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Equilibrium Climate Sensitivity (ECS) remains one of the most important unknowns in 

climate change science. ECS is defined as the global mean warming that would occur if the 

atmospheric carbon dioxide concentration was doubled and the climate was brought to 

equilibrium with that new level of CO2. Despite its rather idealised definition, ECS has 

continuing relevance for international climate change agreements, which are often framed 

in terms of the stabilisation of global warming relative to the pre-industrial climate. 

However, the ‘likely’ range of ECS as stated by the Intergovernmental Panel on Climate 

Change (IPCC) has remained at 1.5-4.5K for more than 25 years1. The possibility of a value 

of ECS towards the upper end of this range reduces the feasibility of avoiding 2K of global 

warming. Here, we present a new ‘Emergent Constraint’ on ECS which yields a central 

estimate of ECS=2.8K with 66% confidence limits (equivalent to the IPCC ‘likely’ range) of 

2.2-3.4K. Our approach is to focus on the variability of temperature about the long-term 

historical warming, rather than on the warming trend itself. We use an ensemble of climate 

models to define an emergent relationship2 between the ECS, and a theoretically-informed 

metric of global temperature variability. This metric of variability can also be calculated 

from observational records of global warming3, which enables tighter constraints to be 

placed on ECS, reducing the probability of ECS<1.5K to less than 3%, and the probability 

of ECS>4.5K to less than 1%. 

Many attempts have been made to constrain ECS, typically utilising either the record of historical 

warming or reconstructions of past climates4. Methods based on the historical warming are 

affected by uncertainties in ocean heat uptake and the contribution of aerosols to net radiative 

forcing5,6. These methods also diagnose the effective climate sensitivity over the historical period 

which may be different to the ECS, due to the strength of climate feedbacks varying with the 

evolving pattern of surface temperature change4,7,8,9. Although methods based on past climates, 

such as the last glacial maximum10, are more closely related to the concept of equilibrium, they 

suffer instead from even larger uncertainties in the reconstruction of net radiative forcing. 
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As an alternative, the Emergent Constraint approach uses an ensemble of complex Earth System 

Models to estimate the relationship between a modelled but observable variation in the Earth 

System and a predicted future change2,11. The model-derived emergent relationship can then be 

combined with the quantification of the observed variation to produce an ‘emergent constraint’ 

on the predicted future change2,11,12. This paper presents an Emergent Constraint on ECS, based-

on the variability of global-mean temperature.  

In order to inform our search for an emergent constraint, we consider the simple ‘Hasselmann 

Model’13 for the variation in global mean temperature (T) in response to a radiative forcing (Q): 

𝐶
𝑑𝛥𝑇

𝑑𝑡
 = 𝑄𝛥𝑇 

 

The single heat capacity (C) in this model is a simplification that is known to be a poor 

representation of ocean heat uptake on longer timescales14,15,16. However, we find that it still offers 

very useful guidance about global temperature variability on shorter timescales. The climate 

feedback factor ( determines how the net top-of-atmosphere planetary energy balance (N) varies 

with temperature change (T) in response to a radiative forcing change (Q). ECS and  are 

inversely related, with a constant of proportionality which is the radiative forcing due to doubling 

of atmospheric CO2, Q2xCO2: ECS = Q2xCO2/. Although the diagnosed Q2xCO2 varies across the 

model ensemble17, the uncertainty in ECS is predominately due to uncertainty in , which varies 

from 0.6 to 1.8 W m-2 K-1, as shown in Table ED1.  

If Q can be approximated as white-noise forcing with variance Q
2, the Hasselmann model can 

be solved to give expressions for the variance (T
2) and the one year-lag autocorrelation of the 

global temperature (T), which can be combined to yield an equation for ECS (see Methods): 

𝐸𝐶𝑆 = √2 𝑄2xCO2 {
𝜎𝑇

𝜎𝑄
}

1

√−log𝑒 𝛼1𝑇  
=  √2 

𝑄2xCO2

𝜎𝑄
  Ψ                  (2) 

where Ψ = 𝜎𝑇/√−log𝑒 𝛼1𝑇   is the key metric of global temperature variability. This equation is 

essentially a fluctuation-dissipation relationship18 relating the variability of the climate 

(𝜎𝑄, 𝜎𝑇, 𝛼1𝑇) to its sensitivity to external forcing (ECS).  

 

Observational records of global mean temperature change3 enable Ψ to be estimated for the real 

world.  The variance of the net radiative forcing is approximately equal to the variance of the top-

to-the-atmosphere flux (N
2), which can in principle be estimated from satellite measurements. 



  3 

However, the available satellite records are currently too short to provide reliable estimates of N. 

In addition, the radiative forcing due to doubling CO2 (Q2xCO2) is not observable in the real world. 

This means that the right-hand-side of Equation (2) cannot be directly estimated from 

observations. Fortunately, we find that the variation in ECS is weakly correlated with  𝑄2xCO2/𝜎𝑁 

across the model ensemble (see Table ED1). We can therefore approximate the predicted gradient 

of the ECS versus Ψ emergent relationship using the ensemble mean value of 𝑄2xCO2/𝜎𝑁 (=8.7). 

Our theory therefore predicts a gradient of the ECS versus Ψ emergent relationship of 8.7√2 = 

12.2. 

 

Figure 1(a) shows the simulation of global warming in the historical simulations with the 16 

models in the CMIP5 ensemble19,20 used here (see list in Table ED1). Here and throughout, higher-

sensitivity models (<1.0 W m-2 K-1) are shown in magenta, and lower sensitivity models (>1.0 

W m-2 K-1) are shown in green. Observations from the HadCRUT4 dataset3 are shown by the 

black line marked with dots. Figure 1(a) illustrates that both high and low sensitivity models are 

able to fit the historical record with reasonable fidelity, despite implying very different future 

climates. Models with higher ECS values also have longer response times, and there are variations 

across the models in net radiative forcing and in ocean heat uptake -  allowing models with both 

high and low sensitivities to reproduce historical global warming21. As a result, the fit to the global 

temperature record does not provide a direct constraint on ECS, as shown in Figure 1(b). 

In order to test whether variability is a better constraint on ECS, we de-trend the global mean 

temperature records from the models and the observations. Our approach to de-trending is 

informed by techniques designed to detect precursors of potential tipping-points22 such as ‘critical 

slowing down’23. The method applied in that case is to use a moving window, to linearly de-trend 

within that window, and then to calculate statistics of the de-trended residuals. For tipping point 

detection, the favoured variable is often the lag-1 autocorrelation which measures the memory in 

fluctuations of the analysed variable23. We use a similar approach, although here we apply it to 

analyse the relationship between 𝛹 and ECS across the ensemble of models, rather than to 

detecting declining system resilience in a single realisation of the system.  

We analyse the annual-mean global-mean temperature time-series from 16 CMIP5 historical 

simulations and compare to the HadCRUT4 observational dataset. Although there were another 

23 historical runs available in the CMIP5 archive, we chose to use just one model variant from 

each climate centre, to avoid biasing the emergent constraint towards the centres with the most 

model runs in the archive. Where there was more than one model variant from a modelling centre, 

we took the model variant from that centre that had the smallest RMS error in the fit to the record 
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of observed global warming from 1860 to 2016. The remaining 23 model runs (which included 

some initial condition ensembles) were subsequently used to test the robustness of the emergent 

constraint (see Figure ED1). 

Figure 2a shows the resulting variation in 𝛹 for each of the models and the observations, using a 

window width of 55 years, and data from 1880 to 2016 to match the available observational 

datasets. Although 𝛹 varies in time, the different models are clearly distinguished, in contrast to 

the simulations of historical global warming (Figure 1a). In particular, the 𝛹 values separate 

higher-sensitivity models (magenta lines) from lower-sensitivity model (green lines), with higher 

sensitivity models producing larger 𝛹 values. It is also worth noting at this point that 𝛹 from the 

observational data is within the range of the lower-sensitivity models but clearly outside the range 

of the higher-sensitivity models. Figure 2b shows the emergent relationship between ECS and the 

time-mean 𝛹 values across the model ensemble. The vertical blue lines show the observational 

constraint on 𝛹 from the HadCRUT4 dataset, but similar observational constraints are also 

derived from other datasets of global mean temperature (see Table ED2). 

As in previous studies11,12 the emergent relationship from the historical runs and observational 

constraint can be combined to provide an emergent constraint on ECSThis involves convoluting 

the prediction error implied by the fit of the scatter plot to the emergent relationship, with the 

uncertainty in the observations, to produce a probability density function (PDF) for the y-axis 

variable (see online Methods). Figure 3(a) shows the resulting PDF for ECS (black curve). For 

comparison, the prior PDF implied by the equal-weighted model ensemble is shown by the orange 

histogram. The emergent constraint PDF is sharply peaked around a best-estimate of ECS=2.8 K, 

which is slightly smaller than the centre of the IPCC range of 1.5-4.5K. Our best-estimate of ECS 

is considerably larger than the values derived from raw energy budget constraints8,24,25 but similar 

to some recent estimates that account for time-dependent and forcing-dependent feedbacks9,26.  

Figure 3(b) shows the resulting cumulative density function (CDF) which gives the probability of 

ECS taking a value lower than the value shown on the x-axis. The black horizontal lines in Figure 

3(b) show the 66% confidence limits [2.2 to 3.4K], or approximately 2.8+/-0.6K. Relative to the 

IPCC range of 1.5-4.5K, this constraint on ECS therefore reduces the uncertainty by about 60%. 

Indeed, even the 95% confidence limits from the emergent constraint [1.6 to 4.0K] fit well within 

the IPCC ‘likely’ range for ECS. Our constraint is therefore at odds with a suggestion that the 

lower 66% confidence limit for ECS could be as high as 3K27. If we instead use all 39 historical 

runs in the CMIP5 archive, we find a slightly weaker emergent relationship, but derive a very 

similar emergent constraint on ECS (Table ED2). The constraint is also robust to the choice of 
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observational dataset, and to whether or not the model global temperature is calculated just across 

the points where there were observations28 (Table ED2, Figure ED2). 

Our choice of window-width was informed by sensitivity studies in which the emergent constraint 

was calculated for a range of this parameter. Figure 4(a) shows the best estimate and 66% 

confidence limits on ECS as a function of the width of the de-trending window. Our best-estimate 

is relatively insensitive to the chosen window width, but the 66% confidence limits show a greater 

sensitivity, with the minimum in uncertainty at a window width of about 55 years (as used in the 

analysis above). As Figure ED3 shows, at this optimum window-width the best-fit gradient of the 

emergent relationship between ECS and 𝛹 (=12.1) is also very close to our theory-predicted value 

of √2 𝑄2𝑥𝐶𝑂2/𝜎𝑄 (=12.2). This might be expected if this window length optimally separates 

forced trend from variability.  

Figure 4(b) shows the probability of ECS>4K and ECS<1.5K as a function of window width. For 

comparison, the IPCC ‘likely’ range of 1.5-4.5K implies a 25% probability of ECS>4K, and a 

16% probability of ECS<1.5K. At the optimum window width of 55 years, both probabilities are 

close to their minimum values of less than 2.5%. Our emergent constraint therefore greatly 

reduces the uncertainty in the ECS value of the Earth’s climate, implying a less than 1 in 40 chance 

of ECS>4K, and renewing hope that we may yet be able to avoid global warming exceeding 2K. 
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Figure 1: Historical global warming. (a) Simulated change in global temperature from 16 

CMIP5 models (coloured lines), compared to the global temperature anomaly from the 

HadCRUT4 dataset (black dots). The anomalies are relative to a baseline period of 1961-90. The 

model lines are colour-coded with lower senstivity models (> 1 Wm-2 K-1) shown by green lines, 

and higher senstivity models (< 1 Wm-2 K-1) shown by magenta lines. (b) Scatter plot of each 

model’s Equilibrium Climate Senstivity (ECS) against the root-mean-square error in the fit of 

each model to the observational record. 

 

 

Figure 2: Metric of global mean temperature variability. (a) 𝛹 metric of variability versus 

time, from the CMIP5 models (coloured lines), and the HadCRUT4 observational data (black 

circles). The 𝛹values are calculated for windows of width 55-years, after linear de-trending in 

each window. These 55-year windows are shown for different end times. As in figure 1, lower 

senstivity models (> 1 Wm-2 K-1) are shown by green lines, and higher senstivity models (< 1 

Wm-2 K-1) are shown by magenta lines. (b) Emergent Relationship between the Equilibrium 

Climate Sensitivity (ECS) and the 𝛹 metric. The black dot-dashed line shows the best-fit linear 

regression across the model ensemble, with the prediction error for the fit given by the black 

dashed lines (see Methods). The vertical blue lines show the observational constraint from the 

HadCRUT4 observations: mean (dot-dashed line), and mean plus and minus one standard 

deviation (dashed lines).   

λ

λ

λ

λ
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Figure 3: Emergent Constraint on the Equilibrium Climate Sensitivity (ECS). Panel (a) 

shows the Probability Density Function (PDF) for ECS and panel (b) shows the related 

Cumulative Density Function (CDF). The horizontal dash-dot lines show the 66% confidence 

limits on the CDF plot. The orange histograms (both panels) show the prior distributions that arise 

from equal weighting of the CMIP5 models in 0.5K bins.  

 

 

Figure 4: Sensitivity of the Emergent Constraint on ECS to window width. (a) Central 

estimate and 66% confidence limits. The thick black bar shows the minimum uncertainty at a 

window width of 55 years and the red bar shows the equivalent ‘likely’ IPCC range of 1.5-4.5K.  

(b) Probability of ECS > 4K (red line and symbols) and ECS < 1.5K (blue line and symbols).  
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Extended Data 

 

Table ED1: Earth System Models used in this study, as provided by the CMIP5 project19. The 

first column shows the symbol used for each model in all figures. The third and fourth columns 

list the Climate Feedback Factor () and the Equilibrium Climate Sensitivity (ECS) values, as 

given in IPCC AR5 Table 9.5. The fifth and sixth columns show statistics calculated in this study 

for the period 1880-2016 and using a window-width of 55 years. The fifth column shows the ratio 

of the radiative forcing due to doubling CO2 (𝑄2𝑥𝐶𝑂2) to the standard deviation of the net top-of-

atmosphere flux (𝜎𝑁); and the sixth column shows the time-mean 𝜳 statistic for each model. 

 

Table ED2: Robustness of the Emergent Constraint to the choice of observational dataset and 

model ensemble. The ‘ALL’ dataset takes the mean and standard deviation of the 𝛹 values for all 

4 global-mean temperature datasets (by concatenating the individual 𝛹 time-series). The ‘filtered’ 

model output calculates area-mean values of temperature just using the points where there are 

observations in the HadCRUT4 dataset27. All cases analyse 1880-2016 and use a 55-year window 

width. 
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Figure ED1: Test of emergent relationship against models not used in the calibration. The test-

set includes additional models from some climate centres (labelled ‘fx’, ‘fy’ etc.), and initial 

condition ensembles with particular models (labelled ‘c2’, ‘c3’ etc.). The black dot-dashed line 

shows the best-fit linear regression across the model ensemble, with the prediction error for the 

fit given by the black dashed lines (see Methods). The vertical blue lines show the observational 

constraint from the HadCRUT4 observations: mean (dot-dashed line), and mean plus and minus 

one standard deviation (dashed lines).   

 
Figure ED2: Comparison of 𝛹 statistics for the 16 CMIP5 models from ‘filtered-mean’ 

temperature and global-mean temperature. The filtered model output calculates area-mean values 

of temperature just using the points where there are observations in the HadCRUT4 dataset. All 

cases analyse 1880-2016 and use a 55-year window width. The dotted line is the 1:1 line. 
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Figure ED3: Gradient of emergent relationship between ECS and 𝛹 as a function of window 

width. The dotted line shows the gradient predicted with Equation (2) using the ensemble-mean 

value of 𝑄2𝑥𝐶𝑂2/𝜎𝑁 .  Note that the theory (dot-dash line) fits best at the optimal window-width of 

55 years. All cases here analyse 1880-2016 and use the 16-model ensemble.  
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Methods 
1 Theoretical Basis for the Emergent Relationship 

We hypothesise that Equation (1) (the ‘Hasselmann Model’) is a reasonable approximation to the 

short-term variability of the global mean temperature anomaly (𝛥𝑇 

𝐶
𝑑𝛥𝑇

𝑑𝑡
+   𝛥𝑇 = 𝑄 

If trends arising from net radiative forcing and ocean heat uptake can be successfully removed, 

the net radiative forcing term (𝑄 can be approximated by white noise. Under these circumstances, 

Equation (1) is essentially the Ornstein-Uhlenbeck equation which describes Brownian motion, 

and has standard solutions (e.g. see https://en.wikipedia.org/wiki/Ornstein–Uhlenbeck_process) 

for the lag-1 autocorrelation of the temperature: 

𝛼1𝑇 = exp {− 


𝐶
} 

and the ratio of the variances of T and Q: 

𝜎𝑇
2

𝜎𝑄
2 =

1

2𝐶
 

These two equations can be combined to eliminate the unknown heat capacity (C) and therefore 

to provide an expression for the climate feedback factor (): 

 = {
𝜎𝑄

𝜎𝑇
} √−

1

2
log𝑒 𝛼1𝑇   

The Equilibrium Climate Sensitivity (ECS) and  are inversely related, with a constant of 

proportionality which is the radiative forcing due to doubling of atmospheric CO2 (Q2xCO2):   

ECS = Q2xCO2/. Thus, we can also derive an expression for ECS in terms of the variability of T 

and Q: 

𝐸𝐶𝑆 = 𝑄2𝑥𝐶𝑂2 {
𝜎𝑇

𝜎𝑄
} √

2

−log𝑒 𝛼1𝑇  
 

  

https://en.wikipedia.org/wiki/Ornstein–Uhlenbeck_process)
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2 Least Squares Linear Regression 

Least Squares linear regressions were calculated based on well-established formulae (see for 

example http://mathworld.wolfram.com/LeastSquaresFitting.html). The linear regression, 𝑓𝑛, 

between a time-series given by 𝑦𝑛and a time-series given by 𝑥𝑛 is defined by a gradient 𝑏 and 

intercept 𝑎: 

𝑓𝑛 = 𝑎 + 𝑏 𝑥𝑛 

Minimising the least squares error for  𝑦𝑛 involves minimising: 

𝑠2 =  
1

𝑁 − 2 
 ∑{𝑦𝑛 − 𝑓𝑛} 2

𝑁

𝑛=1

 

where 𝑁 is the number of data points in each time-series. In this case, the best-fit gradient is given 

by: 

�̅� =  
𝜎𝑥𝑦

2

𝜎𝑥
2  

Here 𝜎𝑥
2 = ∑ {𝑥𝑛 − �̅� }2𝑁

𝑛=1 𝑁⁄   is the variance of 𝑥𝑛  ,  and 𝜎𝑥𝑦
2  = ∑ {𝑥𝑛 − �̅�}𝑁

𝑛=1 {𝑦𝑛 − 𝑦} 𝑁⁄  is the 

covariance of the 𝑥𝑛  𝑎𝑛𝑑 𝑦𝑛 time-series - with means of �̅� and 𝑦 respectively. 

The standard error of 𝑏 is given by: 

𝜎𝑏  =  
𝑠

𝜎𝑥  √𝑁
 

which defines a Gaussian Probability Density for 𝑏: 

𝑃(𝑏) =
1

√2𝜋𝜎𝑏
2

𝑒𝑥𝑝 {−
(𝑏 − �̅�)2

2𝜎𝑏
2 } 

Finally, the “Prediction Error” of the regression is the following function of 𝑥: 

𝜎𝑓 (𝑥) =  𝑠 √1 +  
1

𝑁
+

{𝑥 − �̅�} 2

𝑁𝜎𝑥
2  

This expression defines contours of equal probability density around the best-fit linear regression, 

that represent the probability density of 𝑦 given 𝑥: 

𝑃{𝑦|x} =
1

√2𝜋𝜎𝑓
2

𝑒𝑥𝑝 {−
(𝑦 − 𝑓(𝑥))2

2𝜎𝑓
2 } 

where 𝜎𝑓 =  𝜎𝑓 (𝑥) , as described above. 

 

 

 

http://mathworld.wolfram.com/LeastSquaresFitting.html
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3 Calculation of Probability Density Function for ECS 

The emergent constraint derived in this study is a linear regression across the CMIP5 models 

between the Equilibrium Climate Sensitivity (ECS), and the 𝛹 statistic of the de-trended global 

temperature. In the context of the least squares linear regression presented above, ECS is 

equivalent to 𝑦, and 𝛹 is equivalent to 𝑥. The linear regression therefore provides an equation for 

the probability of ECS given 𝛹 (i.e. the equation for 𝑃{𝑦|x} above). In addition, the 𝛹 statistic 

calculated from the de-trended observational dataset provides an observation-based PDF for 𝛹.  

Given these two PDFs, 𝑃{𝐸𝐶𝑆|𝛹}  and 𝑃(𝛹), the PDF for ECS is calculated by numerically 

integrating: 

𝑃(𝐸𝐶𝑆) = ∫ 𝑃{𝐸𝐶𝑆|𝛹}  𝑃(𝛹) 𝑑𝛹
∞

−∞

 

  

Data availability: The datasets generated during the current study are available from the 

corresponding author on reasonable request. 

Code availability: The Python code used to produce the figures in this paper is available from 

the corresponding author on reasonable request. 
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