, which can be compared to the values in 212 

Table 5 that relate to the flint bearing Burnham Formation. Figure 3 illustrates the reduction in 213 

thermal conductivity due to fracturing. For fractures in the saturated zone the maximum 214 

reduction is only 7%. In the unsaturated zone the reductions are more significant; at a fracture 215 

volume of 0.03, thermal conductivity is reduced by 13% at 80% saturation and by 33% at 20% 216 

saturation. Since fracture apertures are likely to be greater in the near surface unsaturated 217 

zone than at depth, the level of saturation is important for thermal conductivity. It is also 218 

possible that there will a seasonal variation of thermal conductivity that may affect the 219 

performance of infrastructure within the unsaturated zone. With a lowering of the water table 220 

in the summer, a closed loop GSHP borehole will operate less effectively than in the winter 221 

and a dry winter could lead to less efficient operation when heating is required the most. In a 222 

similar manner, tunnel ventilation will be most affected in the summer when cooling is most 223 

needed. The mean seasonal water level variation across the unconfined (outcrop) Chalk is 224 

about 5 m and variations are generally less than 32 m. The maximum seasonal water level 225 

variation is about 40 m and there is a higher concentration of > 30 m variation in the Chalk of 226 

southern England. The effect on thermal conductivity can be illustrated using the fracture 227 

results above. For a 100 m deep vertical borehole in Chalk of bulk thermal conductivity 2.15 228 

W m-1 K-1, for a drop in water level of 5 m the bulk thermal conductivity for the length of the 229 

borehole is 2.13 W m-1 K-1 for fracture saturation of 80% (in the 5 m unsaturated zone) and 230 

2.10 W m-1 K-1 for fracture saturation of 20%. For the maximum case of a 40 m change in 231 
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water level, the bulk thermal conductivities reduce to 2.03 W m-1 K-1 for fracture saturation of 232 

80% (in the 40 m unsaturated zone) and 1.79 W m-1 K-1 for fracture saturation of 20%. 233 

The calculated thermal conductivities are apparent as they are dependent on the direction of 234 

heat flow, assumed to be vertical. In ground source heat applications that utilise a closed loop 235 

vertical borehole or thermal pile, the heat flow close to the borehole or pile will be horizontal. 236 

To examine this effect on the calculated thermal conductivity, the unfractured Chalk model of 237 

bedded chalk, marl seams and flint bands has been rerun using the arithmetic mean model 238 

since the heat flow is now parallel to the layering. The Middle and Lower Chalk are unchanged 239 

due to their lack of flint. The maximum change is an increase in thermal conductivity for the 240 

southern England/Thames and Chilterns Upper Chalk maximum model (15% flint, 1.5% marl) 241 

of 0.11 W m-1 K-1, a 5% increase. The increase is less for the mid-range models, e.g. for the 242 

southern England mid-range Upper Chalk model (3% flint, 1.5 % marl) the thermal conductivity 243 

increases from 1.78 to 1.82 W m-1 K-1, a 2% increase. The fracture models have also been 244 

rerun with the arithmetic mean model for the bedding plane fractures (heat flow parallel to 245 

fracturing) and the harmonic mean model for the vertical fracturing (heat flow perpendicular to 246 

fracturing). Now, the maximum reduction in thermal conductivity for fractures in the saturated 247 

zone is 12%. In the unsaturated zone, the reductions in thermal conductivity at a fracture 248 

volume of 0.03, are 32% at 80% saturation and 63% at 20% saturation. These increases are 249 

a reflection of the greater fracture space in the vertical fracturing and the link to the heat flow 250 

direction in these models. 251 

The modelled values in Table 5 can be compared to the measured thermal conductivities on 252 

core chippings listed in Table 1. For the southern province the measured values all agree with 253 

the modelled values to within the quoted accuracy of 10-15% and support the general 254 

conclusion of lower thermal conductivities for the Upper Chalk and lower thermal conductivities 255 

for the Middle and Lower Chalk of East Anglia compared to southern England. For northern 256 

England there is no agreement between Tables 1 and 5 and since the measured thermal 257 

conductivities are only possible if the chalk had no porosity, it is therefore concluded that the 258 
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measured values are in error and should be discounted. Thermal conductivities are also 259 

available from thermal response tests (TRT) carried out in closed loop boreholes. These 260 

generate a bulk thermal conductivity which is an integrated value of thermal conductivity of 261 

the strata over the length of the borehole (Banks, 2008). The TRT measurements referenced 262 

here were all made in the saturated zone and hence the heat flow direction will only have a 263 

minor effect. Banks et al. (2013) reported the results of 61 UK TRTs and indicated that Chalk 264 

thermal conductivities of southern England fall within the range 1.7-2.0 W m-1 K-1. 265 

Hemmingway and Long (2012) reported the results of a TRT in Norfolk from a 204 m deep 266 

borehole that penetrated 21 m of sand and gravel and 183 m of chalk with flint. The measured 267 

thermal conductivity was 1.9 W m-1 K-1, but if the ground is assumed to be horizontally layered 268 

then by applying the arithmetic mean model (heat flow assumed radial to the borehole) and 269 

assigning a thermal conductivity of 2.0 W m-1 K-1 to the sand and gravel (Clarke et al., 2008), 270 

then the chalk thermal conductivity calculates as 1.89 W m-1 K-1. From Table 5 the mid thermal 271 

conductivity value for East Anglian Upper Chalk is 1.87 W m-1 K-1, in close agreement with the 272 

TRT result. Loveridge et al. (2013) described the results of a TRT test from a borehole in east 273 

London that penetrated the Chalk between 56 and 150 m depth. Thermistors installed within 274 

the backfill of the borehole enabled an evaluation of thermal conductivity for specific borehole 275 

intervals rather than a single value for the entire borehole. A mean thermal conductivity for the 276 

Chalk derived from values in both the injection and recovery phases of the test was 2.03 W 277 

m-1 K-1. Chalk from this depth and location is White Chalk (Upper and Middle Chalk undivided) 278 

and the measured thermal conductivity is in accord with the southern England values in Table 279 

5. 280 

Conclusions 281 

The thermal conductivity of the English Chalk has been estimated from multi-component 282 

mixture models. If the influence of fracturing is not taken into account, then the bulk thermal 283 

conductivity range of mid values is 1.78-2.57 W m-1 K-1 and the minimum to maximum range 284 

is 1.53-2.77 W m-1 K-1. Variations in porosity are the main factor for the variation in thermal 285 
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conductivity. The effect of fracturing is to reduce the bulk thermal conductivity, but the 286 

reduction is small for fractures that are saturated. For an averagely fractured chalk with 60% 287 

fracture saturation, the reduction in thermal conductivity is around 22% for a thermal 288 

conductivity of 2.15 W m-1 K-1 (range; 18% reduction for λ = 1.65 W m-1 K-1 and 24% reduction 289 

for λ = 2.43 W m-1 K-1) and with 100% fracture saturation, the reduction is around 4% for a 290 

thermal conductivity of 2.15 W m-1 K-1 (range; 3% reduction for λ = 1.65 W m-1 K-1 and 4% 291 

reduction for λ = 2.43 W m-1 K-1). In the near surface zone, where fracture apertures will be at 292 

their greatest and unsaturated conditions may prevail for at least part of the year, the reduction 293 

will be most significant. As a first pass in selecting thermal conductivities for the Chalk, the 294 

mid layered values should be selected based on a classification of Upper, Middle or Lower 295 

Chalk in the southern or northern provinces. Where there is more detailed local knowledge on 296 

structure and the extent of the unsaturated zone the thermal conductivities can be reduced 297 

accordingly. 298 
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Figure and Table captions 1 

Figure 1. Geographical areas of the English Chalk superimposed on the Chalk outcrop 2 

(shaded grey), after Bloomfield et al. (1995). 3 

Figure 2. Schematic diagram of chalk used for the modelling comprising chalk matrix, flint 4 

layers, marl seams and fractures. The thermal conductivity of the chalk matrix was calculated 5 

with the geometric mean. With an assumed vertical heat flow, the thermal conductivity of the 6 

horizontal model components was calculated with the harmonic mean and the vertical 7 

components with the arithmetic mean. Note: λ is the combined thermal conductivity, λi is the 8 

thermal conductivity and ϕi is the volume fraction of the ith phase respectively. 9 

Figure 3. Plot of thermal conductivity against fracture space by proportional volume for a model 10 

with a layered thermal conductivity of 2.15 W m-1 K-1 with a bedding plane fracture volume of 11 

0.0001-0.014 and a vertical fracture volume of 0.0005-0.05. Fracture saturations from 0-100% 12 

are shown where the saturated volume is water and the unsaturated volume is air. 13 

Table 1. Laboratory measured mean thermal conductivities of the English Chalk as reported 14 

in the literature. The porosity and state of saturation of the samples was not recorded at the 15 

time of measurement. Note; the method of measurement is indicated in brackets against the 16 

number of samples, where NP is the needle probe and PDB is the divided bar apparatus used 17 

on drill chippings placed in a pill box. 18 

Table 2. The old (Traditional) and new Chalk lithostratigraphy after Mortimore et al. (2001) and 19 

Hopson (2005). 20 

Table 3. Input data for the multi-component mixture models. Three porosities are shown for 21 

each Chalk unit corresponding to the 10th, 50th and 90th percentiles of measured porosities 22 

from Bloomfield et al. (1995) except for the northern England Lower Chalk which is from Barker 23 

(1994) and comprises the mean with minimum and maximum porosities estimated as two 24 

standard deviations from the mean. Where flint is included in the model it ranges from 1.5-3-25 

15% by volume. Abbreviations used for the mineral descriptions are explained in Table 4. 26 
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Table 4. Thermal conductivities assigned to the model components. 27 

Table 5. Results from the multi-component mixture models for the English Chalk comprising 28 

the layered thermal conductivities, i.e. bulk thermal conductivities if the influence of fracturing 29 

is not taken into account. The results are tabulated as minimum, mid and maximum for each 30 

Chalk unit. 31 



 Thermal conductivity 
(W m-1 K-1) 

No. of 
samples 

Borehole Reference 

 Southern 
Province 

Northern 
Province 

   

Upper Chalk 1.71 ± 0.05  14 (NP) Southampton Wheildon et al. (1985) 

 1.56 ± 0.02  24 (NP) Stowlangtoft Wheildon et al. (1985) 

  3.27± 0.1 6 (PDB) Cleethorpes Gebski et al. (1987) 

Middle Chalk 2.44 ± 0.18  3 (NP) Southampton Wheildon et al. (1985) 

 1.58 ± 0.02  20 (NP) Stowlangtoft Wheildon et al. (1985) 

  3.42 ± 0.18 3 (PDB) Cleethorpes Gebski et al. (1987) 

Lower Chalk 1.71 ± 0.04  2 (NP) Harwell No. 3 Wheildon et al. (1985) 

 2.36 ± 0.27  4 (NP) Southampton Wheildon et al. (1985) 

 2.37 ± 0.21  8 (NP) Winterborne 
Kingston 

Bloomer et al. (1982) 

 1.67 ± 0.02  15 (NP) Stowlangtoft Wheildon et al. (1985) 

  3.83  1 (PDB) Cleethorpes Gebski et al. (1987) 

Chalk 
(undifferentiated) 

1.79 ± 0.54  41 (PDB) Marchwood Burgess et al. (1981) 
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Northern Province 
Formations 

Southern Province 
Formations 

Campanian 

Santonian 

Coniacian 

Turonian 

Cenomanian 

Upper Chalk 

Middle Chalk 

Lower Chalk 

White Chalk 

Grey Chalk 

Portsdown Chalk 

Culver Chalk 

Newhaven Chalk 

Seaford Chalk 

Lewes Nodular 
Chalk 

New Pit Chalk 

Holywell Nodular 
Chalk 

Zig Zag Chalk 

West Melbury 
Marly Chalk 

Rowe Chalk 

Flamborough 
Chalk 

Burnham Chalk 

Welton Chalk 

Ferriby Chalk 

Subgroup 

Stage 

New Chalk Stratigraphy 
Old Chalk 

Stratigraphy 
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 Matrix 
mineralogy 

Porosity (%) Marl seams Flint 
bands 

Southern Province  Southern 
England 

Thames & 
Chilterns 

East 
Anglia 

Northern 
England 

53.9%CaCO3, 
23.1%Sme, 
23%H2O 

 

Upper Chalk 97%CaCO3, 1%Qtz, 
1%Mnt, 0.33%Ill, 
0.33%Glt, 0.33%Ms 

31.7 
39.8 
44.7 

31.7 
39.8 
44.7 

29.4 
37.1 
48.1 

 1.5% 1.5% 
3.0% 
15.0% 

Middle Chalk 97%CaCO3, 1%Qtz, 
1%Mnt, 0.33%Ill, 
0.33%Glt, 0.33%Ms 

22.3 
28.3 
35.0 

24.0 
31.8 
39.5 

27.4 
33.6 
42.4 

 1.5% no flint 

Lower Chalk 70%CaCO3, 15%KLn, 
4%Sme, 4%Ill, 
4%Mnt, 1.5%Qtz, 
1.5%Fsp 

13.3 
22.9 
34.2 

16.3 
27.0 
35.5 

27.4 
33.6 
42.4 

 Incorporated in 
matrix 

no flint 

Northern Province        

Upper Chalk 98%CaCO3, 
0.25%Qtz, 0.875%Ill, 
0.875%Mnt 

   23.8 
38.0 
41.2 

3% 1.5% 
3.0% 
15.0% 

Middle Chalk 98%CaCO3, 
0.25%Qtz, 0.875%Ill, 
0.875%Mnt 

   13.7 
18.0 
24.7 

1% no flint 

Lower Chalk 70%CaCO3, 14%Ill, 
14%Mnt, 1%Qtz, 
1%Fsp 

   17.6 
20.6 
23.6 

Incorporated in 
matrix 

no flint 
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Model component Abbreviation Thermal 
conductivity 
(W m-1 K-1) 

Reference 

Air  0.024 Banks (2008) 

Calcium Carbonate CaCO3 3.59 Clauser and Huenges (1995) 

Feldspar Fsp 2.12 Clauser and Huenges (1995)  

Flint  3.7 Horai (1971) 

Glauconite Glt 1.63 Horai (1971) 

Illite Ill 1.85 Brigaud and Vasseur (1989) 

Kaolinite Kln 2.64 Brigaud and Vasseur (1989) 

Montmorillonite Mnt 1.4 Knutsson (1983) 

Muscovite Ms 2.32 Horai (1971) 

Quartz Qtz 7.69 Clauser and Huenges (1995) 

Smectite Sme 1.88 Brigaud and Vasseur (1989) 

Water H2O 0.6 Ozbek and Phillips (1979) 
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 Thermal conductivity (W m-1 K-1) 

Southern England 
Thames & 
Chilterns 

East Anglia Northern England 

 min mid max min mid max min mid max min mid max 

Upper Chalk 1.63 1.78 2.17 1.63 1.78 2.17 1.53 1.87 2.25 1.73 1.84 2.45 

Middle Chalk 1.91 2.15 2.39 1.77 2.02 2.32 1.68 1.96 2.18 2.28 2.57 2.77 

Lower Chalk 1.78 2.15 2.52 1.75 2.01 2.40 1.56 1.80 2.00 1.99 2.08 2.18 
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