nerc.ac.uk

Integrated critical zone model (1D-ICZ): a tool for dynamic simulation of soil functions and soil structure

Giannakis, G.V.; Nikolaidis, N.P.; Valstar, J.; Rowe, E.C. ORCID: https://orcid.org/0000-0003-4784-7236; Moirogiorgou, K.; Kotronakis, M.; Paranychianakis, N.V.; Rousseva, S.; Stamati, F.E.; Banwart, S.A.. 2017 Integrated critical zone model (1D-ICZ): a tool for dynamic simulation of soil functions and soil structure. Advances in Agronomy, 142. 277-314. https://doi.org/10.1016/bs.agron.2016.10.009

Full text not available from this repository.

Abstract/Summary

Food security should be addressed in relation to soil sustainability and sustainable land care, and examined within the science framework of Earth's critical zone as an integrated system that includes Earth surface interactions, connected to soil functions, and ecosystem services. There is a great need to develop critical zone mathematical models that will simulate and quantify soil functions and that can be used as management tools to address soil sustainability and land care practices. The integrated critical zone model, 1D-ICZ, couples computational modules for soil organic matter dynamics, soil aggregation and structure dynamics, bioturbation, plant productivity and nutrient uptake, water flow, solute speciation and transport, and mineral weathering kinetics. The 1D-ICZ model, coupled with new pedotransfer functions to predict bulk soil properties, introduces for the first time a model that dynamically links soil structure characteristics and hydraulic soil properties by simulating their changes under varying meteorological conditions and plant growth. Field data from a Mediterranean olive grove at the Koiliaris Critical Zone Observatory (CZO) were used to simulate carbon addition to soil and agricultural management scenarios, in order to illustrate the model's ability to quantify soil management impact on soil functions and biogeochemical transformations and fluxes. The 1D-ICZ model can be used to assess, understand, and quantify the complex interactions between the different processes in the soil-plant-water system and can be applied as a tool to design sustainable agricultural management practices, taking into consideration synergy and trade-offs among soil functions.

Item Type: Publication - Article
Digital Object Identifier (DOI): https://doi.org/10.1016/bs.agron.2016.10.009
UKCEH and CEH Sections/Science Areas: Soils and Land Use (Science Area 2017-)
ISSN: 0065-2113
Additional Keywords: critical zone modeling, soil functions, pedotransfer functions, sustainable land management, agricultural practices
NORA Subject Terms: Agriculture and Soil Science
Date made live: 20 Mar 2018 11:09 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/519605

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...