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25 Abstract

26 Forest models are increasingly being used to study ecosystem functioning, through simulation of 

27 carbon fluxes and productivity in different biomes and plant functional types all over the world. 

28 Several forest models based on the concept of Light Use Efficiency (LUE) rely mostly on a 

29 simplified mathematical structure and empirical parameters, require little amount of data to be run, 

30 and their computations are usually fast. However, possible calibration issues must be investigated in 

31 order to ensure reliable results.

32 Here we addressed the important issue of delayed convergence when calibrating LUE models, 

33 characterized by a multiplicative structure, with a Bayesian approach. We tested two models 

34 (Prelued and the Horn and Schulz (2011a) model), applying three Markov Chain Monte Carlo-

35 based algorithms with different number of iterations, and different sets of prior parameter 

36 distributions with increasing information content. The results showed that recently proposed 

37 algorithms for adaptive calibration did not confer a clear advantage over the Metropolis–Hastings 

38 Random Walk algorithm for the forest models used here, and that a high number of iterations is 

39 required to stabilize in the convergence region. This can be partly explained by the multiplicative 

40 mathematical structure of the models, with high correlations between parameters, and by the use of 

41 empirical parameters with neither ecological nor physiological meaning. The information content of 

42 the prior distributions of the parameters did not play a major role in reaching convergence with a 

43 lower number of iterations.

44 We conclude that there is a need for a more careful approach to calibration to solve potential 

45 problems when applying models characterized by a multiplicative mathematical structure. 

46 Moreover, the calibration proved time consuming and mathematically difficult, so advantages of 

47 using a computationally fast and user-friendly model were lost due to the calibration process needed 

48 to obtain reliable results.

49

50 Keywords

51 Forest Model; Prelued; Bayesian Calibration; Markov Chain Monte Carlo; Light Use Efficiency; 

52 GPP

53

54 1. Introduction

55 Gross Primary Production (GPP) is a key component of the terrestrial ecosystem carbon balance 

56 (Chapin III et al., 2006; Nagy et al., 2006), representing the amount of CO2 assimilated by 

57 photosynthesis per unit of time (Waring et al., 1998). The Eddy-Covariance (EC) technique (Burba, 

58 2013) is one of the most commonly used approaches to calculate GPP at the ecosystem level: this 

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118



3

59 method computes the net CO2 turbulent flux between a given ecosystem and the atmosphere (Net 

60 Ecosystem CO2 Exchange, NEE), and subsequently derives Ecosystem respiration (ER) and GPP 

61 through the application of partitioning methods (Lasslop et al., 2010; Reichstein et al., 2005; van 

62 Gorsel et al., 2009). However, there are several theoretical assumptions (Burba and Anderson, 

63 2010) that can seriously limit its application in topographically complex environments, and its 

64 estimates are limited to the footprint of the EC tower. GPP is also increasingly being estimated 

65 using remote sensing applications (Still et al., 2004; Wisskirchen et al., 2013; Zhang and 

66 Kondragunta, 2006): as an example, the MODerate Imaging Spectroradiometer (MODIS) sensor 

67 was designed in part for that purpose (Running et al., 2000). These latter methods have the clear 

68 advantage of covering very wide areas; on the other hand, they need to be validated by ground 

69 measurements in order to ensure the reliability of the data (i.e. due to cloud cover, or to the spatial 

70 and temporal aggregation processes). For those reasons, despite extensive efforts and several 

71 techniques tested, GPP quantification remains challenging in most ecosystems. Therefore, extensive 

72 modelling techniques have been applied to assist GPP estimates. 

73 Nowadays, GPP is one of the central outputs of many forest ecosystem models (De Weirdt et al., 

74 2012; Mäkelä et al., 2000; Tjiputra et al., 2013), most of which are detailed, multi-variable models 

75 that need much environmental information and careful parameterization before they can be run 

76 (Landsberg and Waring 1997). The modelling approach developed by Farquhar et al. (1980) is one 

77 of the most commonly applied to estimate GPP in forest modelling, but it is not free of 

78 disadvantages (van Oijen et al., 2004; Yin et al., 2004): its parameters are difficult to infer and have 

79 no physical meaning at the canopy scale, being chloroplast parameters with validity up to the leaf 

80 level only. Therefore, a process of simplification started in the 90's (White and Running 1994; 

81 Landsberg andWaring 1997)  with the aim of developing models that could be of use in applied 

82 forest management.

83 A widely-used group of simple models for GPP is based on the concept of Light Use Efficiency 

84 (LUE), defined as the ratio of GPP to Absorbed Photosynthetically Active Radiation (APAR). 

85 These models assume that vegetation has a potential LUE (which can be described as the ability of 

86 plants to use light for photosynthesis in absence of limiting factors), decreased by modifying factors 

87 that account for suboptimal conditions for photosynthesis (Landsberg and Waring, 1997; McMurtrie 

88 et al., 1994). GPP is then calculated as the product of LUE, incoming radiation, and modifiers, 

89 creating a quasi- or totally multiplicative mathematical structure. There are several LUE-based 

90 models in the existing literature: for example C-Fix (Veroustraete et al., 1994), 3PG (Landsberg and 

91 Waring 1997), Prelued (Mäkelä et al., 2008), and the Horn and Schulz (2011a) model. These 

92 models are often considered simpler and more "user-friendly" than process-based models 
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93 (Landsberg and Waring 1997): they rely on few equations of simplified physiological processes, 

94 few often empirical parameters, do not require high computational power or many data to be run, 

95 and the computations are usually fast. On the other hand, their simple structure is likely to cause 

96 high correlation between parameters, leading to difficulties in calibration and ultimately to 

97 unreliable results and predictions (Bagnara et al., 2015). This is particularly true for the Prelued 

98 model (Mäkelä et al., 2008): despite its successful application in several biomes and plant 

99 functional types (Bagnara et al., 2015; Mäkelä et al., 2008; Peltoniemi et al., 2012), Bagnara et al. 

100 (2015) highlighted some calibration issues (possibly due to its multiplicative structure) that are 

101 likely to impair the reliability of the results and predictions, even in the presence of a very good fit 

102 to the data. 

103 To our knowledge, calibration issues are not usually properly addressed in studies that apply LUE 

104 models: those studies evaluate the models’ performance based only on their ability in reproducing 

105 the data, while little attention is given to the calibration process that generated those results. 

106 Therefore, there is no guarantee that calibration issues are specific to Prelued and not a general 

107 limitation to the application of LUE models. To answer this crucial point, we selected the model 

108 developed by Horn and Schulz (2011b) (as described in Horn and Schulz (2011a)) as a second 

109 LUE-based model to compare with Prelued in terms of convergence efficiency. This is a LUE 

110 model with the same time scale as Prelued’s, same number of parameters to avoid issues related to 

111 different dimensionality of parameter space, and comparable prior information about parameter 

112 values. The main difference between these two models is in their mathematical structure: overall, 

113 the structure of this latter model is slightly less multiplicative than Prelued, which should facilitate 

114 its calibration.

115 The Bayesian approach to calibration has become more and more popular in the last few years to 

116 obtain insights on both model predictions and uncertainties. This approach has been widely used in 

117 the past in different fields, and recently it has been applied to different kinds of ecosystem models, 

118 focusing on both croplands (Zhu et al., 2014) and forests (van Oijen et al., 2005; Svensson et al., 

119 2008; Chevallier et al., 2006; van Oijen et al., 2011; van Oijen et al., 2013). Even so, the application 

120 of the Bayesian method to LUE-based models is not as common as its application to process-based 

121 models, with very few studies heading in this direction (Still et al., 2004; Xenakis et al., 2008; 

122 Bagnara et al., 2015). The main characteristic of a Bayesian calibration is that it quantifies model 

123 inputs and outputs in the form of probability distributions, and applies the rules of probability 

124 theory to update the distributions when new data are obtained (Sivia, 1996; van Oijen et al., 2005). 

125 In recent years, the increase in affordable computational power has allowed the Markov Chain 

126 Monte Carlo (MCMC) technique to become a popular choice for sampling the joint posterior 
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127 probability distribution for the parameters of models. MCMC has a number of advantages for our 

128 purposes over other approaches that have been used for Bayesian Calibration, such as the adjoint 

129 method (Zhu et al., 2014) or the Kalman filter (Gao et al., 2011). These latter methods are special 

130 cases of Bayesian calibration (Wikle and Berliner, 2007), where a prior probability distribution for 

131 parameters is specified and updated using Bayes Theorem. However, they require assumptions of 

132 linearity and Gaussian distributions that are restrictive and inappropriate in the case of the highly 

133 nonlinear models that we study here. In contrast, the MCMC method allows for any type of prior 

134 and posterior distribution, including asymmetric and multimodal ones. Moreover, the sample from 

135 the posterior distribution generated by MCMC represents the full posterior probability distribution 

136 (in contrast to the adjoint method which only provides an estimate of the mode) and uncertainties 

137 can only be assessed fully with such global methods. The efficiency of the MCMC technique is 

138 highly dependent on the model structure (Browne et al., 2009; Gilks and Roberts, 1996): the high 

139 correlations between parameters induced by a multiplicative model structure generally make the 

140 convergence of the MCMC more difficult, impairing the reliability of the results of the calibration. 

141 Another important factor for the success of the MCMC is the a-priori information on the model 

142 parameters: poorly defined parameters, empirical parameters, or the lack of information in the 

143 existing literature force the modeller to assign non-informative prior distributions, which makes the 

144 calibration more difficult and time-consuming (Hartig et al., 2012). Different methods have been 

145 implemented to avoid or reduce such problems: the use of very long chains (Geyer, 1992; Gilks et 

146 al., 1996), model re-parameterization to avoid strong correlations (Buzzi-Ferraris and Manenti, 

147 2010; Gilks et al., 1996), and the use of more efficient algorithms (Gilks et al., 1996; ter Braak, 

148 2006). In this context the term "efficiency" can be ambiguous: for example, ter Braak (2006) 

149 calculates efficiency considering the mean square errors of different algorithms, but it can also be 

150 considered as the proper sampling from a posterior distribution (thus related to the acceptance rate). 

151 In this particular study, we considered efficiency as the capability of the algorithm to identify the 

152 convergence region minimizing the number of model evaluations, i.e. maximizing the speed of 

153 convergence. 

154 This work aims at 1) identifying and solving possible and previously undetected calibration issues 

155 related to the multiplicative mathematical structure typical of LUE-based models; 2) assessing the 

156 importance of prior information on parameter values, and 3) determining if those issues are limited 

157 to a single model or affect the entire class of LUE models. We applied a Bayesian calibration with 

158 different algorithms, number of iterations, and different sets of prior distributions both to Prelued 

159 and to the Horn and Schulz (2011a) models employed as case studies, calibrating them over one 

160 year of daily GPP data from an EC tower in the Italian Alps.
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161

162 2. Materials and Methods

163 2.1 Models formulation

164 Prelued is a modified version of a LUE-type model of daily photosynthetic production of the 

165 canopy (Mäkelä et al., 2008). Compared with the majority of the LUE-based models that work at 

166 monthly or annual time scales, Prelued calculates GPP at a daily time step relying on a nonlinear 

167 relationship between APAR and GPP (Medlyn et al., 2003;Turner et al., 2003), a saturating effect of 

168 average daily temperature (which simulates the ecosystem “acclimation” to temperature, Mäkelä et 

169 al. (2004)), and daily meteorological and environmental variables. GPP is estimated as: 

170 GPPj = β APARj ∏iFij   , i=L,S,D  (1)

171 where GPPj is canopy Gross Primary Production (gC m-2) during day j, β is potential Light Use 

172 Efficiency (gC mol-1), APARj is Absorbed Photosynthetically Active Radiation (mol m-2) during 

173 day j, and Fij  [0, 1] are modifying factors accounting for suboptimal conditions on day j. The ∈

174 actual LUE of the canopy on day j is the product of β and the current values of the modifiers. 

175 To account for the nonlinearity in the response to APAR, a light modifier FL was defined so as to 

176 yield the rectangular hyperbola when multiplied with the linear response included in the LUE 

177 model:  

178 FLj = 1/(γ APARj +1)  (2)

179 where γ (m2 mol-1) is an empirical parameter. The effect of temperature on daily GPP was modelled 

180 using the concept of state of acclimation, Sj (°C) (Mäkelä et al., 2004), a piecewise linear function 

181 of Xj (°C) calculated from the mean daily ambient temperature, Tj (°C), using a first-order dynamic 

182 delay model:  

183 Xj = Xj-1 + (1/τ) (Tj - Xj-1), X1 = T1 (3)

184 Sj = max {Xj- X0, 0} (4)

185 where τ (days) is the time constant of the delay process and X0 (°C) is a threshold value of the 

186 delayed temperature.  The modifying function FS is defined as  

187 FSj = min {Sj/ Smax, 1} (5)

188 where the empirical parameter Smax (°C) determines the value of Sj at which the temperature 

189 modifier attains its saturating level. 

190 Following Landsberg and Waring (1997) the Vapour Pressure Deficit (VPD) modifier FD was 

191 defined as

192 FDj = e κVPDj (6)

296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354



7

193 where VPDj (kPa) is VPD in day j and κ (kPa-1) is an empirical parameter assuming typically 

194 negative values. 

195 While in Prelued GPP is calculated as a product of potential LUE (β), APAR, and modifiers (Eq. 1), 

196 in Horn and Schulz (2011a) GPP is calculated following a non-entirely multiplicative formulation:

197 GPPj = LUE APARj[ pFTj + (1-p) FWj] (8)

198 with GPPj (gC m-2) denoting the gross flux of carbon uptake in day j, LUE (gC MJ-1) being the 

199 maximum attained Light Use Efficiency, APAR (MJ m-2) the Absorbed Photosynthetically Active 

200 Radiation in day j, and p (-) a weighting factor for the modifiers FT and FW. 

201 FT is a sigmoidal peak function defined as:

202 FT = 4 e –(Ts-Topt)/kT / (1+e–(Ts-Topt)/kT)2 (9)

203 where Ts is the soil temperature (°C), Topt (°C) is the temperature at which the light use efficiency 

204 is maximum, and kT (°C-1) is the rate of change from the lower level of FT to its maximum.

205 FW is defined as following sigmoidal function:

206 FW = 1 / (1+ekW(W-Wi) ) (10)

207 where W is a moisture surrogate (in our case the Soil Water Content (m3 m-3)), kW is the constant 

208 rate of change between lower and upper level (set to -13.1 following Horn and Schulz (2011a)) and 

209 Wi is the inflection point with units depending on the choice of W.

210 Following Jarvis et al. (2004), a lag function was applied to Ts:

211 ZFj= (1-α) Tsj+ α ZFj-1 (11)

212 where α (-) is the lag parameter. Eq. (11) is only applied to Ts, considered the dominant driver of 

213 the vegetation stands; this main driver is expected to trigger the start and end of dormant periods 

214 after which the vegetation has to regenerate and redevelop green tissue (Horn and Schulz, 2011a). 

215 ZF calculated in Eq. (11) is therefore used as Ts in Eq. (9).

216 FT and FW are scaled between 0 and 1 and describe the dependence of the Light Use Efficiency on 

217 the soil temperature and a moisture surrogate. 

218

219 2.2 Data

220 The data for the Italian Eddy Covariance site of Lavarone for the years 2004 and 2006 have been 

221 downloaded from the European Fluxes Database Cluster (www.europe-fluxdata.eu). 

222 Lavarone is a ca. 130 years old alpine coniferous forest, dominated by Silver fir (Abies alba Mill.) 

223 and Norway spruce (Picea abies (L.) Karst.), with minor presence of European beech (Fagus 

224 sylvatica L.) and located at 1350 m a.s.l. in the Trento province, eastern Italian Alps. The Lavarone 

225 site characteristics are described in detail in Rodeghiero and Cescatti (2005).
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226 Daily air temperature, relative humidity (Rh) and PAR were used as input data. Daily VPD was 

227 calculated from Rh and air temperature following Allen et al. (1998). Daily APAR was calculated 

228 following Mäkelä et al. (2008), using Normalized Difference Vegetation Index (NDVI) data as a 

229 proxy for fAPAR (Fraction of Absorbed Photosynthetically Active Radiation): for that purpose, 

230 NDVI data with 0.25 km spatial grid and 16 days time-step were downloaded from the MODIS 

231 repository (MODIS product MOD13Q1). Daily values of GPP were used to calculate the model 

232 goodness-of-fit: year 2004 was used for model calibration, while year 2006 was used for model 

233 validation.  Missing data for a weather variable resulted in a missing outcome of the model for that 

234 day j, while missing GPP data for a day j would make it impossible to calculate the log-likelihood 

235 value for that day. Due to either weather or GPP missing data, we used 292 days for calibration 

236 (year 2004) and 363 for model validation (year 2006), each one consisting of one data point.

237 The Bayesian calibration requires an estimate of the uncertainties around the data used in the 

238 calibration (van Oijen et al., 2005). These uncertainties are of primary importance for the 

239 effectiveness of the calibration. If the data are highly uncertain, i.e. less informative, then the 

240 likelihood distribution in parameter space becomes more uniform. As a consequence, every 

241 proposed new candidate parameter vector will have similar likelihood as the current parameter 

242 vector, so the likelihood ratio will always be very close to 1 and the candidate vector will always be 

243 accepted unless its prior probability is low. This very high acceptance rate will slow down the 

244 effective exploration of parameter space as the random walk loses direction, slowing down the 

245 identification of the convergence region. On the other hand, if data uncertainties are too small, i.e. if 

246 the data are overly informative, the likelihood ratio will always be close to 0, causing a very low 

247 acceptance rate. This would cause the MCMC to move very slowly through parameter space, again 

248 resulting in a delayed identification of the convergence region. 

249 Very few examples can be found in the literature of uncertainty estimates of daily GPP. Moreover, 

250 these are not consistent across studies: Mo et al. (2008) set daily uncertainties on GPP as 15% of its 

251 value, while Duursma et al. (2009) estimated them to be 5% of GPP. We set them to 30% of daily 

252 GPP as done by Williams et al. (2005) and Bagnara et al. (2015), as a conservative estimate for 

253 calibration purposes, also to be sure that the information content of the data was not overestimated. 

254 Therefore, data uncertainties were quantified as Gaussian noise with a standard deviation equal to 

255 30% of daily GPP but never less than 1 g C m-2 d-1. The lower bound of 1 g C m-2 d-1 is necessary to 

256 ensure that low values of GPPj would not get an overwhelming weight during the calibration 

257 procedure.

258

259 2.3 Bayesian calibration
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260 2.3.1 Overview of MCMC-algorithms

261 In this study, three algorithms characterized by increasing complexity and efficiency were applied: 

262 the Metropolis-Hastings Random Walk (MHRW), the Adaptive Metropolis (AM), and the 

263 Differential Evolution Markov Chain (DEMC). 

264 The Metropolis-Hastings Random Walk algorithm (MHRW) (Casella and Robert, 1999) produces a 

265 walk through the parameter space such that the collection of visited points forms the desired sample 

266 from the posterior distribution, discarding some initial values (van Oijen et al. 2005). At each 

267 iteration of the algorithm, a new candidate parameter vector is proposed stochastically, i.e. the jump 

268 from the current point to the proposed next one follows a probability distribution. The most 

269 commonly used proposal distribution is the multivariate Gaussian. Whether the proposal is 

270 accepted, depends on the prior probabilities and likelihoods of the current and proposed parameter 

271 vectors. In the MHRW, the proposal distribution itself does not change, so average proposed jump 

272 directions and distances remain the same throughout the random walk. This is different in the next 

273 two MCMC algorithms. The Adaptive Metropolis algorithm (AM) is a modification of the MHRW. 

274 The key attribute of the AM algorithm is the continuous adaptation of its proposal distribution. The 

275 adaptation consists of gradual convergence of the covariance matrix of the proposal distribution to 

276 the covariance matrix of the parameters visited so far in the chain (Haario et al. 2001; Smith and 

277 Marshall 2008). The differential evolution Markov chain algorithm (DEMC) is formed by 

278 combining the differential evolution algorithm of Storn and Price (1997), designed for global 

279 optimization in real parameter spaces, with MCMC sampling, utilizing standard Metropolis 

280 principles. The result is a population MCMC algorithm, where multiple chains are run in parallel 

281 and allowed to learn from each other. Details of the DEMC scheme are presented in ter Braak 

282 (2006) but in brief the scale and orientation of the jumps in DEMC automatically adapt themselves 

283 to the variance-covariance matrix of the target distribution. It is precisely this that each point in the 

284 population learns in DEMC from the others. Neither the location nor the fitness of the other points 

285 is used in the proposal scheme. This combination intends to overcome the difficulties common to 

286 MCMC methods of choosing an appropriate scale and orientation (respectively the size of each 

287 jump in the MCMC sampling and its direction in the parameter space) for the proposal distribution, 

288 while also addressing issues of computational efficiency related to the time to reach convergence 

289 (Smith and Marshall, 2008; ter Braak, 2006). Although the DEMC algorithm is more 

290 computationally efficient, and its implementation can reduce the time needed for calculations, the 

291 total computational resource needed is not reduced by its use.

292

293 2.3.2 Calibration Framework
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294 Several calibrations were carried out in order to investigate in detail model behaviour during 

295 calibration and to tackle the issues related to slow convergence. For each of the three algorithms 

296 (MHRW, AM, DEMC), we performed three simulations with an increasing number of iterations 

297 (104, 105 and 106) to test the efficiency of each algorithm in reaching convergence. An initial burn-

298 in phase was set to 30% of the total number of iterations for all the algorithms. 

299 For the DEMC algorithm, 100 chains were considered, making the number of iterations per chain 

300 respectively 102, 103 and 104. The initial starting point of each chain was randomly sampled from 

301 the prior distribution at the beginning of the calibration. This was the only difference in the starting 

302 condition of the 100 chains. To speed up the calculations, a representative subset of 20 chains was 

303 randomly selected from the original pool of 100 for all the downstream analysis (convergence 

304 checks, computation of the posterior distributions etc.).

305 The degree of convergence was visually assessed for each Markov Chain, and by comparing the 

306 behaviour of the Markov Chain between different numbers of iterations and algorithms. This visual 

307 assessment allowed us to overcome the limitations of convergence tests, and to assess both the 

308 stability, mixing, and narrowing of the parameter space of all the Markov Chains.  

309

310 Calibration of Prelued with non-informative (uniform) priors.

311 The prior parameter distributions for Prelued for this analysis were set based on the information 

312 made available by Mäkelä et al. (2008) and Peltoniemi et al. (2012). Since several parameters were 

313 poorly studied, and since many are empirical and without physiological meaning, we set the prior 

314 distributions as uniform distributions (i.e. any value had the same probability to occur) and wide 

315 enough to cover a very wide range of possible values (Tab. 1).

316

Parameter Unit Prior min. Prior max.

β gC mol-1 0.0 1.5

γ m2 mol-1 0.0 0.1

κ kPa-1 -10.0 0.0

X0 °C -100.0 0.0

τ days 0.0 100.0

Smax °C 0.0 100.0

317 Table 1. Uniform prior probability distributions for each parameter in the Prelued model

318

319 Calibration of Prelued with informative (truncated Gaussian) priors.
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320 To evaluate the impact of prior information on calibration efficiency, we ran an additional Bayesian 

321 calibration on Prelued with more informative priors, with the same algorithms and settings as for 

322 the calibration described above. The prior parameter distributions for this analysis were set using 

323 the posterior distributions found in Bagnara et al. (2015) as new priors (Tab. 2). This is possible 

324 because the calibration was carried out exactly on the same data, and on a slightly different version 

325 of the same model (Bagnara et al. (2015) included 2 additional parameters for the Soil Water 

326 Content modifier). Their information content is therefore drastically increased in respect to the 

327 uniform distributions used in the previous analysis.

328

Parameter Unit Prior min. Prior max. Prior mean Prior standard dev.

Β gC mol-1 0.0 1.5 0.60 0.10 

Γ m2 mol-1 0.0 0.1 0.02 0.01 

Κ kPa-1 -10.0 0.0 -0.92 0.22 

X0 °C -100.0 0.0 -8.90 1.92 

Τ days 0.0 100.0 6.42 2.22

Smax °C 0.0 100.0 17.60 4.37

329 Table 2. Truncated Gaussian prior probability distributions for each parameter in the Prelued 

330 model.

331

332 Calibration of the Horn and Schulz (2011a) model.

333 For the model by Horn and Schulz (2011a), the prior distributions were derived from the parameter 

334 estimates at several sites reported in Horn and Schulz (2011b), using the minimum and maximum 

335 value for each parameter (calculated considering all the reported sites) as boundaries (Tab. 3) and 

336 setting the distributions as uniform to avoid them being too informative compared to Prelued’s. 

337

Parameter Unit Prior min. Prior max.

LUE gC MJ-1 0.78 2.25

p - 0.14 0.98

α - 0.00 0.98

Topt °C 5.00 24.45

kT °C-1 2.00 12.00

Wi m3 m-3 0.22 0.78
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338 Table 3. Uniform prior probability distributions for each parameter in the model by Horn and 

339 Schulz (2011a)

340

341 We also applied a Bayesian model comparison (BMC), following van Oijen et al. (2013), to 

342 compare the prior probabilities of the two models. BMC relies on the same probabilistic ideas as 

343 Bayesian calibration, but now the probability distribution to be informed by the data is not that for 

344 the parameters but for the models themselves. A key strength of BMC is that it evaluates models not 

345 at one single parameter vector value but takes into account parameter uncertainty (Tuomi et al., 

346 2008), and it gives an insight on how plausible different models are in the light of new data. We 

347 carried out a prior BMC, sampling 105 parameter vectors from their prior distributions for each 

348 model, and evaluated the model probability with an approach based on the calculation of the 

349 integrated likelihood (for a more detailed description of the method see van Oijen et al., 2013).

350

351 3. Results

352 3.1 Bayesian calibration

353 3.1.1 Calibration of Prelued with non-informative priors

354 For all three algorithms of increasing complexity used in this study (MHRW, AM, DEMC) the 

355 MCMC did not reach convergence at 104 iterations, approached convergence at 105 iterations, and 

356 reached good convergence at 106 iterations. For many parameters, the posterior distributions were 

357 bimodal, shifted, or as broad as the priors at 104 iterations, while becoming leptokurtic at 106 

358 iterations for all the parameters. With the latter number of iterations, the posterior distribution thus 

359 narrowed the parameter space, converging in the same region (Fig. 1 and S1-S2). 
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360
361 Fig. 1. Traceplots of the post burn-in MCMC sampling (a-c) and posterior distributions (d) for the β 

362 parameter, for all the applied algorithms (MHRW, AM, DEMC) with different number of iterations, 

363 for the calibration of the Prelued model with uniform priors. Yellow line:104 iterations; red line: 105 

364 iterations; blue line: 106 iterations; black histogram: uniform prior distributions. Traceplots and 

365 distributions for all the parameters are reported in figure S1 and S2.

366

367 The posterior correlation coefficients between parameters (Tab. 4) were very similar between 

368 algorithms with only few exceptions. The same is valid for the parameter sets with best log-

369 likelihood (Tab. 5). This confirmed the convergence on the same joint posterior distribution and not 

370 only on the marginal distributions for each parameter. Concerning the log-likelihood values of the 

371 best parameter set, the MHRW algorithm showed the best result compared to the AM and the 

372 DEMC (Tab. 5).

373

374 3.1.2 Calibration of Prelued with informative priors

375 When informative prior distributions were used, their information content did not facilitate the 

376 calibration process: for all three algorithms (MHRW, AM, DEMC) the MCMC did not reach 

377 convergence at 104 iterations, approached convergence at 105 iterations for some parameters only, 

378 and reached good convergence at 106 iterations (Fig.2 and S3-S4). 
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379
380 Fig. 2. Traceplots of the post burn-in MCMC sampling (a-c) and posterior distributions (d) for the β 

381 parameter, for all the applied algorithms (MHRW, AM, DEMC) with different number of iterations, 

382 for the calibration of the Prelued model with truncated Gaussian priors. Yellow line:104 iterations; 

383 red line: 105 iterations; blue line: 106 iterations; black histogram: truncated Gaussian prior 

384 distributions. Traceplots and distributions for all the parameters are reported in figure S3 and S4.

385

386 In addition, the DEMC algorithm converged in a different area of parameter space for parameter 

387 Smax than the MHRW and AM. Consequently, the parameter sets with best log-likelihood (Tab. 5) 

388 were less similar between algorithms in respect to the calibrations with uniform priors. The log-

389 likelihood values of the best parameter set vary sensibly between algorithms (in contrast with the 

390 results obtained with uniform priors). The posterior correlation coefficients between parameters 

391 were not as similar between algorithms as the ones obtained from uniform priors (Tab. 4, 

392 parameters β and κ), meaning the algorithms are not sampling from the same joint posterior 

393 distribution. Finally, when informative priors are used, the DEMC algorithm showed the best result 

394 compared to the MHRW and the AM (Tab. 5). 

395

768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826



15

Algorithm Parameter β γ κ X0 τ Smax

MHRW

AM

DEMC

β

1

1

1

0.92

0.91

0.12

0.14

0.15

-0.75

0.05

0.01

-0.19

-0.20

-0.20

-0.22

-0.12

0.16

0.32

MHRW

AM

DEMC

γ

0.91

0.89

0.90

1

1

1

0.47

0.49

0.02

0.03

-0.02

-0.02

-0.19

-0.18

0.01

0.12

0.17

0.03

MHRW

AM

DEMC

κ

0.14

0.04

0.16

0.47

0.42

0.51

1

1

1

0.01

-0.04

0.10

-0.01

0.01

0.18

0.03

0.08

-0.13

MHRW

AM

DEMC

X0

-0.15

-0.10

-0.11

-0.13

-0.11

-0.12

0.07

-0.02

-0.02

1

1

1

0.44

0.46

0.48

-0.93

-0.93

-0.95

MHRW

AM

DEMC

τ

-0.26

-0.27

-0.26

-0.23

-0.22

-0.26

0.01

0.07

-0.07

0.43

0.48

0.41

1

1

1

-0.59

-0.59

-0.54

MHRW

AM

DEMC

Smax

0.37

0.29

0.29

0.33

0.27

0.27

0.07

0.06

0.08

-0.92

-0.93

-0.93

-0.51

-0.58

-0.53

1

1

1

396 Table 4. Posterior coefficients of correlation between parameters for Prelued after 106 iterations. 

397 Below the diagonal: coefficients obtained with uniform priors; Above the diagonal: coefficients 

398 obtained with truncated Gaussian priors.
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399

Site Year Algorithm Prior distribution Best parameter vector /

Optimized parameter value

Log-likelihood Reference

β γ κ X0 τ Smax

Lavarone 2004 MHRW

AM

DEMC

Uniform

0.55

0.56

0.56

0.02

0.02

0.02

-0.92

-0.93

-0.93

-7.01

-6.89

-6.60

9.51

9.19

9.52

13.28

12.91

12.21

-117.78

-124.41

-134.14

-

-

-

Lavarone 2004 MHRW

AM

DEMC

Truncated Gaussian

0.59

0.58

0.59

0.02

0.02

0.02

-0.85

-0.84

-0.88

-6.43

-6.42

-7.05

9.03

8.97

8.98

11.83

11.81

13.55

-236.96

-234.64

-119.65

-

-

-

Lavarone 2004 DEMC Uniform 0.61 0.02 -0.92 -8.91 6.42 17.64 - Bagnara et al. (2015)

Norunda

Tharandt

Bray

1999

2003

2001

-

-

-

-

-

-

0.49

0.66

0.49

0.002

0.016

0.021

-0.39

-0.70

-0.06

-10.0

-5.0

-1.0

5.0

2.0

2.0

29.0

19.50

19.0

-

-

-

Mäkelä et al. (2008)

400 Table 5. Best parameter sets and log-likelihood values for the three MCMC algorithms applied to Prelued (106 iterations), compared with the 

401 optimized parameter values found by Mäkelä et al. (2008) and Bagnara et al. (2015).
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402 3.1.3 Calibration of the Horn and Schulz (2011a) model.

403 The BMC carried out to compare the prior probability of each model resulted in a prior probability 

404 for the model by Horn and Schulz (2011a) of 0.68, and a prior probability for Prelued of 0.32. This 

405 means that the model by Horn and Schulz (2011a) has a support from the data before the calibration 

406 two times higher than the one of Prelued. However, in terms of reaching proper convergence, the 

407 application of this less multiplicative LUE-based model to the same dataset did not show better 

408 results than Prelued, even at a high number of iterations. For all three algorithms (MHRW, AM, 

409 DEMC), the Markov Chain Monte Carlo did not reach convergence at 104 and 105 iterations, and 

410 reached convergence at 106 iterations for some parameters only (Fig. 3 and S5-S6). The analysis of 

411 the posterior distributions showed the same trends as in Prelued:  for many parameters, the posterior 

412 distributions were bimodal, shifted, or as broad as the priors at 104 iterations, while narrowing the 

413 parameter space at 106 iterations and converging in the same region (Fig. 4). Both in MHRW and 

414 AM, the chain for the LUE parameter is still exploring a wide range of the parameter space. There 

415 is no convergence for this particular parameter, therefore the prior distribution is not narrowed 

416 enough and the posterior distributions are different.

417
418 Fig. 3. Traceplots of the post burn-in MCMC sampling (a-c) and posterior distributions (d) for the 

419 LUE parameter, for all the applied algorithms (MHRW, AM, DEMC) with different number of 

420 iterations, for the calibration of the Horn and Schulz (2011a) model. Yellow line:104 iterations; red 

421 line: 105 iterations; blue line: 106 iterations; black histogram: prior distributions. Traceplots and 

422 distributions for all the parameters are reported in figure S5 and S6.
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424

425 Given the trends shown by the MCMC and the posterior distributions for this model, where 

426 parameters p, α and kT seemed to hit the boundaries of the prior distributions, we ran an additional 

427 calibration enlarging the priors by 10% on both the minimum and maximum end to ensure that the 

428 difficulties in the calibration were not due to poorly specified priors. This calibration did not result 

429 in faster convergence with respect to the previous one, where the priors were set according to the 

430 existing literature (Fig. S7-S8).

431

432 3.2 Model performance evaluation

433 After the calibration, Prelued was run in both 2004 (calibration year) and 2006 (validation year), for 

434 the calibration approaches that reached convergence, using the best parameter vector resulting from 

435 the calibration process with uniform priors (Fig. 4). 

436
437 Fig. 4. Time series of GPP, modelled and derived from EC, in calibration and validation year.

438

439 The model performances were very good (Tab. 6), with almost no difference in the ability of the 

440 model to fit the data both for the calibration and validation year. In contrast with the log-likelihood 
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441 values associated to the parameter vectors that generated these results (Tab. 3), the indices of model 

442 performance usually applied in the literature are almost identical across algorithms and approaches.

443 Table 6. Coefficients of model performance in calibration and validation year (R2: coefficient of 

444 determination, RMSE: root mean square error).

445

446 4. Discussion

447 Contrary to expectations, given their different degrees of complexity and documented efficiency, all 

448 three MCMC-methods tested in this study were similarly effective. Although this similarity in 

449 behaviour between algorithms was a surprising result, the main outcome of this study was that a 

450 very high number of iterations was required for each of the three calibration algorithms to stabilize 

451 in the convergence region. This is especially remarkable considering the simplicity of both models 

452 tested. Both these 6-parameter empirical models required 106 iterations to reach convergence, 

453 whereas a 39-parameter mechanistic forest model was calibrated with chains of length 105 (van 

454 Oijen et al., 2005), and 105 iterations were enough to allow proper convergence for 4 process-based 

455 models with higher complexity (van Oijen et al., 2011). 

456 In this study, we addressed two main factors likely to cause delayed convergence for Prelued: a) the 

457 small amount of information on parameter distributions available in the literature, and b) the 

458 extreme multiplicative structure of the models. 

459 Concerning the information content of the prior distributions, it is well known in the literature that 

460 non-informative or poorly-defined priors are likely to lead to issues during a Bayesian calibration 

461 (Hartig et al., 2012): this type of priors forces the MCMC to investigate a broad parameter space, 

462 delaying the identification of the convergence region. To address this problem, we calibrated 

463 Prelued both with non-informative (broad uniform) and very informative (truncated Gaussian) 

464 priors, expecting the calibration to converge faster in the latter case. However, the efficiency in 

465 reaching convergence remained similar for all the algorithms, with 106 iterations required for each 

Algorithm Prior R2 

(2004)

RMSE 

(2004)

R2 

(2006)

RMSE 

(2006)

MHRW - 106 iter. Uniform 0.86 1.29 0.85 1.30

AM - 106 iter. Uniform 0.86 1.29 0.85 1.30

DEMC - 106 iter. Uniform 0.86 1.30 0.85 1.30

MHRW - 106 iter. Truncated Gaussian 0.86 1.28 0.85 1.35

AM - 106 iter. Truncated Gaussian 0.86 1.28 0.85 1.32

DEMC - 106 iter. Truncated Gaussian 0.86 1.30 0.85 1.31
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466 of the three algorithms to stabilize in the convergence region. The higher information content of the 

467 truncated normal prior did not improve the efficiency of the calibration, suggesting this was not the 

468 most important factor causing slow convergence in Prelued. 

469 Even if they did not differ in terms of efficiency in reaching convergence, different types of priors 

470 led to different results in the parameter estimates after the calibrations. In the case of uniform priors, 

471 all algorithms converged in the same region of parameter space with similar log-likelihood values: 

472 we concluded that each algorithm produced a representative sample from the posterior distribution 

473 for the parameters, and the use of three different and independent MCMC methods excluded the 

474 risk of undiagnosed slow convergence (Gilks et al., 1996). In the case of truncated Gaussian priors 

475 however, the DEMC converged in a different region of the parameter space than the MHRW and 

476 the AM, with different correlations between parameters (indicating sampling from a different joint 

477 posterior distribution), and a much higher log-likelihood value for the best parameter, indicating a 

478 better fit to the data. This suggests that the two simpler algorithms were not able to explore the 

479 parameter space as efficiently and did not identify the best region, despite the higher information 

480 content of the priors. A possible cause for this difference is the automatic computation of both scale 

481 and orientation in the DEMC: these are both user-defined in the MHRW algorithm, while only 

482 orientation is internally computed in the AM leaving scale as a user-defined setting. Since the 

483 optimal combination of scale and orientation is dependent on the prior distributions and on the data, 

484 the user might need several attempts to find it, making the calibration process even more time-

485 consuming. We used the same values of scale (for MHRW and AM) and orientation (for MHRW) 

486 for both our simulations, and this could explain the difference in results between the algorithms. 

487 Since it was shown to be the same, the efficiency of the three considered algorithms in reaching 

488 convergence should not drive their choice. We suggest the DEMC algorithm as the best choice in 

489 this case study, due to its better result with informative priors and, more importantly, its automatic 

490 computation of both the scale and orientation of the MCMC sampling. In a recent study, Lu et al. 

491 (2017) showed similar findings when applying the AM (based on a single chain) and the DREAM 

492 (based on multiple chains) algorithms to the same dataset, suggesting DREAM as the optimal 

493 choice.

494 We also investigated the impact of the multiplicative structure of Prelued on the calibration 

495 efficiency. Equifinality would be its most likely consequence: namely, the optimal parameter set is 

496 not uniquely defined. Instead, there may be many sets of parameters that all fit the data more or less 

497 equally well (Franks and Beven, 1997; Hollinger and Richardson, 2005; Schulz et al., 2001). This 

498 usually results in a delayed convergence, and can lead to high posterior correlation between 

499 parameters. These correlations could also be due to model overparameterization, which is known to 
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500 lead to slow convergence (Rannala, 2002). The very high posterior correlation coefficients between 

501 some of the parameters of Prelued (>= 0.9) indicate a linear relationship between them. In most of 

502 the cases this relationship is a result of over-parameterization, especially when the parameters are 

503 empirical and therefore not necessary for a physical or physiological reason. In case of Prelued, the 

504 parameters that were found to be correlated have a similar role in the model structure: β and γ are 

505 both involved in the response to APAR, while X0 and Smax are both involved in the response to 

506 temperature. Given their similar role and their empirical nature, it is very likely that they are 

507 redundant and not all strictly necessary.

508 Despite its less multiplicative structure, the LUE model by Horn and Schulz (2011a) showed the 

509 same convergence problems as Prelued when calibrated with a Bayesian approach (Fig. 3). This 

510 difference in model structure should have conferred to this model a strong advantage over Prelued 

511 before the calibration: this was confirmed by the BMC procedure that resulted in a prior probability 

512 for this model twice the one of Prelued. Moreover, the prior distributions for this model carried 

513 more information than the ones of Prelued (due to their smaller extension), which should have 

514 facilitated its calibration even more. These advantages, however, resulted in even slower 

515 convergence than Prelued. Therefore, the comparison of these two models suggested that the 

516 extreme multiplicative structure of Prelued was likely one of the factors responsible for the 

517 difficulties in the calibration, but a less multiplicative one can be affected by the same issues as 

518 well. 

519 Even if LUE-type models are largely empirical, in contrast with Prelued they usually also rely on 

520 parameters with physiological meaning. The use of these models thus gives insights on ecosystem 

521 characteristics and behaviour, and allows for comparison between different models. For example, 

522 the well-known and widely applied 3PG model (Landsberg andWaring, 1997) has the same 

523 mathematical properties as Prelued, even if not so multiplicatively extreme, but beside on few 

524 empirical ones, it also relies on a number of parameters with physiological meaning. Therefore, 

525 alongside  the strong multiplicative mathematical structure, the problems in calibrating Prelued and 

526 the Horn and Schulz (2011a) model were likely due to the indefinite nature of the empirical 

527 parameters, neither ecological nor physiological, and on their relatively high number. 

528 The posterior model evaluation carried out for the calibrations that resulted in proper convergence 

529 showed that Prelued's structure is not inadequate for estimating GPP in forest ecosystems, when 

530 extra care is taken in the calibration process. If it were, the model would have had difficulties in 

531 reproducing the data, even after calibration, on the same site and period of simulation, which is not 

532 the case. Also in a recent study, Bagnara et al. (2015) concluded that Prelued is able to reproduce 
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533 GPP in contrasting environmental and climatic conditions and different biomes, if a careful site-

534 specific calibration on the period of simulation is performed. In this study, after the reaching of 

535 proper convergence was assured, Prelued was able to reproduce GPP also in a different year than 

536 the one it was calibrated on. The model results were insensitive both to the algorithm applied and to 

537 the prior distributions used, and highlighted the issue of equifinality: even when the calibration 

538 resulted in different optimal parameter values between algorithms, the model results were very 

539 similar as well as their goodness-of-fit. 

540 Concerning the goodness-of-fit, it must be pointed out that different parameter sets generated 

541 different log-likelihood values between algorithms with informative priors, but very similar R2 and 

542 RMSE. This is due to the fact that the data uncertainties are taken into account only to calculate the 

543 log-likelihood, while the R2 and the RMSE do not depend on them. In the case of Prelued, the 

544 parameter values identified as optimal with the DEMC algorithm cause a slightly better fit to the 

545 data for a few days in winter and autumn, when the data uncertainties are relatively large compared 

546 to the absolute value of the data: this could cause a discrepancy between the log-likelihood and the 

547 other measures of goodness-of-fit, highlighting the importance of applying several goodness-of-fit 

548 indices in order to distinguish between parameter values that cause similar model outputs.

549 Many substantial questions arise from the difficulties in calibrating a simple LUE model such as 

550 Prelued, especially considering that those difficulties are not specific to this particular model: the 

551 model by Horn and Schulz (2011a), despite its less multiplicative structure, presented the same 

552 issues. Both models rely on a LUE approach, and many LUE models have been, and still are, used 

553 for research and management purposes. To our knowledge, modelling studies applying LUE models 

554 mainly focus on the ability of a model to reproduce the data, but there are no studies focusing on the 

555 difficulties in calibrating such models. To meet with problems in calibrating such simple models 

556 was surprising, but it brought to our attention an issue that, to our knowledge, had not been studied 

557 before in the field of forest modelling. Several well accepted studies and models could be affected 

558 by similar problems, and there is a need for a more careful approach to calibration to solve potential 

559 problems, which have been rarely mentioned before. 

560 Due to the extreme difficulties in obtaining reliable parameter estimates from the calibration 

561 procedure, the advantages of using a computationally fast and mathematically simple model were 

562 lost. In the light of these findings, a more complicated structure may have to be applied to LUE-

563 models. For example, including Prelued as a module in a more structured model (like its successor 

564 PRELES, Minunno et al. (2016)) could reduce the difficulty in calibration, and better constrain the 

565 parameter values by allowing a calibration on multiple variables (instead of on GPP alone). It 

566 should also be pointed out that this kind of model does not allow to compare model estimates 
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567 against actual data: GPP is not measured, it is derived from NEE or estimated from remote-sensing 

568 data. So, NEE would be a preferable model output against which to calibrate, and it should be 

569 included in LUE models via combination with a respiration model. Another important point relates 

570 to the empirical nature of the parameters: when possible, the use of parameters with no physical or 

571 physiological meaning should be avoided, in order to rely on the physiological basis of GPP as 

572 much as possible.

573

574 5. Conclusions

575 In this study, we compared the performance of three different Markov Chain Monte Carlo-based 

576 algorithms within a Bayesian framework to calibrate two Light Use Efficiency models (Prelued and 

577 the Horn and Schulz (2011a) model). The application of the three different algorithms of increasing 

578 complexity (Metropolis-Hastings Random Walk, Adaptive Metropolis, Differential Evolution 

579 Markov Chain) with different number of iterations showed that all three MCMC-methods were 

580 similarly effective in reaching convergence. For all of them, a very high number of iterations (106) 

581 was required for the Markov Chain to stabilize in the convergence region. This was due to the 

582 combination of at least two different factors: a strongly multiplicative mathematical structure, 

583 coupled with empirical parameters with neither ecological nor physiological meaning. In this 

584 extreme situation, even very well-defined and informative prior distributions proved insufficient to 

585 reduce issues related to slow convergence. 

586 Our analysis suggests that this problem is not specific to a single model, but could affect several 

587 LUE-based models. We therefore strongly recommend a more careful approach to calibration to 

588 solve potential problems when applying models characterized by a multiplicative mathematical 

589 structure, especially when predictions are made based on calibration results. 

590 We identified the DEMC algorithm as the best choice in this case study, even if its efficiency was 

591 similar to the other algorithms used, due to the advantages of automatic computation of both the 

592 scale and orientation of the MCMC sampling and to the better results in exploring parameter space 

593 with informative prior distributions. Finally, we recommend inclusion of NEE in LUE-models by 

594 combining them with ecosystem respiration models, to allow comparisons with actual measured 

595 eddy-covariance data rather than indirectly derived quantities such as GPP.

596
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805 SUPPLEMENTARY INFORMATION

806
807 Fig. S1. Traceplots of the post burn-in MCMC sampling for all the applied algorithms (MHRW, 

808 AM, DEMC) with different number of iterations, for the calibration of the Prelued model with 

809 uniform priors.
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810
811 Fig. S2. Posterior probability distributions of parameters for all the applied algorithms (MHRW, 

812 AM, DEMC) with different number of iterations, for the calibration of the Prelued model with 

813 uniform priors. 
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814
815 Fig. S3. Traceplots of the post burn-in MCMC sampling for all the applied algorithms (MHRW, 

816 AM, DEMC) with different number of iterations, for the calibration of the Prelued model with 

817 truncated Gaussian priors.
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818
819 Fig. S4. Posterior probability distributions of parameters for all the applied algorithms (MHRW, 

820 AM, DEMC) with different number of iterations, for the calibration of the Prelued model with 

821 truncated Gaussian priors. 
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822
823 Fig. S5. Traceplots of the post burn-in MCMC sampling for all the applied algorithms (MHRW, 

824 AM, DEMC) with different number of iterations, for the model by Horn and Schulz (2011a). 
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825
826 Fig. S6. Posterior probability distributions of parameters for all the applied algorithms (MHRW, 

827 AM, DEMC) with different number of iterations, for the model by Horn and Schulz (2011a). 
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829  
830 Fig. S7. Traceplots of the post burn-in MCMC sampling for all the applied algorithms (MHRW, 

831 AM, DEMC) with different number of iterations, for the model by Horn and Schulz (2011a) with 

832 enlarged priors.
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833
834 Fig. S8. Posterior probability distributions of parameters for all the applied algorithms (MHRW, 

835 AM, DEMC) with different number of iterations, for the model by Horn and Schulz (2011a) with 

836 enlarged priors. 
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