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Abstract:  

Massive volumes of mafic magmatism forming the Karoo-Ferrar Large Igneous Province (LIP) in 

Southern Africa and Antarctica preceded Jurassic breakup of the Gondwana Supercontinent. This 

widespread LIP magmatism is attributed to a major mantle plume, or plumes, impacting an area 

thousands of kilometres across. Magmas in lava flows and shallow sills, which flowed laterally 

hundreds to thousands of kilometres, form most of the exposed LIP. Hence, the distribution of 

shallow level mafic rocks may not reflect the location of mantle melting.  In contrast, large deep-

seated mafic intrusions such as gabbros likely more directly overlie areas of mantle melting. 

Antarctic exposures of such intrusions are limited to the Dufek Intrusion and outcrops >1000 km to 

the north, hence the true pattern of mantle melting is poorly constrained. Regional aeromagnetic 

and aerogravity data suggest other Jurassic mafic intrusions are present, but detailed analysis of 

these bodies is lacking. To define more precisely the distribution of mafic intrusions we use data 

from the first stand-alone strapdown gravity survey in Antarctica. This innovative technique allows 

collection of aerogravity data during draped flight, resolving anomalies with a wavelength of ~6 km 

and a root-mean-square error of 1.8 mGal. Combining this new gravity data with coincident 
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aeromagnetic data we investigate a ~50 mGal gravity and associated >1000 nT magnetic high in 

Coats Land, East Antarctica. Our interpretation is that the so called ‘Halley High’ reflects a large 

gabbroic body ~80 km long, 30 km wide and ~6 km thick, equivalent to the inferred total size to the 

better known Stillwater layered mafic intrusion in the US. Our interpretation of a large mafic 

intrusion supports the suggestion from reconnaissance aeromagnetic data that this and other similar 

anomalies are Jurassic mafic intrusions. These large mafic intrusions, and hence underlying mantle 

melting, appear restricted to a linear band parallel to the continental margin. This structured pattern 

of mantle melting is consistent with shallow mantle convection and lithospheric extension playing a 

significant role in the later stages of the Karoo-Ferrar magmatism. An apparent 650 km gap in mafic 

intrusions adjacent to the continental Weddell Sea Rift System suggests different mantle processes 

were occurring here. Future joint magnetic and strapdown gravity surveying presents a key 

opportunity to fully constrain the location and extent of mantle melting during Gondwana breakup. 
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1 Introduction 

Breakup of Gondwana was associated with massive volumes of magmatism. The exposed 

magmas are dominated by shallow level Karoo Continental Flood Basalts (CFB) in South Africa and 

Dronning Maud Land, and the Ferrar sill complex elsewhere in Antarctica (Elliot and Fleming, 2000). 

Given their approximate coincident age, these two provinces are often amalgamated into the Karoo-

Ferrar Large Igneous Province (LIP), which extends from southern Africa around the Dronning Maud 

Land, Coats Land and Transantarctic Mountain margins of East Antarctica, a distance of >3000 km 

(Fig. 1) (Elliot, 1992; Elliot and Fleming, 2000; Ferraccioli et al., 2005; Jourdan et al., 2005; Riley et al., 

2005). This major magmatic event is widely attributed to the impact of a significant mantle plume at 

the base of the Gondwanan lithosphere, which was associated with magmatism and subsequent 

continental rifting (Storey, 1995; Storey et al., 2013; White and McKenzie, 1989). The extent of the 



mantle plume, super plume, or multiple plume heads is difficult to constrain given the proposed 

100s to 1000s km of lateral transport of surficial flood basalts and sills (Elliot et al., 1999; Leat, 2008; 

Luttinen et al., 2010). Deep-seated large mafic intrusions, which reflect igneous centres, may be 

better indicators of the areas of mantle melting, as suggested in the North Atlantic LIP (Geoffroy et 

al., 2007). Unfortunately, deeper level mafic intrusions associated with the Karoo-Ferrar LIP in 

Antarctica are only exposed in two areas (Fig. 1) (Semenov et al., 2014). Firstly Vestfjella in Dronning 

Maud land where two separate layered Gabbro intrusions up to 25 km2 and 3 km thick are seen 

cross cutting the CFB sequences (Vuori and Luttinen, 2003).Secondly the Dufek Intrusion ~1000 km 

further south, suggested from geological observations to cover an area of 24,000-34,000 km2 with an 

estimated thickness of 8-9km (Ford and Himmelberg, 1991), although aeromagnetic data suggests 

an area of closer to 6600 km2 (Ferris et al., 1998). Gabbroic intrusions such as the Mount 

Ayliff/Insizwa complex and the New Amalfi intrusion are also seen in Southern Africa (Lightfoot and 

Naldrett, 1983) where geological and geophysical considerations suggest such bodies are sill-like 

structures ~1 km thick, with an original area of ~2000 km2 (Lightfoot and Naldrett, 1983; Sander and 

Cawthorn, 1996). 

The sub-ice extent of individual Antarctic intrusions has been investigated using 

aerogeophysical data, although precise determination of intrusion size has been controversial 

(Behrendt et al., 1981; Ferris et al., 1998; Semenov et al., 2014). A number of additional magnetic 

anomalies of high to moderate amplitudes associated with magmatism during Gondwana break up 

are inferred within the continental crust from regional aeromagnetic compilations (Corner, 1994; 

Golynsky and Aleshkova, 1997; Leitchenkov et al., 1996), regional aerogravity data (Aleshkova et al., 

1997) and ground based surveys (Ruotoistenmäki and Lehtimäki, 1997). However, the details of 

these features have remained scarce due to the reconnaissance nature of the geophysical data 

coverage. Here we use new 5 km line spacing aeromagnetic data and innovative new strapdown 

aerogravity data collected over the Brunt Ice Shelf in 2017, to investigate in detail the structure and 

origin of one of these key anomalies. Using a range of digital enhancements, depth to source 



calculation and modelling we propose that a significant, likely Jurassic, mafic body is present 

beneath the northern margin of the Brunt Ice Shelf. Confirmation of this anomaly as a large mafic 

intrusion supports previous interpretations of numerous mafic bodies lying along the Antarctic rifted 

margin e.g. (Golynsky and Aleshkova, 1997), and hence the concept of regionally extensive mantle 

melting feeding the Karoo-Ferrar LIP. The implications of this interpretation for the distribution, 

timing, mechanism and possible analogues for magma generation at the onset of Gondwana 

breakup are discussed. 

1.1 Geographical and geological setting  

The study area lies beneath the Brunt Ice Shelf, ~80 km south from the continental shelf 

break and the deep ocean floor of the Weddell Sea (Fig. 1a).  West of the study area is the Weddell 

Sea Rift System, a Jurassic continental rift overlain by a broad sediment-filled marine basin (Jordan et 

al., 2017; Leitchenkov and Kudryavtzev, 1997; Studinger and Miller, 1999). To the south and east of 

the study area is the East Antarctic continent, which is typically blanketed by the 2-4 km thick East 

Antarctic Ice Sheet, although sparse outcrops along the coast and in some inland mountain chains 

allow assessment of the underlying geology (Fig. 1a). The overarching geological structure of this 

part of East Antarctica is an ancient continental collision zone. The oldest rocks in Dronning Maud 

Land are ~3Ga and form a cratonic core around which a series of continental arcs and ocean arc 

terranes developed. These arcs were accreted to the cratonic core prior to and during the ~1Ga 

continental Grenville Orogen (Jacobs et al., 2008; Marschall et al., 2013). The amalgamation of West 

Gondwana (Southern Africa and South America) and East Gondwana (India, East Antarctica and 

Australia) during the subsequent ~500 Ma Pan-African event led to additional deformation and 

metamorphism, seen in both Dronning Maud Land and the Shackleton Range.  The Coats Land region 

may have acted as an independent rigid cratonic fragment during this event (Jacobs and Thomas, 

2004; Studinger and Miller, 1999).   



The wide spread Karoo-Ferrar magmas (Fig. 1b) were emplaced in a short time interval 

around 183 Ma (Burgess et al., 2015; Svensen et al., 2012). Dating evidence suggests that the layered 

mafic Dufek Intrusion, towards the southern end of the Weddell Sea Rift System, was emplaced at 

this time (Burgess et al., 2015). The layered gabbroic intrusions in the Vestfjella area include two 

separate bodies up to 3 km thick (Vuori and Luttinen, 2003). The crosscutting relationship with the 

surrounding basalt flows indicate that they represent a later phase of the Karoo-Ferrar magmatic 

event, consistent with limited 40Ar/39Ar dating of feldspars which give an age of 177 ±1.8 Ma (Zhang 

et al., 2003). A suite of mafic dikes running generally NE-SW parallel to the coast is also observed 

cutting the regionally extensive lavas in the Vestfjella area (Spaeth, 1987), however, dikes with a 

range of trends are observed further east in Dronning Maud Land (Curtis et al., 2008; Riley et al., 

2005). The relatively broad age range of the dikes (206-175 Ma) indicates that although the 

emplacement of main Karoo-Ferrar lava and sill sequence was rapid there were significant magmatic 

precursors and follow up to the main magmatic event (Curtis et al., 2008; Jourdan et al., 2008; Riley 

et al., 2005).   

2 Methods  

2.1 Data collection and enhancement 

The majority of the data presented in this paper was collected as part of a 2017 British 

Antarctic Survey (BAS) radar survey mapping the thickness of the Brunt Ice Shelf. The associated 

aeogravity and aeromagnetic data presented here provide important new insights into the sub-

surface geology of the region, especially important as the closest outcrop is >200 km away. 

Additional line aerogeophysical data is taken from the margins of the ICEGRAV-2013 survey 

(Forsberg et al., 2017). 

2.1.1 Gravity data 

Gravity data during the Brunt 2017 survey was collected using an innovative strapdown 

gravity technique (Becker et al., 2016; Becker et al., 2015).  This technique was first developed in the 



1990s (Wei and Schwarz, 1998) but advances in sensor design and data processing have only 

recently made this a viable method for field data collection. The key advantage of the strapdown 

gravity system is that it is relatively insensitive to the flight trajectory, hence data could be collected 

during all parts of the flight (Fig. 2). The inertial measurement unit (IMU) used was an iMAR RQH-

1003 system, consisting of three Honeywell QA2000 accelerometers (mounted in mutually 

perpendicular directions), and three Honeywell GG1230 ring laser gyroscopes.  

An 18-state Kalman filter in conjunction with a Rauch-Tung-Striebel (RTS) smoother was 

used to process the strapdown gravity data. Besides the 15 states of a typical IMU/GNSS integrating 

Kalman filter used for navigation (3-D position, velocity, attitude, and six inertial sensor biases), 

additional states were used to model the gravity disturbance with respect to GRS80 normal gravity. 

GPS coordinates were processed with a standard precise point positioning software package 

(Novatel Waypoint GrafNav 8.60), and introduced as observations to the Kalman filter. The Kalman 

filter (and RTS smoother) provides gravity estimates in a one-step evaluation, i.e. no additional low-

pass filtering step is required. This method is sometimes referred to as the indirect method of 

strapdown gravimetry, because gravity is determined indirectly by introducing GNSS positions to the 

Kalman filter, rather than computing GNSS accelerations in a pre-processing step and manually 

combining them with the specific forces measured by the accelerometers in order to determine 

gravity. The indirect approach is theoretically more rigorous as combining all information into a 

single system model enables optimal estimation.  However, recently a systematic comparison of the 

two approaches on various data sets indicated no significant differences between the two 

approaches. However, we prefer the indirect method in general, as it allows the usage of standard 

system analysis tools (observability, estimability) and a simple and optimal integration of additional 

sensors and external information, where available.   

To minimise thermal effects on the QA2000 accelerometers, the IMU was warmed up for at 

least two hours before each flight. However, a further thermal correction was applied to 



compensate reproducible thermal effects arising from internal sensor temperature changes along 

the flights. Details on the strapdown gravity data processing and the thermal calibration methods 

can be found in (Becker, 2016). Processed line gravity data is freely available from the UK Polar Data 

Centre (Becker et al., 2018). 

The optimum resolution of the strapdown gravity system is approximately 100 seconds 

along-track, consistent with a full wavelength spatial resolution for the 2017 Brunt survey of ~6 km 

(at an aircraft speed of approximately 60 m/s). This result is supported by a power spectrum of the 

gravity data (Fig. 3b) which indicates the signal is well above the noise floor by a wavelength of 6 km. 

The standard deviation of the strapdown gravity crossover errors was 2.5 mGal, consistent with a  

root-mean-square error of 1.8 mGal. The previous ICEGRAV-2013 campaign (Fig. 2) used a standard 

LaCoste and Romberg air-sea gravity sensor in a stabilised platform, limiting data collection to 

straight and level flight sections (Forsberg et al., 2017; Jordan et al., 2007). The standard deviation of 

the crossover errors for the ICEGRAV 2013 survey was 3.9 mGal (Forsberg et al., 2017). Data from a 

regional compilation (Jordan et al., 2017), including digitised contour maps of Russian gravity data 

(Aleshkova et al., 1997), was used to inform the regional field where no other data was available. To 

visualise the gravity anomaly across the entire study region a unified free air gravity anomaly grid 

was constructed (Fig. 3a) (See Sup. Mat. Section S1 for compilation details). 

A significant component of the observed free air anomaly is due to the bathymetry. To 

account for this we calculated the Bouguer gravity correction, using data from BEDMAP2 (Fretwell et 

al., 2013), augmented with seismic data over the ice shelf and swath bathymetry for offshore regions 

and areas where the ice shelf had previously calved (Hodgson et al., 2018) (Fig. 2 and 4a). The full 3D 

Bouguer correction, was modelled using a 3D Gauss-Legendre quadrature (GLQ) method (von Frese 

et al., 1981), assuming a uniform observation altitude of 450 m, coincident with the 2017 survey 

altitude over the ice shelf. Results onshore, where the aircraft altitude and ice surface were >450m, 

are not valid. A more complex model including a variable observation surface would be required to 



calculate corections over both ice shelf and onshore regions, but was not justified in this case as the 

onshore area lies outside our key area of intrest. Standard densities for the Bouguer correction of 

915, 1028 and 2670 kgm-3 for ice, water and rock respectively were used. The resulting Bouguer 

anomaly shows a strong regional trend across the survey region (Fig. 4b). The regional signal in the 

Bouguer anomaly was isolated using a 150 km low pass filter (Fig. 4c). This wavelength was chosen 

because it removes the long wavelength trend in the data, but does not apear to impact the peak to 

trough amplitude of the local gravity anomalies. The long wavelength regional signal was subtracted 

from the Bouguer anomaly to reveal the final residual gravity anomalies (Fig. 4d). 

2.1.2 Aeromagnetic data 

Aeromagnetic data for both the Brunt 2017 and ICEGRAV-2013 surveys was collected using 

the BAS aerogeophysically equipped Twin Otter aircraft (See Sup. Mat. Section S2 for processing 

details). The line data was continued to an altitude of 500 m and interpolated onto a 1km mesh. The 

ADMAP dataset was used to pad the surrounding regions (Golynsky et al., 2001). Finally the gridded 

magnetic compilation was reduced to the magnetic pole (RTP) (Fig. 5) to ensure anomalies overlie 

their sources (Baranov and Naudy, 1964). Processed line aeromagnetic data for the 2017 survey is 

freely available from the UK Polar Data Centre (Jordan et al., 2018).    

To further define the boundaries of magnetic sources and their depths we calculated the 

maximum horizontal gradient of pseudo-gravity, tilt angle, tilt depth estimates and 3D extended 

Euler deconvolution depth estimates. These enhancements focused over the region where the 

highest resolution data was available (Fig. 6). Peaks in the maximum horizontal gradient of pseudo-

gravity typically reveal the edges of deeper and more regional sources (Fig. 6a) (Blakely and 

Simpson, 1986; Cordell and Grauch, 1985),  see Sup. Mat. Section S3 for details of calculation.  The 

tilt angle highlights short wavelength lower amplitude anomalies (Fig. 6b) and can determine both 

the depth and position of anomaly source margins (Fig. 6c) (Cooper and Cowan, 2006; Miller and 



Singh, 1994; Salem et al., 2007; Salem et al., 2010). Details of tilt angle calculation and the threshold 

tilt depth determination method are in Sup. Mat. Section S4.   

The 3D extended Euler depth estimates (Fig. 6d) were calculated following standard 

techniques (Nabighian and Hansen, 2001; Reid et al., 1990) using programs provided by the US 

Geological Survey (Philips, 2007). A range of analysis window sizes, acceptable levels of error and 

potential source geometries (structural index) were considered. A window size of 7 km, error 

tolerance of 10% and a structural index of zero (an infinite contact source) appears to give the most 

reasonable clustering and number of extended Euler solutions (Fig. 6d). Such parameters are 

consistent with the 5 to 10 km wavelengths of many of the anomalies beneath the Brunt Ice Shelf. In 

addition the 3D extended Euler solutions cluster near the margins of the source bodies indicated by 

the maximum horizontal gradient of pseudo-gravity (Fig. 6a) and approximately match the location 

and depth estimates from the tilt angle analysis (Fig. 6c). It is apparent that the Euler results show 

generally deeper solutions in the northern part of the 2017 survey area, however, line spacing in this 

region is significantly wider (Fig. 2) and hence this result may be an artefact.  

2.1.3 2.5D geophysical model setup 

To further investigate the origin of the observed gravity and magnetic anomalies over the 

Brunt Ice Shelf we constructed 2.5D joint gravity and magnetic models using the Geosoft GMSYS 

software package (Fig. 7). Uncertainties in susceptibility, density and absolute source depth mean a 

detailed model precisely fitting the data is not justified. Instead, we aim to provide a reasonable 

match to the observed data using bodies with simple geometries and reasonable geophysical 

properties, allowing interpretation and discussion of the underlying geology. Data for the models 

was sampled from 500 m rasters of the Brunt 2017 survey magnetic and gravity data, to ensure only 

the highest quality data was used and short wavelength anomalies were captured. The long 

wavelength crustal gravity field revealed by low pass filtering the Bouguer anomaly (Fig. 4c) was 

subtracted from the free air gravity anomaly prior to modelling so that the modelled anomaly 



contains only gravity signals from shallower crustal levels and bathymetry. Magnetic depth to source 

solutions (Fig. 6c and d) within 5km of the modelled profiles were projected onto the models and, 

together with the maps of the maximum horizontal gradient of pseudo-gravity and tilt contours, 

were used to guide the approximate placement of bodies. The impact of uncertainties in 

bathymetry, density and susceptibility was also investigated (Supplementary figures S1 and S2). The 

standard assumption of an infinite body extending across strike is valid for the N-S profile (A-A’), 

however, the E-W profile (B-B’) runs along strike of the modelled gravity high (Fig. 4d). Hence, for 

the E-W model a 2.5D assumption was made with the modelled bodies extending between 10 and 

15 km each side of the profile (Fig. 7b).  

3 Results and interpretation: 

3.1 Gravity and magnetic signatures  

The free air gravity anomaly shows two significant highs in the region of the Brunt Ice Shelf 

(Fig. 3a). The northernmost Shelf Break High (SBH) correlates well with the continental shelf break in 

bathymetric data (Fig. 4a), and is a typical feature of continental margins around the world e.g. 

(Watts and Stewart, 1998).  The second gravity high, we name the Halley High, lies ~30 km north of 

the Halley VI research station. The Bouguer anomaly (Fig. 4b) does not indicate a localised SBH 

anomaly, instead showing a strong regional north to south gradient across the study area (Fig. 4c), 

which we attribute to the variation in crustal thickness from the East Antarctic continent across the 

continent-ocean transition. The residual gravity anomaly (Fig. 4d) does not show the elongated >50 

mGal SBH anomaly, indicating  the SBH is adequately explained by a combination of bathymetric and 

long wavelength crustal gravity effects. In contrast, the Halley High is revealed as the most 

significant anomaly beneath the Brunt Ice Shelf, with an amplitude of up to 52 mGal. Other more 

minor gravity anomalies are attributed to uncertainties in the bathymetry, un-modelled geology, or 

lack in resolution in the gravity data outside the central study area.  



The aeromagnetic data over the Brunt Ice Shelf reveals a series of NW-SE trending anomalies 

(Fig. 5), which are further highlighted by the pseudo-gravity and tilt enhancements (Fig. 6a and b). 

The broadest anomalies, E1 and E2, have amplitudes of 500-800 nT and correspond to magnetic 

anomalies identified by previous workers (Mieth and Jokat, 2014). Our data also reveals for the first 

time a series of 5-8 km wavelength 30-50 nT anomalies southeast of the Halley Research Station, 

which are parallel to the NW-SE regional trends (Figs. 5 and 6). The full extent of these lower 

amplitude anomalies cannot be constrained as they are only identified in the highest resolution 

Brunt 2017 survey. To the south of the study area  magnetic anomalies with amplitudes of +/-350 nT 

are noted with wavelengths of ~25 km (Fig. 5); we attribute these signatures to the previously 

identified cratonic Coats Land Block (Studinger and Miller, 1999). Both the regional and shorter 

wavelength NW-SE trending anomalies appear to terminate to the north west of the survey area 

(Fig. 5). In some cases this is associated with the edge of the Brunt 2017 survey data, and hence the 

termination of the anomalies is not well resolved. However, in the region of the Halley High gravity 

anomaly two distinct magnetic anomalies with amplitudes of 400 to 1000 nT are observed in our 

new higher resolution aeromagnetic data. These anomalies appear to crosscut the NW-SE regional 

trend, a pattern confirmed by the pseudo-gravity and tilt enhancements (Fig. 6a and b). A significant 

~300 nT magnetic anomaly in the region of the Halley High was reported by previous workers 

(Golynsky and Aleshkova, 1997). However, the previously available data did not reveal the full 

amplitude, the two parts of the anomaly, or constrain the boundaries of this body, which are now 

well resolved at least to the south and east.   

3.2 2D potential field modelling 

We model the Halley High gravity anomaly as a dense subsurface body with high magnetic 

susceptibility (Fig. 7). Modelling of the gravity data along the N-S profile (A-A’) shows that 

bathymetric variations cannot account for the observed anomaly (Supplementary Fig. S1a). Further 

tests of the gravity models along profile A-A’ show that the dense body must be ~30 km wide 

(Supplementary Fig. S1b), in line with magnetic estimates of the body width (Fig. 6a and c). Thickness 



and density of any body in a gravity model can be traded off against each other. Our tests indicate 

that varying the density between 2900 and 3100 kgm-3 is approximately equivalent to varying the 

body thickness by +/- 1.5 km (Supplementary Fig. S1c and d) and we consider this a reasonable 

estimate of the uncertainty of the source body thickness. A modelled body <3 km thick with a 

density of 3000 kgm-3 gives an anomaly with an amplitude ~55% of what is observed, and would 

require unrealistically high densities (>3100 kgm-3) to fit the data (Supplementary Fig. S1b).   

Further tests show that if the entire 30 km wide dense block had uniform magnetic 

properties then no susceptibility value is able to fit the pattern and amplitude of the observed 

magnetic anomaly (Supplementary Fig. S2a). In contrast if the magnetic source body was only ~8 km 

wide the amplitude of the anomaly could be matched, but the longer wavelength pattern is not well 

modelled (Supplementary Fig. S2b). We therefore propose that there is a high susceptibility ‘core’ 

within the source body, flanked by lower, but non zero, susceptibility margins.  This would be 

consistent with the map view of the magnetic data and the digital enhancements that show a more 

complex magnetic structure with at least two discrete magnetic anomalies within the region of the 

Halley High (Fig. 5 and 6).  

Overall, given the shallow depth to source solutions, we model the source body on the N-S 

profile as a dense and highly magnetic block ~6 km thick and 30 km wide, extending to a depth of 7 

km. The assumed density of the body is 3000 kgm-3, with susceptibilities of up to 0.08 SI for the core 

and between 0.01 and 0.04 SI for the margins. On the E-W profile a body with the same density and 

thickness over-estimates the amplitude of the observed gravity anomaly, despite using a 2.5D 

model. We attribute this to incomplete modelling of the shallow 3D structure of the body. The 

susceptibility along the E-W profile is more variable, with two higher susceptibility sections (0.05 SI, 

and 0.08 SI) accounting for the two most significant magnetic anomalies.  

     



3.3 Interpretation 

The regional NW-SE trend in the aeromagnetic data, including major anomalies E1 and E2 

(Fig. 8a) is similar to the structural trend seen in the ~1Ga Grenville age Maud Belt (Golynsky and 

Jacobs, 2001; Mieth and Jokat, 2014) to the northeast of the study area (Fig. 8b). The crust in this 

region is composed of high-grade metamorphic rocks and post tectonic granites (Jacobs, 2009). 

Magnetic anomalies E1 and E2 were noted by previous workers (Mieth and Jokat, 2014) and linked 

to the Beattie Magnetic Anomaly (BMA) in southern Africa, which is thought to reflect crust of the 

~1Ga Namaqua-Natal Maud Belt composed of granitic gneisses (Lindeque et al., 2011). We show 

that anomalies E1 and E2 are not associated with clear positive gravity anomalies, hence there is 

little density contrast between the magnetic sources and the surrounding rocks, a similar situation to 

the BMA (Mieth and Jokat, 2014). Together the match to the Maud Belt trend and lack of associated 

gravity anomalies lead us to interpret anomalies E1 and E2 as magnetic provinces within Grenvillian 

basement. We speculate that these anomalies are the result of arc magmatic provinces accreted, 

together with intervening less magnetic meta-sedimentary packages, to the margin of the 

Grunehogna Craton during the Grenville orogeny (Jacobs et al., 2008). This interpretation implies the 

Maud Belt is up to 500 km wide and extends to the southern edge of our study area where the 

previously identified rigid Coats Land Block formed of >1Ga crystalline basement is inferred 

(Golynsky and Aleshkova, 1997; Studinger and Miller, 1999).    

The origin of the lower amplitude NW-SE trending magnetic anomalies southeast of Halley 

Research Station is more ambiguous (Fig. 8a).  Their trend is parallel to the interpreted basement 

structures E1 and E2, and the sources could therefore be magnetic volcanic sequences folded within 

a less magnetic Grenville age meta-sedimentary province. An alternative explanation is that these 

narrow linear anomalies reflect later (Jurassic?) dikes exploiting structural weaknesses in the 

basement. The trends of these anomalies are oblique to the dominant trends of exposed Jurassic 

dikes seen in Vestfjella (Spaeth, 1987), and the Jutulstraumen region (Curtis et al., 2008; Riley et al., 

2005) (Fig. 8b). In addition the exposed dikes are typically 1-80 m wide (Riley et al., 2005; Spaeth, 



1987), and hence would not be expected to be well resolved by a 5 km line spacing aeromagnetic 

survey. However, the amplitude and wavelength of these anomalies are similar to that of anomalies 

attributed to Jurassic dikes around the Dufek intrusions (Ferris et al., 2003). Ultimately, further 

detailed aeromagnetic surveys in this region are required to trace these anomalies and to determine 

their distribution and origin. 

The Halley High gravity and magnetic anomalies reflect the most significant geological 

structure within the survey region (Fig. 8a). The close correspondence of the positive gravity 

anomaly with the highest amplitude magnetic anomalies in our study region indicates that a single 

geological source is likely responsible for both the gravity and magnetic anomalies (Fig. 4d and 5). 

The successful joint magnetic and gravity models (Fig. 7) support the interpretation of a unified 

gravity and magnetic source. The pattern of coincident positive gravity and magnetic anomalies is 

unlike that seen over the interpreted basement structures E1 and E2, and ENE-WSW trend of the 

Halley High also differs from the regional basement grain. We therefore interpret the Halley High 

gravity and magnetic anomalies as a single feature resulting from a body distinct from the other 

sources in the study area.  

The broad trend of the Halley High approximately parallels the offshore magnetic Explora 

Anomaly, and the trend of the ocean continent-transition (Fig. 8). This pattern leads us to propose a 

Jurassic magmatic source for the observed anomaly, in line with the suggestions of previous authors 

(Golynsky and Aleshkova, 1997).  The modelled high density (~3000 kgm-3) and susceptibility (up to 

0.008 SI) lead us to interpret the source to be a mafic body. Both a localised rift basin filled with 

basalts, and a gabbroic intrusion could give rise to the observed anomalies.  However, the magnetic 

signatures and associated digital enhancements over the Halley High, together with the 2.5D models 

indicate that, from a magnetic perspective, this structure is a composite body with outward dipping 

sides.  This would seem to support an intrusive interpretation for the source body, as a localised rift 

basin would be expected to have inward dipping margins.  Furthermore, a multi-part intrusion would 



be consistent with observations in the Vestfjella area where gabbroic intrusions with distinct 

susceptibilities are emplaced just 25 km apart. The overall modelled densities are within the range of 

values measured in the Vestfjella gabbros (Vuori and Luttinen, 2003). The susceptibilities required to 

match the observed anomalies are relatively high for a typical gabbro (Telford et al., 1990), however, 

they are within the range of values recovered for the Vestfjella gabbros  (Vuori and Luttinen, 2003) 

supporting our interpretation that the Halley High reflects an intrusive mafic source. A similar 

pattern of a coupled gravity and magnetic high is also seen and modelled to reflect mafic intrusions 

in the near-shore parts of the Explora Anomaly further north in Dronning Maud Land (Leitchenkov et 

al., 1996).  

Our interpretation that the Halley High is due to a mafic intrusion ~30 km wide, 80 km long 

and ~6km thick is consistent with the form and geophysical signatures of many large layered mafic 

intrusions around the world. The closest analogue in terms of size is the Stillwater complex in the US. 

This elongate body has a surface exposure of ~47 by 8km, and a stratigraphic thickness of ~6km 

(McCallum, 2002). However, positive gravity anomalies of 30-50 mGal indicate a larger buried body 

70 km long and 30 km wide and 3-8 km thick (Bonini, 1982; Finn et al., 2013). The Dufek intrusion to 

the south of our survey area is also on a similar scale, ~50 km wide and 100 km long, with magnetic 

anomalies of >1000 nT (Ferris et al., 1998). The Bushveld complex in South Africa, at over 400 km 

wide, is much larger than the Halley High. However, the 40 to 70 mGal amplitude of the Bushveld 

complex gravity  anomalies, modelled to be due to a body 5-8 km thick (Kgaswane et al., 2012), are 

similar to the amplitude we observe over the Halley High. The high amplitude magnetic anomalies of 

>1000 nT seen over parts of the Bushveld complex are also in line with what we observe (Cole et al., 

2013). 

 



4 Discussion 

The location of mantle melting has significant implications for understanding the 

mechanisms driving magmatism at the onset of Gondwana breakup. Recognition of the large 

80x30x6 km Halley High Jurassic gabbro beneath the Brunt Ice Shelf (Fig. 8a) , together with the 

outcropping gabbros ~300 km away in Vestfjella (Vuori and Luttinen, 2003), supports previous 

aeromagnetic interpretation of a suite of Jurassic mafic magmatic bodies along the margin of 

Dronning Maud Land and Coats Land (Golynsky and Aleshkova, 1997; Leitchenkov et al., 1996) (Fig. 

8b). This suite of intrusions has an average spacing of ~128 km and lies approximately parallel to the 

dominant trend of outcropping mafic dikes in this region (Riley et al., 2005; Spaeth, 1987). Overall 

the band of intrusions parallels the magnetic Explora Anomaly (Johnson et al., 1992) and structures 

within the Northern Weddell Magnetic Province (Jordan et al., 2017) (Fig. 8b). These two offshore 

structures are interpreted as reflecting an extensive seaward dipping reflector sequence and 

breakup related magmatism generated as the Gondwanan plates finally began to move apart 

(Johnson et al., 1992; Jordan et al., 2017; Kristoffersen and Hinz, 1991; Kristoffersen et al., 2014). 

The close association between the onshore intrusive rocks, the inferred seaward dipping reflector 

sequence and the trend of the continental margin suggests that lithospheric extension and 

continental breakup likely played a significant role in the generation and emplacement of these 

magmas.  

We note that there is a significant gap between the band of continental margin mafic 

intrusions and the Dufek Intrusion ~650 km to the south (Fig. 8b). The gap may reflect sparse data 

coverage, however, it is surprising no mafic bodies have been identified given their recognition 

further north from similar reconnaissance data sets (Golynsky and Aleshkova, 1997). The apparent 

gap in mafic magmatism is adjacent to the distinct Southern Weddell Magnetic Province, which is 

inferred to be a region of back-arc continental extension (Jordan et al., 2017). Modelled intrusions in 

this region are not associated with positive gravity anomalies that would be expected to characterise 

mafic bodies (Jordan et al., 2017).  We suggest this gap indicates that the mantle processes occurring 



here did not lead to the generation or emplacement of significant mafic intrusions in the upper 

crust.  The location of the Dufek Intrusion far from the other mafic intrusions suggests that it reflects 

a separate phase of magmatism, unrelated to the mafic intrusions further north. 

The timing of magmatism within the Halley High, or the other intrusions along the 

continental margin, cannot be constrained by geophysical methods alone. Geological relationships 

show that the Vestfjella gabbros post-date the local LIP basalts, which they crosscut (Vuori and 

Luttinen, 2003). This crosscutting relationship is also seen in the coast parallel dikes in the Vestfjella 

area (Spaeth, 1987). Direct 40Ar/39Ar dating of the Utpostane gabbro in Vestfjella gives an age of 

~177 Ma (Zhang et al., 2003), similar to the ~178 Ma age of many of the coast parallel dikes in the 

Jutulstraumen region (Riley et al., 2005). Assuming the interpreted suite of large intrusions and dikes 

emplaced along the continental margin are coincident, the geological relationships and dating 

suggests that they likely post-date the short lived ~183 Ma pulses of magma which gave rise to most 

of the Karoo sills in South Africa (Svensen et al., 2012), and the Ferrar lavas in Antarctica (Burgess et 

al., 2015).  The 182.7 Ma age of the Dufek Intrusion, coincident with the wider Ferrar Magmatism 

(Burgess et al., 2015) supports our previous suggestion, based on the distribution of intrusions, that 

this in-board intrusion is distinct from the continental margin intrusions further north. Dating of the 

Karoo magmas on the conjugate South African margin, including the large Mount Ayliff gabbro 

complex, give a dominant age of ~183 Ma indicating the majority of magmatism on this margin 

preceded the breakup magmatism we interpret (Jourdan et al., 2008; Svensen et al., 2012). Some 

sills and suites of dikes in Southern Africa do, however, give younger ages of 176-178 Ma (Jourdan et 

al., 2008; Riley et al., 2006), indicating a secondary pulse of magmatism, similar to what we envisage, 

also occurred in Southern Africa. This secondary pulse of magmatism in Southern Africa is attributed 

to strong extension associated with continual breakup (Jourdan et al., 2008), which would be 

consistent with our model for the magmatic evolution of the Antarctic continental margin. 



The presence of a band of large mafic intrusions along the Antarctic continental margin is a 

situation directly analogous to the Greenland sector of the North Atlantic Igneous Province (Brooks, 

2011).  Dating of the large mafic intrusions along the Greenland margin indicates two pulses of 

intrusive magmatism at 57-54 Ma and 50-47 Ma which post-dated the initial 62-59 Ma lavas and 

dikes (Tegner et al., 1998). This pattern is suggested to reflect the distinct mantle melting episodes 

associated with initial plume impact, and subsequent continental breakup and passage of the plume 

tail (Tegner et al., 1998). Further analysis and modelling of the main intrusive centres along the 

Greenland margin has led to the suggestion that small scale convection in the upper mantle, rather 

than the impact of a single large mantle-scale plume, played a significant role in determining the 

location of mantle melting and associated magmatism (Callot et al., 2002; Geoffroy et al., 2007). The 

similarity in both relative timing and spatial pattern of magmatism along the Greenland and Coats 

Land/Dronning Maud Land margins leads us to suggest these margins are analogous. Hence, we 

propose a model where plume impact leading to shallow level magmatism, followed by 

emplacement of larger mafic intrusions controlled by small-scale convection and thinning of the 

lithosphere due to continental rifting, best explains the magmatic evolution of Gondwana as it began 

to break up.  

5 Conclusions 

We interpret detailed aerogeophysical data  as showing a coupled gravity and magnetic high, 

called the Halley High, caused by a large mafic body approximately 80 km long, 30 km wide and 6 km 

thick, with a volume of ~12,000 km3. Emplacement of this body into the margin of the East Antarctic 

continent, was part of the wider Karoo-Ferrar LIP. This work demonstrates how new strapdown 

gravity techniques coupled with high resolution aeromagnetic data provide a critical tool for 

understanding sub-surface geology where outcrop is limited or absent, as in the ice covered 

Antarctic continent. 



Our analysis and interpretation of the Halley High as a Jurassic mafic intrusion supports 

previous regional aeromagnetic interpretations of a linear belt of mafic intrusions along the margin 

of Coats Land and Dronning Maud Land.  We take these intrusions to be a more robust marker of the 

locations of mantle melting than shallower, potentially far travelled magmas within sills or volcanic 

flows. The distribution of these large mafic intrusions parallel with both the continental margin and 

inferred offshore seaward dipping reflector sequences, together with an inferred age ~5 Ma younger 

than the shallow Karoo-Ferrar lavas, is similar to that seen on the better-known Greenland volcanic 

margin. We interpret this pattern as indicating that shallow mantle convection and lithospheric 

extension associated with continental breakup played an important role in determining where the 

mantle melting giving rise to these intrusions occurred.   

A ~650 km gap in mafic intrusions between the continental margin and the distinct Dufek 

Intrusion leads us to hypothesise that upper mantle processes leading to generation and 

emplacement of mafic magmas were absent in this region. However, further detailed 

aerogeophysical investigations are required to accurately determine the true extent of mafic 

magmatism and hence mantle melting along this sector of the Gondwanan margin.  
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Figures 

 

Fig. 1. Geographic and tectonic setting. a) Bathymetry and onshore sub-ice topography from 

BEDMAP2 (Fretwell et al., 2013). Red box over the Brunt Ice Shelf (BIS) locates Fig. 2. White lines 

show coast and ice shelf margins. Pink lines locate rock outcrops. Yellow letters mark gabbroic 

layered intrusions (Dufek Intrusion (DI) and in the Vestfjella area (VF)). SR and BI mark the 

Shackleton Range and Berkner Island respectively. b) Tectonic reconstruction of Gondwana (Dalziel 

et al., 2013; Jordan et al., 2017). Red areas mark Karoo-Ferrar magmas. Yellow areas locate exposed 

large gabbroic intrusions. Circle marks inferred plume head (White and McKenzie, 1989). Black and 

white dotted box locates (a). Blue star locates study area. Light and dark grey areas mark 

microcontinental fragments and continental blocks respectively. 



 

Fig. 2. Geophysical data coverage overlaid on MOA satellite image. Red lines mark 

strapdown gravity and aeromagnetic data from the 2017 survey flights. Blue lines mark gravity and 

magnetic data from ICEGRAV 2013 survey. Yellow lines locate areas with just magnetic data from the 

ICEGRAV 2013 survey. Pink triangle marks Halley Research Station. White line marks coast and edge 

of floating ice shelf. Black dashed line marks 2017 strapdown gravity profile chosen for spectral 

analysis (Fig. 3b). Black dots mark seismic determinations of sub-ice shelf bathymetry. Blue shading 

marks location of ship-borne swath bathymetric data. Note swath data beneath ice shelf was 

collected during times of past ice-shelf retreat. 



 

Fig. 3. Aerogravity data. a) Intergrated regional free air gravity anomaly. Black outline marks 

edge of 2017 high quality strapdown gravity data. Yellow lines locate modelled profiles (Fig. 7). HH = 

Halley High. SBH = Shelf Break High. b) Power spectrum of strapdown gravity flight line (Fig. 2) 

showing signal clearly above the noise floor by 6 km wavelength threshold.  



 

Fig. 4. Bathymetry and derived gravity anomalies. a) Bathymetry across the Brunt Ice Shelf, 

see Fig. 2 for data location. b) Bouguer gravity anomaly. Note onshore areas are masked as the 

gravity efect of topography above 450 m has not been acounted for. c) Long wavelength gravity 

residual reflecting changing crustal thickness from the East Antarctic continent to the Weddell Sea 

ocean. d) Residual gravity anomalies due to shallow geological features and remaining uncertainties 

in bathymetry. Note ~50 mGal Halley High (HH) ~30 km north of Halley Research Station. Red/white 

dashed line marks +20 mGal residual gravity contour around HH shown in subsequent figures. 



 

Fig. 5. Reduced to the pole (RTP) aeromagnetic data compilation across the Brunt Ice Shelf. 

Black line outlines highest resolution 2017 survey data. Grey dashed box locates Fig. 6. Yellow lines 

mark modelled profiles (Fig. 7). Anomalies E1 and E2 identify regional anomalies noted by previous 

authors (Mieth and Jokat, 2014). CLB marks the Coats Land Block, a previously inferred cratonic 

fragment (Studinger and Miller, 1999). Note positive magnetic anomalies within the outline of the 

Halley High gravity anomaly (red dashed line) have amplitudes of up to 1000 nT.  



 

Fig. 6. Digital enhancement and depth to source calculation from aeromagnetic data. a) 

Maximum horizontal gradient of pseudo-gravity. Peaks locate anomaly source margins. b) Tilt angle. 

c) Tilt depth estimates passing the imposed quality threshold (coloured circles). Inferred source 

margins indicated by 0° tilt contour (thick black contour). ±45° tilt angle contours (thin black lines). 

Arrows indicate direction from zero contour to closest ±45° contours for robust depth solutions. 

Background image is RTP magnetic data (Fig. 5). d) 3D Euler depth solutions. Note clusters of shallow 

solutions along margins of anomalies. Broad ‘spray’ patterns of solutions >4km depth occur in areas 

with lower resolution regional data.   



 

Fig. 7. Potential field models across the Halley High anomalies, location on previous figures.                 

a) N-S profile A-A’. b) W-E profile, B-B’. Top panel modelled (black line) and observed (grey dots) 

magnetic anomalies, and residual field (red line). Small black arrows locate profile intersections. 

Second panel shows modelled (black line) and observed (grey dots) upper crustal gravity anomalies, 

and residual field (red line). Third panel shows vertical section of model. Pale and dark blue blocks 

reflect ice and water respectively. Brown shows rock with a modelled background density of 2670 

kgm-3 and zero susceptibility. Text shows block density (D) in kgm-3 and magnetic susceptibility (S) in 

SI units. Green to yellow blocks are the modelled sources, differing shades reflect changing 

susceptibility. Black dots mark 3D extended Euler depth to source solutions. Blue dots mark tilt 

depth solutions. Horizontal red line locates 2D section view. Lower panel shows 2D section view of 

model at 5 km depth. Note model A-A’ is infinite across strike, but in model B-B’ the source bodies 

are modelled as extending 10-15 km from the profile.  



 

Fig. 8 Geophysical interpretation and discussion. a) Detailed interpretation of 2017 survey 

area (blue outline). The Halley High (HH) is interpreted as a large Jurassic mafic intrusion (red). 

Anomalies E1 and E2 are Grenville age basement structures. Lineations south of the Halley High 

(green) may be basement structures or dykes originating from the Halley High intrusion. Purple 

region is a previously inferred Jurassic mafic intrusion (Golynsky and Aleshkova, 1997). Note 

continental shelf break (CSB) and parallel shelf break gravity high (SBH) reflect the Jurassic rifted 

margin and parallel the trend of the Halley High.  South of the survey area is the Coats Land Block 

(CLB). b) Regional setting. Red bodies reflect gabbros identified from our detailed geophysical 

analysis (HH), or outcrop; Vestfjella (VF) and Dufek Intrusion (DI). Purple bodies mark other inferred 

Jurassic mafic intrusions within the East Antarctic continent (Golynsky and Aleshkova, 1997). Green 

lines mark dominant trends of mafic dikes. The Northern and Southern Weddell Magnetic Provinces 

(NWMP – blue and SWMP – dark green) reflect regions of extended continental crust dominated by 

continental breakup and back-arc extension respectively (Jordan et al., 2017). The Berkner Island 

anomaly (BI) and other structures within the SWMP are modelled as intrusions. The linear Explora 

Anomaly (EA) is interpreted to be a seaward dipping reflector sequence (Kristoffersen et al., 2014). 



East Antarctica provinces in dark grey mark cratonic blocks including the Grunehogna Craton (G), 

CLB, and northern edge of the Mawson Continent (MC). The grey striped region marks the 

interpreted broad ~1Ga Maud Belt (MB) with internal anomalies in black (Mieth and Jokat, 2014). 

The ~500Ma East African Antarctic Orogen (EAAO) may link the Shackleton Range (SR) and the 

Jutulstraumen (Jut.) area (Jacobs and Thomas, 2004). 

 

 

 

 

 


