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Spatial scales of marine conservation management for 
breeding seabirds 2 
  
 4 
 

1. Introduction 6 

Decision makers often have to select among a suite of management actions that might benefit 

a given species, and management options can range from small-scale solutions that protect a 8 

local area from outside disturbance or destruction, to large-scale or global actions that 

regulate human activities which are considered detrimental. In the marine realm, the 10 

unambiguous delineation of important areas for the protection of biodiversity is complicated 

by the lack of obvious habitat boundaries [1-3], and in many cases the spatial scale of marine 12 

protected areas is inadequate to fully protect the species of interest [4, 5]. Selecting the most 

appropriate conservation management option will therefore benefit from accurate knowledge 14 

about the spatial scale at which management is required to protect highly mobile species [6]. 

Seabirds are distributed across all of the world’s oceans and adjacent coastlines and 16 

islands [7, 8]. They face multiple threats on land and at sea, and are more threatened than 

other groups of birds [9-11]. Because many seabirds feed on fish and are near the apex of the 18 

marine food chain, they are useful indicator species for the health of the marine environment 

and for marine spatial planning [12-14]. To protect seabirds at sea it is essential to understand 20 

their spatial distribution and potential exposure to anthropogenic threats. During the breeding 

season, seabirds are constrained to marine areas which they can reach from their nest while 22 

maintaining parental duties of incubating eggs or feeding chicks. The areas exploited during 

the breeding season are therefore important for the persistence of populations, and may be 24 

more feasible to manage than areas used during other life stages. However, some seabird 

species can travel thousands of kilometres even during the breeding season [e.g. 8, 15, 16], 26 

and the spatial scale of appropriate management may therefore vary.  

Currently available approaches for seabird conservation at sea can be implemented 28 

across a range of spatial scales and within a variety of regulatory frameworks [5, 17]. Area-

based management approaches such as marine protected areas can be based on a broad 30 

variety of management frameworks that range from complete protection from all extractive 

and destructive activities (‘marine reserves’) to multiple use areas that permit and regulate 32 

economic activity [18-20]. For seabirds, area-based measures range from the protection of 
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breeding colonies at the very local scale, to marine foraging areas around colonies and further 34 

offshore where significant seabird concentrations occur [21-23]. At larger spatial scales, 

additional conservation management options exist for seabirds that are not based on the 36 

protection of a specific area [17]. For example, regulations that reduce or eliminate the 

incidental mortality (bycatch) of seabirds in industrial or artisanal fishing operations [11, 24, 38 

25], or regulations that limit the extraction of food resources [26, 27], can be implemented 

across all spatial scales and may therefore mitigate key threats to widely dispersed species 40 

[28-30]. Deciding which of these policy instruments may be most appropriate for a given 

seabird species of conservation concern can be informed by a better understanding of the 42 

species’ broad spatial distribution and aggregation patterns. 

The distribution of seabird species was often inferred from observations at sea, until 44 

the development of small tracking devices in recent decades [31-33]. By 2017, more than 100 

of the 360 species of seabirds had been equipped with tracking devices [34]; hence, sufficient 46 

seabird tracking data exist on the spatial scales of foraging to inform effective management at 

a broad taxonomic level [6, 35, 36]. To synthesize the existing information for management 48 

planning, two complementary aspects of seabird distribution patterns are particularly 

important, albeit not entirely independent: (1) the distance a species travels and the size of the 50 

marine area that birds of a given colony exploit; and (2) to what extent individuals of the 

same colony use the same areas at sea, which is referred to as 'spatial aggregation'. Even very 52 

mobile species can show high spatial aggregation at sea, and areas in which they congregate 

may be in national or international waters depending on the distance the birds travel from the 54 

colony [37, 38]. Here, seabird space-use with respect to these two aspects is quantified to 

indicate appropriate spatial scales for conservation management of breeding seabirds at the 56 

family level. 

Existing tracking data from 52 species of ten different families collected in the 58 

Atlantic Ocean basin over the past two decades were used. These data were analysed with 

previously established methods [1, 39, 40] to quantify the broad space-use requirements and 60 

spatial aggregation patterns of adult seabirds during the breeding season, and variation among 

families was tested. This approach allowed an assessment of whether the patterns of 62 

taxonomically coherent groups of species are sufficiently consistent to provide guidance for 

marine management. 64 
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2. Methods 66 

2.1.Data collation and aggregation 

Seabird tracking data were collated for adult birds during the breeding season, when 68 

individuals are most constrained in their space-use due to the need to return to the nesting site 

on land. This constraint to return to the nest will likely accentuate differences between 70 

families and therefore facilitate a greater contrast in the space-use across the taxonomic 

spectrum. While protecting juvenile, immature and adult life-stages outside the breeding 72 

season is equally important for the conservation of long-lived species [41, 42], the movement 

patterns of seabirds when they are not breeding may be more affected by their latitudinal 74 

distributions than by taxonomic differences [43, 44]. In addition, a broad taxonomic 

comparison of distribution patterns of juvenile, immature, and adult life stages outside the 76 

breeding season is currently difficult due to the paucity of suitably high-resolution tracking 

data for these stages. 78 

Seabird tracking data from the Atlantic Ocean basin were available from the BirdLife 

Seabird Tracking Database [34] or through institutional repositories or collaborators. The 80 

selection of data used for this analysis was opportunistic and taxonomically imbalanced 

because seabird tracking efforts have so far focused on species and families of larger body 82 

size. However, the data represent a broad taxonomic spectrum of seabird movements during 

the breeding season from a large geographical region and are therefore useful to inform 84 

spatial scales for management. 

Only tracking data from Global Positioning System (GPS) loggers and Platform 86 

Terminal Transmitters (PTT) were used due to their high spatial accuracy, and only datasets 

with at least five individuals were included to minimise erroneous conclusions based on small 88 

sample size [1, 37, 40]. During the breeding season, adult seabirds can be constrained to 

forage within different distances from their nest depending on whether they are incubating 90 

eggs or feeding small or large chicks [16, 45-47]. All tracking data were therefore divided 

into two stages, distinguishing the incubation period from the chick-rearing period when 92 

adults regularly return to feed the chick and therefore may not travel as far. Tracking data 

were analysed separately for each combination of species, colony, and breeding stage, except 94 

for some species where the tracking period spanned separate breeding stages that were not 

distinguished because of a lack of concurrent monitoring (classified as ‘unspecified 96 
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breeding’, Table S1). Our analysis was based on 210 datasets of 52 species from ten seabird 

families (Tables 1 and S1). 98 

 

2.2.Rationale for space-use quantification 100 

The analysis to support the selection of appropriate spatial scales for conservation 

management was designed to quantify seabird space-use in terms of (1) the distance that birds 102 

travel from their colony and the extent of the overall area that was exploited, and (2) the 

spatial aggregation at sea and the size of areas where a significant proportion of the 104 

population concentrated. 

Although tracking data were collated from a 20-year time period, and it is possible that 106 

seabirds may have shifted their distribution in response to environmental changes over that 

time period [48, 49], the coarse metrics of space-use, which are based on evolutionary 108 

differences among families, were unlikely to have changed over two decades. Hence, the year 

in which data were collected was not considered in the analysis, and the analysis was based 110 

on the assumption that travel capabilities of the ten seabird families have not fundamentally 

changed between 1998 and 2017. 112 

 

<<<< TABLE 1 here >>>>  114 

 

Quantifying the travel distance and size of exploited area 116 

First, unrealistic locations were removed based on a species-specific speed filter [50] and 

PTT data were linearly interpolated to a regular 1 hr interval to reduce differences between 118 

GPS and PTT data due to their different temporal sampling resolution [51]. Mean sampling 

schemes were one location every 17 ± 32 minutes (standard deviation, range 0.5 – 156) for 120 

GPS and one location every 65 ± 34 minutes (2.4 – 188) for PTT datasets. Tracking data 

were then divided into discrete foraging trips either manually or using species- and device-122 

specific cut-off values for minimum distances and durations implemented with standard 

processing routines [1]. For each foraging trip the maximum distance from the colony 124 

(foraging range) and the total travel distance as the sum of all straight-line distances between 
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all subsequent locations were calculated. The median (and range) of these trip characteristics 126 

are presented for each species, based on all foraging trips from all colonies and breeding 

stages, to provide a general overview of travel capabilities across seabird species [52-54]. 128 

These summaries were also calculated using just the first trip of any given individual to 

reduce pseudo-replication [55, 56], but this data reduction did not alter the broad taxonomic 130 

pattern (Table S2). 

Because single-dimension trip characteristics do not capture the range of 132 

directionality across foraging trips from individuals in a colony, the area used by each species 

at each colony was also quantified. This area was calculated as the minimum convex polygon 134 

of 95% of all locations for each tracking dataset and is hereafter referred to as ‘exploited 

area'. A minimum convex polygon was chosen to encompass less frequently used areas, and 136 

95% of locations were selected to avoid identifying an excessively large area due to some 

erratic trips or low-quality location estimates; this approach is deemed appropriate for 138 

similarly large-scale taxonomic comparisons [57, 58]. 

 140 

2.2.1. Quantifying the spatial aggregation and size of area with concentrated use 

Foraging areas may range from widely dispersed to highly concentrated in a relatively 142 

restricted area. First, the ‘core area’ for each individual was calculated as the 50% kernel 

utilization distribution, and the extent of overlap between core areas of all individuals of a 144 

given species at a colony in a given breeding stage was then quantified. To identify the core 

area, the scale of the area-restricted search derived from first-passage time analysis was used 146 

as the smoothing factor in the kernel density estimator [1, 59, 60]. Because the core area size 

is dependent on the smoothing factor, and area-restricted search may be difficult to detect for 148 

some species or data resolutions [61], an alternative approach was also used in which the 

smoothing factor was scaled to the median foraging range of a colony. Results from both 150 

approaches were highly correlated and did not affect our conclusions (Table S3), and only 

results from the former approach are presented. The overlap in core areas of individuals was 152 

quantified using Bhattacharyya’s Affinity index (BA), a non-directional measure of home-

range overlap that ranges between 0 (complete separation) and 1 (completely matching 154 

probability distributions), and is considered the most appropriate index for quantifying the 

similarity between utilisation distributions [39, 62]. Because the BA is calculated between 156 

pairs of individuals, the BA across all pairwise comparisons was averaged for a given dataset. 



6 
 

Individuals for which <10 locations were available were excluded from the estimation of 158 

spatial aggregation. 

To compare the size of the core areas of each population (hereafter ‘area of 160 

concentrated use’), the 50% kernel utilisation distribution of each individual was delineated, 

and areas where the 50% kernels of at least 20% of tracked individuals of that population 162 

overlapped were identified [1]. 

To provide a scale of reference for the marine area requirements of seabirds, the sizes 164 

of existing marine protected areas were downloaded from the World Database on Protected 

Areas (www.protectedplanet.net, accessed 15 Aug 2017), and filtered to include only marine 166 

and coastal protected areas. 

2.3.Assessing representativeness of datasets with varying sample size 168 

Sample size can affect quantitative metrics of space-use based on tracking data [40, 51, 63]. 

Because datasets ranged from 5 to 119 individuals per colony and breeding stage, the 170 

representativeness of each dataset was quantified to characterise the distribution at the level 

of the colony. Following the approach of Lascelles et al. [1], each dataset was iteratively sub-172 

sampled to randomly select tracking data from 3 to n-1 individuals, where n is the number of 

individuals tracked in that dataset. During each iteration, the 50% kernel utilisation 174 

distribution was calculated from the randomly selected data, and the proportion of the un-

sampled locations that fell within the 50% isopleth was assessed. If the proportion of un-176 

sampled locations contained within the 50% isopleth of the randomly selected individuals 

(hereafter referred to as the ‘inclusion value’) was ≥50%, then the dataset was considered 178 

representative for the colony because the un-sampled individuals were already properly 

represented by the sampled individuals [1]. For each simulated sample size of every dataset 180 

30 iterations were performed and the mean inclusion value across the 30 iterations was 

calculated for each sample size. A non-linear least-squares regression was then fitted to 182 

inclusion values to estimate the asymptote of each dataset based on the 30 iterations for each 

simulated sample size. 184 

The representativeness of each dataset is reported as the proportion of the estimated 

asymptote that the mean inclusion value of a dataset achieved at the highest sample size. If 186 

this representativeness was >70%, a dataset was adequate to describe the space-use of the 

population [1, 40]. If the non-linear regression could not identify an asymptote due to a 188 
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singular gradient (i.e. the area expansion had not levelled off with increasing sample size), 

the mean inclusion value for the largest sample size of that dataset was used. The level of 190 

representativeness was then tested for a positive correlation with the number of individuals 

that had been tracked by calculating the Pearson correlation coefficient. The proportion of 192 

datasets for each family where the tracking data were considered not representative for the 

spatial distribution of a given colony is presented (Table S4). 194 

 

2.4. Statistical analysis 196 

To examine whether there was evidence for variation in space-use patterns at a higher 

taxonomic level [64, 65], the effect of seabird family on maximum travel distance from the 198 

colony, spatial aggregation (BA), the size of an area of concentrated use, and the size of the 

exploited area was tested. Generalised linear mixed models that included colony size and the 200 

stage of the breeding cycle as fixed effects were used. These two factors affect the space-use 

patterns of seabirds [66-68], but the analysis did not aim to investigate the relative 202 

importance of these factors and no inference was drawn from those parameters. The sampling 

rate of the tracking device was also included as a fixed effect because it can affect the extent 204 

and shape of home-range areas [51]. In addition, variation at the species and colony level was 

accounted for by including these two variables as random intercepts to avoid 206 

pseudoreplication [69]. Because some datasets had small sample sizes, each dataset was 

weighted based on the level of representativeness that was attained in the sensitivity analysis 208 

to reduce the influence of small and possibly unrepresentative datasets on the overall 

conclusions. 210 

The data collation of all individual foraging trips was used to test the effect of seabird 

family on maximum travel distance from the colony. The effect of seabird family on spatial 212 

aggregation, the size of an area of concentrated use, and the size of the exploited area was 

tested at a population level because the latter three measures were calculated for each unique 214 

combination of species, colony, and breeding stage. 

For each of these four response variables, two models were fitted that differed only by 216 

the inclusion of seabird family as a fixed factor in one of the pair of models, while all other 

fixed and random factors were identical. A likelihood-ratio test was used to infer whether 218 

seabird family explained a significant amount of variation in space-use variables that was not 

already accounted for by other fixed or random effects [70]. All analytical steps were 220 
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conducted in R 3.4.2 [71], and code to replicate the analyses is provided at 

https://github.com/steffenoppel/seabirds. 222 

 

3. Results 224 

Seabird tracking data from 52 species across ten families were collected between 1998 and 

2017 in 210 unique combinations of species, colony, and breeding stage (Table S1). The data 226 

contained a total of 12,039 distinct foraging trips from 5419 individual birds, with a mean of 

21 tracked individuals (range 5 - 119) per dataset, and included >10% of the species in each 228 

family that breed in the Atlantic Ocean basin (Table 1). 

As expected, seabird species varied enormously in foraging trip characteristics, with single 230 

foraging trips ranging from <1 km to >12,000 km (Table 2). There was considerable variation 

within species and families in the foraging range, and some of this variation was explained by 232 

the breeding stage (Fig. 1). Despite substantial variation among breeding stages, species and 

colonies, there was clear evidence that foraging range varied at the family level (LR-Test 𝜒𝜒92 234 

= 55.57, p < 0.001), with cormorants having the shortest ranges, and albatrosses the largest 

(Table 2, Fig. 1). This pattern remained equally strong if only a single trip per individual was 236 

used in the analysis (Table S2). 

 238 

<<<< FIGURE 1 here >>>>  

 240 

Seabirds also varied markedly in the extent to which they congregated at sea. The average 

Bhattacharyya’s Affinity index for a given dataset ranged from virtually no overlap (BA < 242 

0.001 for four datasets; Adélie Penguin Pygoscelis adeliae, European Shag Phalacrocorax 

aristotelis, Common Guillemot Uria aalge, Tristan Albatross Diomedea dabbenena) to very 244 

high overlap (BA = 0.91; Magellanic Penguin Spheniscus magellanicus). Due to the high 

variation in overlap among species and between breeding stages, there was no significant 246 

variation among families (LR-Test 𝜒𝜒92 = 12.22, p = 0.20). For most families there was higher 

overlap during chick-rearing than during incubation (Fig. 2). Cormorants, gulls and auks had 248 

consistently high overlap in both breeding stages, while albatrosses and frigatebirds showed 

consistently low overlap (Fig. 2). 250 
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Owing to variability in travel distance and aggregation, the size of the marine area exploited 

by seabird populations during the breeding season varied by six orders of magnitude among 252 

families (Table 2; LR-Test 𝜒𝜒92 = 57.91, p < 0.001), with cormorants and penguins having 

generally the smallest exploited areas and albatrosses and Great Shearwaters (Ardenna 254 

gravis) the largest (Table 2). 

 256 

<<<< FIGURE 2 here >>>>  

 258 

Low overlap of individual core ranges can frequently lead to unrepresentative tracking data, 

as the foraging behaviour of untracked individuals is poorly captured by those already 260 

tracked. There were 101 (48%) datasets that did not meet the criteria for representativeness 

that would be required to designate marine important bird areas following Lascelles et al. 262 

(2016), with 100% of the frigatebird datasets (n = 3) and 80% of albatross datasets (n = 20) 

not representative at the population level. For gulls, penguins and gannets, >60% of datasets 264 

were representative (Table S3). There was a positive correlation between the number of 

individuals tracked and representativeness (𝑟𝑟𝑠𝑠 = 0.332, p < 0.01, n = 210), and of the datasets 266 

that included >50 individuals only three were not representative (all from albatrosses, Fig. 

S1). 268 

Accounting for the level of representativeness of each dataset, and simulating the size of an 

area of concentrated use across a range of sample sizes, there was a strong effect of family on 270 

the size of areas of concentrated use (LR-Test 𝜒𝜒82 = 57.91, p < 0.001). The largest areas of 

concentrated use were found in albatrosses and gannets, and the smallest in cormorants and 272 

gulls, but within each family, the size of the area of concentrated use varied by two to four 

orders among species and breeding stages (Fig. 3). 274 

 

<<<< FIGURE 3 here >>>>  276 

  

There was a negative correlation between the level of spatial aggregation at sea and the size 278 

of the area exploited during the breeding season (𝑟𝑟𝑠𝑠 = -0.285, p < 0.001, n = 210), resulting in 

a gradient of space-use that can inform the relevant scales for conservation management (Fig. 280 
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4). Species with large ranges generally had low spatial aggregation (bottom right in Fig. 4), 

and were mostly albatrosses, petrels, shearwaters, storm petrels, frigatebirds and tropicbirds. 282 

Short-ranging species were mostly cormorants, auks and gulls, and tended to show higher 

aggregation at sea (top left in Fig. 4). For most species, tracked birds had smaller ranges and 284 

showed greater aggregation during the chick-rearing than during the incubation stage.  

 286 

<<<< FIGURE 4 here >>>>  

 288 

4. Discussion 

Seabird species range from those that congregate at sea and can be efficiently protected 290 

within a small area, to those that disperse widely and range over areas that can encompass 

millions of square kilometres. For the study species in the Atlantic Ocean basin, there were 292 

consistent differences among families in both maximum foraging range and the size of areas 

used at sea. Within this spectrum, albatrosses, petrels, storm petrels, frigatebirds, and 294 

tropicbirds travelled on average farther and dispersed more widely at sea during the breeding 

season than cormorants, penguins, auks, and gulls, although there was considerable variation 296 

within each family. Although some species may have recently shifted or expanded their 

foraging ranges due to climate-induced changes in the marine environment [48, 72], these 298 

shifts in spatial location are unlikely to be a result of fundamental changes to the species’ 

travel capabilities, and our broad conclusions are therefore robust to climatic changes in the 300 

near future. 

Our synthesis can be used to identify the management approaches likely to be most 302 

effective given the geographic scale over which the threats to a certain species need to be 

addressed. For some species, this broad-scale information at the family level may be 304 

sufficient to implement certain conservation actions without the need for further detailed data 

on individual movements from a given colony [6, 35, 73]. Some of the widely dispersing 306 

species use areas at sea that may be considered too large for the establishment and 

enforcement of strict marine reserves that ban all economic activity that negatively affect 308 

birds and other biodiversity [4, 19, 20]. However, other management approaches that reduce 

threats such as bycatch in fishing gear or depletion of prey resources can be implemented 310 

across very large spatial scales – either within appropriately managed protected areas that 
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regulate rather than ban economic activities, or in the framework of other effective area-based 312 

management measures or sustainable-use regulations that apply to large marine regions 

without the designation of protected areas [74-77]. All management approaches should also 314 

consider that not only seabirds, but also their threats may disperse at sea and occur only in 

certain areas or at certain times. Static structures such as wind turbines or gillnets will affect 316 

seabirds only at one location, whereas oil, plastics and other pollutants disperse freely with 

currents and therefore need to be managed at different spatial scales [5]. Threats from 318 

fisheries will only occur where a particular fishery operates, and regulation of such fisheries 

is most important where fisheries and species vulnerable to interactions co-occur [30]. Hence, 320 

multiple management mechanisms addressing various threats in time and space may be 

required to safeguard particular species. 322 

Our data represent some families better than others, and our results may not be fully 

representative of species-rich families such as gulls and terns, or storm petrels. For some 324 

families there may also be significant intra-family variation, which our data collation may not 

capture appropriately: penguins, for example, include both migrant and resident species, but 326 

our tracking data encompassed mostly migrant species, which have greater foraging ranges 

even during the breeding season [78]. Nonetheless, for families that encompass few species, 328 

such as the tropicbirds and the frigatebirds, the information provided here is likely more 

accurate and transferrable than for the gull family which encompasses >40 species in the 330 

Atlantic Ocean basin with a diverse range of body sizes and travel capabilities [79, 80]. 

Because high-resolution GPS tracking devices have only recently become small enough to 332 

track small seabirds [81], our data are biased towards larger-bodied species, with many storm 

petrels, small auks, and diving petrels not yet represented in tracking databases. Hence, while 334 

our study is a useful first step towards synthesizing seabird tracking data, there are some 

knowledge gaps where strategic tracking of certain families and species groups will advance 336 

our understanding of the space-use of smaller seabirds in the future. 

Besides the incomplete coverage of all species within each family, there was large 338 

variation in the number of colonies from which tracking data for a given species were 

available. Seabird foraging ranges are known to vary within species, with respect to colony 340 

size and environmental factors such as ocean productivity and the foraging habitat available 

within a given radius [56, 66, 82-84]. The inclusion of tracking data from either a very small 342 

or a very large colony may therefore have misrepresented the typical space-use of particular 

species [85]. While such differences need to be considered for the implementation of specific 344 
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protection measures, our broad scale analysis indicated that the differences in space-use 

among families were generally larger than differences within species, and our overall 346 

conclusions are unlikely to be affected by a few atypical datasets. 

Our results also highlight that for some families the space-use patterns vary 348 

substantially between incubation and the chick-rearing stage (Figs 1 and 2, Table 2), which 

may be relevant for seasonal site protection or other dynamic area-based management 350 

measures that aim to regulate certain activities during discrete periods [86]. However, some 

of the apparent variation between breeding stages might be a consequence of varying data 352 

coverage and inter-specific differences. For example, among gannets and boobies our results 

seem to indicate that birds have extremely low spatial aggregation during incubation 354 

compared to brood-guard (Fig. 2). This pattern is potentially because the largest gannet in our 

dataset, the Northern Gannet (Morus bassanus), which forages in temperate and productive 356 

waters, has mostly been tracked while feeding chicks [87-89], whereas the available data 

during incubation were from the smaller, tropical boobies, which forage in less productive 358 

waters and may therefore disperse more widely at sea [90-92]. Nonetheless, our data clearly 

indicate that most seabirds have smaller foraging ranges and show greater aggregation at sea 360 

during the chick-rearing than the incubation period, which could be used to inform 

appropriate management approaches at different times of the breeding cycle . 362 

The dataset and space-use metrics that was collated could also be used with various 

explanatory variables to understand the causes of variation and predict the likely movement 364 

scales of other species of seabirds for which no tracking data exist. Such extrapolations have 

been applied successfully to separate colonies within species [83], but if space-use 366 

requirements can also be predicted across species then some conservation management may 

proceed on that basis rather than await species-specific local tracking data [93, 94]. The 368 

generality of the patterns of space use found among families could be tested with data from 

additional species, regions and marine systems, or life-history stages. Nonetheless, 370 

researchers considering which seabirds to track for the purpose of improving conservation 

management are encouraged to first critically examine the value that the collected data will 372 

add to existing knowledge [35, 36, 95]. 

Our review focussed on adult birds during the breeding season to facilitate a broad 374 

taxonomic comparison. However, in long-lived seabirds, immature or adult birds not actively 

breeding may comprise a larger proportion of the total population, and may have 376 
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fundamentally different space-use patterns and distributions than breeding adults [96-98]. 

Seabird conservation therefore requires not only the protection of breeding adults, but also of 378 

other life stages, which may not occur in the same spatial area. The broad scales of space-use 

that are summarised here for breeding adults will not be sufficient to evaluate all potential 380 

spatial overlaps with threats that may lead to population declines, and further tracking of 

highly threatened species or different life stages may be required to facilitate effective 382 

management [35]. 

In summary, seabirds are well-known indicators for the health of the marine 384 

environment [12-14], and may therefore constitute a useful tool for marine spatial planning. 

Many seabirds, especially cormorants, penguins, auks, and gulls congregate in certain areas at 386 

sea which are useful candidates for area-based management approaches such as marine 

protected areas. Marine protected areas can be managed in a variety of ways that may permit 388 

and regulate certain economic activities, and for marine protected areas of very large size, the 

complete exclusion of all economic activities may neither be practical nor desirable [18, 19, 390 

99]. Our results show that some families, especially albatrosses, petrels, storm petrels and 

highly pelagic tropical species such as frigatebirds and tropicbirds, disperse widely at sea, 392 

and require management approaches that are implemented at large scales such as bycatch 

regulations, compliance monitoring and other fisheries observer programmes, or large-scale 394 

spatial and temporal fishing closures. 

 396 
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