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Abstract: Decadal climate predictability in the North Atlantic is largely related to ocean low
frequency variability, whose sensitivity to initial conditions is not very well understood.
Recently, three-dimensional oceanic temperature anomalies optimally perturbing the
North Atlantic Mean Temperature (NAMT) have been computed via an optimization
procedure using a linear adjoint to a realistic ocean general circulation model. The
spatial pattern of the identified perturbations, localized in the North Atlantic, has the
largest magnitude between 1000-4000m depth. In the present study, the impacts of
these perturbations on NAMT, on the Atlantic meridional overturning circulation
(AMOC), and on climate in general are investigated in a global coupled model that
uses the same ocean model as was used to compute the three-dimensional optimal
perturbations. In the coupled model, these perturbations induce AMOC and NAMT
anomalies peaking after 5 and 10 years, respectively, generally consistent with the
ocean-only linear predictions. To further understand the impact of these optimal
perturbations, their magnitude was varied in a broad range. For initial perturbations
with a magnitude comparable to the internal variability of the coupled model, the model
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response exhibits a strong signature in sea surface temperature (SST) and
precipitation over North America and the Sahel region. The existence and impacts of
these ocean perturbations have important implications for decadal prediction: they can
be seen either as a source of predictability or uncertainty, depending on whether the
current observing system can detect them or not. In fact, comparing the magnitude of
the imposed perturbations with the uncertainty of available ocean observations such as
Argo data or ocean state estimates suggests that the largest perturbations used in this
study could be detectable. This highlights the importance for decadal climate prediction
of accurate ocean density initialisation in the North Atlantic at intermediate and greater
depths.
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Abstract 31	

 32	

Decadal climate predictability in the North Atlantic is largely related to ocean low frequency 33	

variability, whose sensitivity to initial conditions is not very well understood. Recently, three-34	

dimensional oceanic temperature anomalies optimally perturbing the North Atlantic Mean 35	

Temperature (NAMT) have been computed via an optimization procedure using a linear 36	

adjoint to a realistic ocean general circulation model. The spatial pattern of the identified 37	

perturbations, localized in the North Atlantic, has the largest magnitude between 1000-4000m 38	

depth. In the present study, the impacts of these perturbations on NAMT, on the Atlantic 39	

meridional overturning circulation (AMOC), and on climate in general are investigated in a 40	

global coupled model that uses the same ocean model as was used to compute the three-41	

dimensional optimal perturbations. In the coupled model, these perturbations induce AMOC 42	

and NAMT anomalies peaking after 5 and 10 years, respectively, generally consistent with 43	

the ocean-only linear predictions. To further understand the impact of these optimal 44	

perturbations, their magnitude was varied in a broad range. For initial perturbations with a 45	

magnitude comparable to the internal variability of the coupled model, the model response 46	

exhibits a strong signature in sea surface temperature (SST) and precipitation over North 47	

America and the Sahel region. The existence and impacts of these ocean perturbations have 48	

important implications for decadal prediction: they can be seen either as a source of 49	

predictability or uncertainty, depending on whether the current observing system can detect 50	

them or not. In fact, comparing the magnitude of the imposed perturbations with the 51	

uncertainty of available ocean observations such as Argo data or ocean state estimates 52	

suggests that the largest perturbations used in this study could be detectable. This highlights 53	

the importance for decadal climate prediction of accurate ocean density initialisation in the 54	

North Atlantic at intermediate and greater depths.  55	

 56	

Keywords: Decadal climate predictability, initial condition uncertainties, linear optimal 57	

perturbations, North Atlantic variability, Atlantic meridional overturning circulation, IPSL-58	

CM5A 59	

 60	

1. Introduction 61	

 62	

 The North Atlantic is one of the regions where near-term climate predictions are most 63	

promising (Kirtman et al., 2013). Such near-term climate predictions, on interannual to 64	



decadal timescales, have a strong potential to influence our society with benefits to agriculture 65	

(Hammer et al., 2001), energy supply strategies, adaptation to global climatic changes, etc. 66	

However, these applications depend on the accuracy and reliability of the predictions (Slingo 67	

and Palmer, 2011). In turn, the latter depends on a careful assessment of prediction 68	

uncertainty. Indeed, in a perfect and therefore reliable prediction system, prediction 69	

uncertainties and forecast errors are expected to be equal on average (Palmer et al., 2006). For 70	

lead times shorter than a few decades, internal variability and model imperfections have been 71	

shown to be the major contributors to the climate projection uncertainty in contrast to the 72	

uncertainty arising from emission scenarios for greenhouse gases (Hawkins and Sutton, 73	

2009). Near-term climate prediction experiments strive to reduce the projections uncertainty 74	

by carefully initialising the climate system (Meehl et al., 2013). However, even for small 75	

errors in the initial state, a large uncertainty may arise from the non-linearity of the system 76	

(Lorenz, 1963). This source of uncertainty is usually taken into account by performing 77	

ensemble predictions with slightly perturbed initial conditions.  78	

 Several ensemble generation techniques based on atmospheric perturbations only, 79	

extending from random perturbations (e.g. Griffies and Bryan 1997; Persechino et al., 2013) 80	

and shifting atmospheric state by a few days (e.g. Collins and Sinha, 2003; Collins et al., 81	

2006; Yeager et al., 2012), to more elaborated methods designed to generate optimal initial 82	

perturbations, such as atmospheric singular vectors (e.g. Hazeleger et al., 2013) and breeding 83	

vectors (e.g. Ham et al., 2014), have been used for decadal predictions and predictability 84	

analyses. Although, all of these methods generate ensemble spread in the whole climate 85	

system, they neglect uncertainties in the ocean initial state that need to be taken into account 86	

at seasonal and decadal timescales. This may result in insufficiently dispersive ensembles 87	

leading to overconfident and therefore unreliable forecasts (e.g. Ho et al., 2013). Despite these 88	

generally accepted ideas, the inclusion of ocean state uncertainties in the initial ensemble 89	

spread remains challenging. 90	

Germe et al. (2017) compared the impact of atmospheric perturbations versus oceanic 91	

perturbations and found that oceanic perturbations mimicking random oceanic uncertainties 92	

have the same impact on the future evolution of the ensemble as atmospheric-only 93	

perturbations after the first three months in the IPSL-CM5A-LR climate model. However, Du 94	

et al. (2012) showed that oceanic perturbations arising from different assimilation runs do 95	

affect the ensemble spread of oceanic-related variables. This latter result can be accounted for 96	

by the differences between initial oceanic states of individual ensemble members that have 97	



pronounced three-dimensional (3D) structure, contrasting the homogeneous white noise 98	

perturbations applied by Germe et al. (2017). 99	

Ocean initial condition uncertainties and their impacts on climate prediction have been 100	

also addressed through bred vectors (Baehr and Piontek, 2014) and anomaly transform 101	

methods (Romanova and Hense, 2016) yielding a weak improvement of prediction reliability 102	

at seasonal timescales. Recently, Marini et al. (2016) have achieved a greater ensemble spread 103	

for sea surface temperature (SST) during the first 3 years of simulations when oceanic 104	

singular vectors are used rather than atmospheric-only perturbations. However, for more 105	

integrated measures, such as the North Atlantic SST or the Atlantic Meridional Overturning 106	

Circulation (AMOC), the ensemble spread is overestimated initially but decreases over time.  107	

Several studies highlight the strong impact of the 3D structure of ocean state initial 108	

errors and emphasize the sensitivity of North Atlantic decadal variability to initial conditions 109	

in the deep ocean (Zanna et al. 2011; Palmer and Zanna 2013; Sévellec and Fedorov 2013a; 110	

2013b; 2017). These analyses, based on the singular vectors decomposition (SVD, e.g. Zanna 111	

et al. 2011; Palmer and Zanna 2013) or the linear optimal perturbations framework (LOP; 112	

Sévellec et al. 2007; Sévellec and Fedorov 2013b; 2017), compute small initial perturbations 113	

that induce the maximum response in the system after a specific time. While the SVD method 114	

requires solving an eigenvalue problem, the LOP method relies on an optimization problem 115	

producing the maximum linear growth of a chosen climatic variable. By construction, both 116	

SVD and LOP methods, as applied to the ocean, are based on a linearization of the primitive 117	

equations of motion and neglect potential effects of the ocean-atmosphere coupling together 118	

with stochastic noise arising from atmospheric synoptic variability. Therefore, assessing the 119	

impact of these structures within the full ocean-atmosphere climate system is necessary to 120	

better understand their potential for climate prediction. 121	

In this study, we investigate for the first time the impact of LOPs on climate 122	

variability in a fully coupled Earth system model IPSL-CM5A-LR (Dufresne et al. 2013). We 123	

apply the LOP framework maximizing changes in the North-Atlantic mean temperature 124	

(NAMT) as described in Sévellec and Fedorov (2017). In the ocean model they used, the most 125	

efficient LOP induces a NAMT anomaly that reaches its maximum after 10 years. The 126	

optimization problem made use of the tangent linear forward and adjoint versions of the ocean 127	

component of IPSL-CM5A-LR. 128	

The LOPs dynamics are ultimately related to the excitation of an ocean basin mode 129	

identified in the same linear model by Sévellec and Fedorov (2013b). This oscillatory mode 130	

involves the westward propagation of subsurface density anomalies across the North Atlantic 131	



basin. This propagation impacts the AMOC via thermal wind balance and basin-scale 132	

variations of the zonal density gradient. There is evidence of a similar westward propagation 133	

in the North Atlantic observations of sea-level height (e.g. Tulloch et al. 2009; Vianna and 134	

Menezes 2013), subsurface temperature (Frankcombe et al. 2008), and SST (Feng and 135	

Dijkstra 2014) with a comparable basin-crossing time (~10 years) as estimated by Sévellec 136	

and Fedorov (2013b). It has been also identified in nearly 20 models of the CMIP5 database 137	

(Muir and Fedorov 2016). In IPSL-CM5A-LR in particular, this oceanic mode exhibits 138	

interaction with convective activity, sea ice, and atmospheric circulation (Ortega et al., 2015). 139	

 In the present analysis, climate response to the LOP is investigated in terms of changes 140	

in NAMT, the AMOC strength, SST, and atmospheric temperature and precipitation. We use 141	

ensemble experiments in order to extract the signal of the LOP response from the atmospheric 142	

stochastic noise in a perfect model configuration, therefore avoiding pollution of the signal by 143	

model drift, and model imperfections. The ensemble experiments, the coupled system and the 144	

LOP are described in more detail in section 2. The response of the system to the oceanic 145	

perturbations is then described in section 3, while implications for near-term climate 146	

prediction are discussed in section 4. Finally concluding remarks are given in the last section. 147	

 148	

 149	

2. Method 150	

 151	

2.1 Model 152	

 153	

We use the IPSL-CM5A-LR climate model (Dufresne et al., 2013). It includes the 154	

atmospheric general circulation model LMD5A (Hourdin et al., 2013) with a 1.875° × 3.75° 155	

horizontal resolution and 39 vertical levels. It is coupled with the oceanic model NEMOv3.2 156	

(Madec 2008) in the ORCA2 configuration corresponding to a nominal resolution of 2°, 157	

enhanced over the Arctic and subpolar North Atlantic as well as around the Equator. There 158	

are 31 vertical levels for the ocean with the highest resolution in the upper 150 m. It also 159	

includes the sea ice model LIM2 (Fichefet and Maqueda 1997) and the biogeochemistry 160	

model PISCES (Aumont and Bopp 2006). The coupling between the oceanic and atmospheric 161	

components is achieved via OASIS3 (Valcke 2006). The reader is referred to the special issue 162	

of Climate Dynamics (vol 40, issue 9–10) for a full discussion of various aspects of this 163	

climate model. The characteristics of the oceanic component of the coupled model are also 164	

discussed in Mignot et al. (2013).  165	



This model has been used for several decadal prediction studies. In a perfect model 166	

context, it exhibits an average predictability limit for the annual AMOC of about 8 years with 167	

variations depending on the AMOC initial state (Persechino et al. 2013). The longest potential 168	

predictability of SST reaches up to 2 decades and is found in the North Atlantic Ocean, which 169	

is related to decadal AMOC fluctuations. These fluctuations are successfully initialized by 170	

nudging the SST field to observations (Swingedouw et al. 2013; Ray et al. 2014). This 171	

initialization could be further improved, in a perfect model framework, by additionally 172	

nudging sea surface salinity (SSS) (Servonnat et al. 2014) and taking into account the mixed 173	

layer depth when specifying the amplitude of the restoring coefficients (Ortega et al. 2017). 174	

Hindcasts starting from the SST nudged simulations exhibit a prediction skill up to one 175	

decade in the extratropical North Atlantic for SST and in the tropical and subtropical North 176	

Pacific for the upper-ocean heat content (Mignot et al., 2016). 177	

 178	

2.2 General approach 179	

Firstly, we select a 20-year interval (model years 1991 to 2010) within the 1000-year 180	

long pre-industrial control simulation (thereafter CTL) of the IPSL-CM5A-LR model. This 181	

specific period is chosen because it does not exhibit strong variability either for the AMOC or 182	

NAMT, which both remain within one standard deviation from their 1000-year means. This is 183	

necessary to avoid internal variations that may complicate analysing the response to the 184	

applied perturbations. Seven ensembles of simulations are conducted using one single starting 185	

date – the 1st of January of this time period (model year 1991). All the ensembles are 186	

integrated forward for 20 years with a constant pre-industrial external forcing. All ensembles 187	

have a random noise disturbance applied to the SST field of the coupler, so that the SST of 188	

the ocean model is not directly perturbed as described in Persechino et al. (2013). The applied 189	

noise is identical for all ensembles. As this perturbed SST field is only used when SST is 190	

passed to the atmosphere during the integration first time step, this perturbation is considered 191	

as an atmospheric-only perturbation. Germe et al. (2017) showed that this method is 192	

equivalent to applying a random white noise to the whole oceanic temperature field. In 193	

addition to this atmospheric perturbation, six ensembles utilize full-depth oceanic temperature 194	

perturbations. The pattern of these perturbations corresponds to the LOP as computed by 195	

Sévellec and Fedorov (2017) using the tangent linear forward and adjoint versions of the same 196	

ocean model as in the coupled run. The six ensembles differ only by the magnitude and/or 197	



sign of the oceanic perturbation pattern as described below (see Table 1 for details). The 198	

seventh ensemble, without any perturbation to the oceanic temperature field, is taken as a 199	

benchmark to assess the impact of oceanic perturbations in the other ensembles and will be 200	

further referred to as ATM. 201	

 Throughout this analysis, the AMOC strength is defined as the maximum value of the 202	

annual, zonal-mean stream function within 0-60°N and 500-2000m, while NAMT is defined 203	

as a full depth average of the annual oceanic temperature over the North Atlantic within 204	

30°N-70°N. The mean state and variability of CTL is assessed from the interannual average 205	

and standard deviation for the entire 1000-year time series. 206	

2.3 Oceanic perturbation pattern 207	

The specific pattern of the 3D global oceanic temperature field used to perturb the 208	

oceanic initial state of each ensemble has been computed by Sévellec and Fedorov (2017) as 209	

optimally perturbing NAMT through the LOP methodology. They have used the adjoint of the 210	

tangent linear version of the oceanic component of IPSL-CM5A-LR. More precisely, an 211	

earlier version of the ocean component: OPA8.2 for which the adjoint version was available 212	

at the time of the LOP computation. This LOP has been rationalized as the efficient 213	

stimulation of the least damped oscillatory eigenmode of the tangent linear version of NEMO, 214	

fully described in Sévellec and Fedorov (2013a). In particular, its location at depth, away 215	

from strong velocities and density gradients (limiting mean- and self-advection, respectively), 216	

allows for longer persistence of the anomaly and more efficient stimulation of the eigenmode. 217	

This eigenmode corresponds to a 24-year oscillatory mode of both the AMOC and the NAMT 218	

related to the westward propagation of large-scale temperature anomalies in the North 219	

Atlantic. The basin-scale propagation influences the AMOC through its impact on the zonal 220	

density gradient. Ortega et al. (2015) showed that in the IPSL-CM5A-LR coupled model, the 221	

mode is maintained by a coupling with a surface mode of variability and potentially excited 222	

by the atmosphere. Such coupling allows the intensification of the damped internal mode 223	

through the excitation of the deep convection areas (Sévellec and Fedorov 2015).  224	

By stimulating this variability mode, the LOP is the most efficient way to generate an 225	

anomaly of the NAMT. The LOP pattern depends on the chosen time scale. In this study, we 226	

use the LOP maximizing the NAMT response after 14 years in the linear model. In 227	

accordance with the lag identified in Sévellec and Fedorov (2013a), corresponding to the time 228	

needed for the AMOC to influence the NAMT, we expect an associated maximum response 229	



of the AMOC after 8 years only. The LOP pattern exhibits the largest magnitudes in the North 230	

Atlantic region (Figure 1), especially in the deep ocean (top versus bottom panels in Fig. 1). 231	

These strongest magnitudes of the LOP are furthermore roughly co-located with areas of 232	

strongest temperature variability in the North Atlantic in CTL (black lines in figure 1). In 233	

Sévellec and Fedorov (2017), both temperature and salinity perturbation patterns are 234	

identified. They have a constructive effect on the density anomaly field. In this study, we have 235	

used only the temperature perturbation as a primary step to understand the response of the 236	

coupled system to the LOP. The magnitude of the LOP shown in figure 1 corresponds, in the 237	

linear model, to a NAMT response of approximately 43.8x10-3 °C after 14 years, which 238	

corresponds to roughly one standard deviation of the NAMT in CTL (not shown). As the LOP 239	

magnitude is determined by the linear model analysis, it is used as a reference to which 240	

scaling factors of 1, 5, 10, 20, -10 and -20 are applied. At the initial date, these LOP 241	

magnitudes sample the whole range of CTL variability regarding NAMT index. The naming 242	

of the ensemble reflects this protocol. For example, P20 corresponds to the ensemble using 243	

the positive version of the LOP as shown in figure 1, but with its magnitude multiplied by 20, 244	

while N20 uses a scaling factor of -20. P01 is therefore the ensemble using the LOP exactly as 245	

described in figure 1, and would lead to one standard deviation response of the NAMT after 246	

14 years in the linear ocean-only model.  247	

 248	

3 Impact on the climate variability 249	

 250	

3.1 Response in the ocean 251	

 252	

The climate model ensembles show that the LOP induces a NAMT anomaly reaching 253	

its maximum value roughly ten years later (Figure 2, top left panels). In accordance with the 254	

adjoint model analysis, it is preceded by a maximum anomaly of the AMOC 5 years earlier 255	

(Figure 2, bottom left and middle panels). The link between these two responses will be 256	

detailed below. For both the NAMT and AMOC, the magnitude of the response increases 257	

linearly with the magnitude of the perturbation (Figure 2, right panels). The response is 258	

significantly different from the ATM ensemble - according to a t-test at the 99% confidence 259	

level - only for the largest perturbations, i.e. N20 and P20 (Figure 2, middle and right panels). 260	

However, the linearity of the response suggests that significant response could be identified 261	

for weaker magnitudes by increasing the ensemble size and therefore the robustness of the 262	



statistical test. The AMOC response to the LOP looks slightly asymmetric, being weaker for 263	

negative (N10 and N20) than positive (P10 and p20) LOP. However, when taking into 264	

account the confidence interval of the ensemble means, this asymmetry is not significant at 265	

the 95% level (Figure 2: bottom right panel). Such linearity through the whole range of 266	

perturbation magnitudes might be noteworthy in a fully ocean-atmosphere coupled system, 267	

which includes a large amount of non-linear processes.  268	

Although linear, the response is also damped by roughly a factor 3 as compared to the 269	

response of the linear ocean-only model (Figure 2, gray shading on the top right panel) and 270	

occurs slightly earlier than expected (delay of 10 years instead of 14 years for the NAMT). 271	

Quantitative differences in the response to the LOP in the fully coupled model as compared to 272	

the ocean-forced context are indeed expected, although difficult to foresee. Atmospheric 273	

stochastic noise is absent in the oceanic-forced context. In the fully coupled model used here 274	

the perturbation pattern in the surface layer is on the contrary rapidly distorted by air-sea 275	

interactions (Germe et al., 2017), which tends to limit the influence of the LOP pattern to its 276	

deeper layers. Also, ensemble members differ from each other by their atmospheric states, 277	

which leads to significant differences in air-sea interactions and in the upper ocean. Hence the 278	

ensemble average tends to smooth-out the signature of the LOP in the upper ocean. 279	

Consistently, the North Atlantic mean temperature of the first 300 m (NAMT300) is very 280	

close to the one in ATM during the first 2 and 4 years for P20 and N20 respectively (Figure 3, 281	

top left panel). Whereas, over the full oceanic depth, NAMT diverges as early as the first year 282	

(Fig 2, top left panel).  283	

Despite this weak initial perturbation in the upper layer, the response of NAMT300 to 284	

the LOP is as significant as for the total NAMT (i.e. integrated over the whole water column) 285	

after 10 years (figure 3, top left panel). Its spatial distribution exhibits a tripole/horseshoe 286	

shape (figure 3, middle and right panels) that resembles the fingerprint of the AMOC with 5-287	

year lag in the model (figure 3, bottom left panel). This fingerprint pattern is consistent with 288	

what can be inferred from SST observations (Dima and Lohman 2010). This suggests that this 289	

upper layer response is mainly driven by the AMOC maximum response to the LOP at 5 years 290	

forecast range. The influence of the LOP on the AMOC has been described by Sévellec and 291	

Fedorov (2013b and 2015) in the tangent linear model and the involved mode of variability 292	

has been identified by Ortega et al. (2015) in the control simulation using the same climate 293	

model (i.e. CTL in this paper). In the present experiments, the LOP imposed in the North 294	

Atlantic modulates the meridional density gradient, thereby favouring an acceleration of the 295	

AMOC via thermal wind balance. The interaction of the resulting upper-ocean northward 296	



flow and the mean meridional temperature gradient gives rise to a temperature anomaly in the 297	

upper North Atlantic Ocean. It is the first time that this effect is prognostically tested and 298	

highlighted in a fully comprehensive climate model. It confirms the strong sensitivity of the 299	

upper ocean to temperature disturbances in the deep ocean, as described in Sévellec and 300	

Fedorov (2013a; 2013b and 2017), in a coupled model. Such impact on the upper ocean 301	

suggests some repercussions of the LOP onto the atmosphere in the North-Atlantic region.  302	

 303	

 304	

3.2 Impact on the atmosphere 305	

 306	

The impacts of the LOP on the annual mean SST exhibit a tripole pattern (Figure 4, 1st 307	

row) similar to the response of the vertically integrated temperature over the first 300m 308	

(T300; Figure 3, top left panel). The response to the positive LOP ensemble P20 is stronger 309	

and larger scale than its negative equivalent ensemble N20. This is in accordance with the 310	

AMOC response identified in the previous section and is associated with stronger atmospheric 311	

impacts as well (see other panels). A significant impact is found on the 2-meter air 312	

temperature (T2M), over the ocean, but also over land in some areas (Figure 4, 2nd row). 313	

Apart from the eastern part of North America, the continental response to the positive and 314	

negative LOP is not symmetric. For example, there is a significant response of T2M over the 315	

Scandinavia for the P20 ensemble, which is not found significant for N20. A significant 316	

impact is found over the western North Africa in N20, while it is found in the eastern North 317	

Africa and Middle East regions in P20. These impacts on T2M persist throughout the year but 318	

they are stronger in winter than in summer (Figure 5). For P20, T2M pattern evolves slightly 319	

with the forecasting year, but the warm anomaly in the North-Atlantic region persists 320	

throughout the first 15 years of the forecasting period. 321	

In accordance with previous finding based on CTL (Persechino et al., 2013), AMOC 322	

associated SST anomalies have a significant impact on summer precipitations over the Sahel 323	

region (Figure 4, 3rd row). The positive LOP consistently induces an increase of summer 324	

precipitation over the western African Sahel while the negative LOP impacts central and 325	

eastern Sahelian region. This asymmetric response is not very surprising considering the 326	

asymmetrical SST response. Nevertheless, the details of the teleconnection taking place in the 327	

negative case are not fully understood but are beyond the scope of the present study.  328	

Despite these significant impacts on T2M and tropical precipitations, no significant 329	

impact could be identified on the major modes of atmospheric variability over the North 330	



Atlantic sector, namely the North Atlantic Oscillation (NAO) and the East Atlantic Pattern 331	

(not shown). The impact on the winter sea level pressure (SLP) pattern strongly varies with 332	

the forecast range and a robust feature of the LOP impacts is difficult to identify at 333	

interannual time scales (not shown). When averaging over the 5 to 10 forecast years, we find 334	

a weak, but significant impact (Figure 4, 4th row) over various regions of the North Atlantic. 335	

Again, the pattern of the impact differs between the positive and negative LOP. In N20, the 336	

pattern has a significant positive anomaly over the Arctic and non-significant negative 337	

anomalies over the North Atlantic mid-latitudes, which may be interpreted as a negative 338	

NAO-like pattern. The SLP pattern identified for P20 exhibits a zonal dipole opposing the 339	

northeastern coast of America with the southeastern European region. This structure does not 340	

resemble any well-known patterns of large-scale atmospheric circulation variability from the 341	

literature.  342	

  343	

  344	

4 Discussion: Impact on near term climate predictions 345	

 346	

In the previous section, it has been shown that the LOP - although computed from the 347	

linear version of the oceanic component - successfully excites the subsurface variability mode 348	

in the fully coupled system (i.e. the subsurface Rossby wave propagation and the associated 349	

AMOC enhancement through thermal wind balance). Furthermore, it has been found that the 350	

stimulation of this mode has a significant impact on the North Atlantic SST and some 351	

atmospheric variables. However, this impact strongly depends on the magnitude of the LOP, 352	

going from undetectable signal masked by the atmospheric stochastic noise (e.g. P01, P05) to 353	

significant temperature anomalies over Europe during several years (P20). In this section, we 354	

re-interpret the magnitude of the LOP in relation with the variability of the system, the 355	

observational monitoring system in the real world, and a few other ensemble generation 356	

strategies, in order to give a better insight of the potential usefulness of the LOP for 357	

enhancing climate prediction reliability. 358	

 359	

4.1 The LOP in the context of IPSL-CM5-LR internal variability 360	

As mentioned in section 2, the magnitudes of the LOP tested in this study sample a 361	

large fraction of the NAMT index variability in CTL. This is highlighted in Figure 6a, where 362	

the colour points, indicating the NAMT value for the different magnitudes of the LOP, are 363	



over-imposed on the grey shadings that represent respectively one, two, and three standard 364	

deviations of NAMT interannual variability in CTL. We can see that P01 and P05 magnitudes 365	

lie within one standard deviation of the variability from the mean state, which corresponds to 366	

very frequent situations, while P20 and N20, on the other hand, rely within two and three 367	

standard deviations, and therefore correspond to extreme, and relatively rare events. However, 368	

the same analysis, repeated within 4 different oceanic layers (Figure 6b-e) highlights strong 369	

discrepancies within the water column regarding this magnitude. Indeed, the LOP averaged 370	

over the first 300 m on the same spatial domain ([30-70°N] in the Atlantic) are very weak 371	

compared to the variability of the average temperature in the same layer in CTL (Figure 6b), 372	

while they spread over a larger range of the variability in CTL in the deeper layers (Figure6d-373	

e). It is at intermediate depth, between 1000 and 2000m, that the range of LOP magnitudes 374	

chosen here is the strongest as compared to the variability of the oceanic temperature in CTL, 375	

(Figure 6d). Indeed, within this layer, the LOP strongest magnitude is around three standard 376	

deviation of CTL. It could therefore be considered as an extreme event. In the assumption of a 377	

normal distribution of the NAMT in that specific layer, the probability of such an event (P20 378	

or N20) would be less that 1%.  379	

This highlights that the complex 3D pattern of the LOP might create locally very large 380	

perturbations as compared to the variability of the system, even though the strongest 381	

magnitudes of the LOP are roughly co-located with the strongest temperature variability in 382	

the North Atlantic found in CTL (Figure 1). To investigate the impact of such strong local 383	

perturbations, we have generated an additional ensemble, referred to as P20MSK, and which 384	

is similar to P20 but imposing a saturation of the perturbation pattern to 3 standard deviations 385	

of the local variability in CTL. The magnitude of the perturbation of this new ensemble in 386	

term of NAMT index is shown in Figure 6 as a black cross. The perturbation below 2000 m is 387	

in particular considerably reduced, although it still reaches 3 standard deviations locally, as in 388	

the eastern part of the basin in particular. In fact, this reduction of the spatial extent of the 389	

LOP indeed does not affect significantly the response in terms of NAMT and AMOC 390	

(Figure 2: black crosses in right panels). It therefore still stimulates the same Rossby wave 391	

propagation mechanism. This suggests that the oceanic response to the LOP is not directly 392	

due to its extreme integrated values but rather to its specifically located anomalies.  393	

  394	

In summary, the LOPs exhibit a specific 3D pattern, with largest relative magnitudes 395	

from intermediate to bottom depths, and a relatively weak perturbation at the surface, when 396	

compared to the internal variability. Therefore, while occurrence of such anomalies is very 397	



frequent at the surface for all magnitudes that we have tested, their occurrences are extremely 398	

rare in the intermediate and deeper ocean. In that respect, P20 and N20 could be seen as 399	

extreme events within the North-Atlantic Ocean. If a perturbation resembling the LOP was to 400	

be detected, one could suspect – although based on this single coupled model analysis – an 401	

AMOC anomaly after 5 years, followed by a NAMT anomaly and possible impacts over land, 402	

which bring valuable information to assess the North-Atlantic climate a few years ahead. This 403	

raises the question about the ability of current monitoring systems to detect such anomalies. 404	

This is especially true for the eastern part of the deepest layer (below 2000 m), where the 405	

perturbation is very strong, but lies below the maximum depth covered by current Argo floats. 406	

 407	

4.2 The LOP in the context of oceanic initial state uncertainties in the real word 408	

 409	

Here we compare the LOP to basic estimations of oceanic state error based on two 410	

major data types commonly used to assess the oceanic state and variability: oceanic 411	

reanalyses and the Argo float data (Figure 6, coral and green bars). Our first error estimation, 412	

based on the reanalyses, consists in the integrated (NAMT spatial domain) annual mean 413	

temperature differences between GLORYS and ORAS4 (Balmaseda et al., 2013). We chose 414	

these reanalyses as they share the same ocean model (i.e. NEMO) as our coupled system 415	

therefore facilitating the comparison on similar grids and tools. However, we reckon that this 416	

choice likely tends to underestimate the real uncertainties acknowledged from the reanalysis 417	

(e.g., Balmaseda et al. 2015; Palmer et al. 2015). The second error estimation, more directly 418	

based on oceanic measurements uncertainty, uses the 2°-resolution temperature error field of 419	

the objective interpolated Argo float dataset described in Desbruyères et al. (2016). Note that 420	

to be comparable to the model analysis, both error estimations of the NAMT have been 421	

rescaled by CTL variability. The detailed computation of these estimations, and their absolute 422	

value (i.e., before rescaling) can be found in appendix 1 and 2. The two estimations give 423	

different results, and this already highlights the complexity of assessing oceanic initial state 424	

uncertainties and the large uncertainties that remain on these estimations. However, it gives 425	

valuable information on the detectability of the LOP.  426	

According to our estimation, in the upper ocean, even for the strongest LOP, 427	

magnitudes tested here could not be separated from uncertainty of both reanalyses and Argo 428	

data (Figure 6b). In contrast, in intermediate and deeper layers, highest magnitude LOPs can 429	

be detected: below 1000 m, magnitudes of P10 or larger can be detected by both reanalyses 430	



and Argo float datasets (only above 2000 m for the latter). Between 300 m and 1000 m, only 431	

the largest magnitudes (i.e., P20 and N20) can be detected.  432	

These results have strong implications for climate predictability, the LOP being a 433	

source of predictability when detected by the observations. Indeed, in that case, the initial 434	

conditions can be correctly assessed in order to phase the subsurface variability mode with the 435	

observations resulting in the accurate prediction of its impacts on the surrounding climate. On 436	

the other hand, for magnitudes lying under the detectability limit, the LOP’s impact may help 437	

anticipate uncertainties in climate predictions. These uncertainties could be decreased by 438	

extending the monitoring system in the specific regions highlighted by the LOP pattern. In 439	

particular, the ocean and the climate were shown to be strongly sensitive to anomalies located 440	

below 2000 m, below the current depth of Argo float sampling. This suggests that the 441	

deployment of deep Argo floats in the North Atlantic could lead to significant improvements 442	

for decadal prediction skills for the North Atlantic region.  443	

Note that the uncertainty estimation done here corresponds to the error on an annual 444	

mean oceanic state, while the LOPs correspond to an instantaneous perturbation of the initial 445	

state. However, persistence of the LOP can be seen from Figure 2b, where the initial 446	

perturbation persists for more than one year before generating the anomaly response. 447	

Therefore, although it is likely to underestimate the uncertainties on the instantaneous initial 448	

state, this comparison still gives useful operational information.  449	

 450	

4.3 The LOP for ensemble generation strategies 451	

Taking into account the LOP in the prediction uncertainties can be achieved by 452	

perturbing the initial state directly with the LOP to generate an ensemble. However, other 453	

perturbation methods might take into account the uncertainty arising from the variability 454	

mode associated to the LOP, depending on how the perturbation pattern projects onto the 455	

LOP (Sévellec et al., in rev). Random perturbation of the 3D oceanic temperature field arising 456	

from white noise local perturbations in each grid box - like used in Germe et al. (2017) - 457	

rapidly goes to zero when averaged on a large spatial domain. Therefore, this method does not 458	

adequately take into account possible deep density structures in the initial state uncertainties 459	

and is likely to underestimate the ensemble spread arising from the subsurface variability 460	

mode stimulated by the LOP. Another commonly used perturbation strategy of the ocean 461	

initial state in near-term climate predictions is based on lagging the oceanic state by a few 462	

days (e.g. Hazeleger et al., 2013). We have estimated the magnitude of such perturbations in 463	



terms of NAMT using daily time series of the oceanic temperature in CTL. In practice, for 464	

each daily oceanic temperature pattern we have computed the anomaly from the oceanic 465	

temperature pattern occurring ten days before. Then, we compute the NAMT on these 466	

anomaly fields and take its minimum and maximum values as the range of the initial 467	

perturbations arising from this ensemble generation strategy. According to this analysis, the 468	

perturbation of the oceanic state due to a 10-day lagged temperature anomaly field is much 469	

larger in the surface layer (Figure 6b, yellow bar) than in the deeper layers where it remains 470	

very close to zero, especially bellow 2000 m (Figure 6e, yellow bar). This is consistent with 471	

the much stronger high frequency variability of the upper ocean. Therefore, the lagging 472	

methodology is very unlikely to generate perturbation patterns that project onto the LOP, and 473	

so to excite the subsurface variability mode.  474	

Thus, generating decadal prediction ensemble through LOPs would sample a very 475	

different range of initial state uncertainties than other more traditional methods illustrated in 476	

Figure 6. Practically, this can be achieved by using LOPs of both signs, in addition to 477	

atmospheric perturbation for the ensemble generation. In this analysis, the ensemble resulting 478	

from merging N10 and P10 exhibits a larger ensemble spread than ATM for the forecast 479	

range near the maximal response to the LOP, i.e. 5 and 10 years for the AMOC and NAMT, 480	

respectively (not shown). However, this assessment is limited by the fact that the LOP is 481	

designed for a specific metric and a specific timescale. Therefore, an ensemble generation 482	

based on LOPs as defined in our study is only properly designed to create the largest 483	

ensemble spread for the AMOC and NAMT after 5 and 10 years, respectively. This might 484	

create an under- or overdispersive predictions regarding other metrics or time scales. This 485	

issue is shared with oceanic singular vectors ensemble generation, since the singular vectors 486	

also depends on a chosen norm and time scale. Marini et al. (2016) found that using oceanic 487	

singular vectors gives a better spread for locally assessed metrics during the first year as 488	

compared to atmospheric perturbations ensemble generation, while this spread is 489	

overestimated for integrated properties such as the AMOC or area-averaged SST. In their 490	

analysis, the 3D pattern of singular vectors used to generate the ensemble is not fully 491	

described at depth, but their Figure 3 shows local values of the initial ensemble spread around 492	

0.25°C in the North-Atlantic at intermediate depth, which is comparable to our local values of 493	

interannual standard deviation in CTL. Therefore, prediction uncertainties arising from initial 494	

subsurface density uncertainties pattern as identified by the LOP are potentially taken into 495	

account by this method.  496	



 497	

 498	

5 Conclusions  499	

 500	

The impact of a linear optimal perturbation (LOP) of the 3D oceanic temperature field 501	

for the North Atlantic temperature and for large-scale circulation has been analysed based on 502	

a series of perfect model ensembles in the IPSL-CM5A-LR climate model. It has been found 503	

that the LOP, as identified in the adjoint version of the tangent linear model of the IPSL-504	

CM5A-LR oceanic component, induces a similar response in terms of anomalous oceanic 505	

mean temperature and circulation than the linear forced ocean model. The response is 506	

nevertheless weaker (roughly by a factor 3) and occurs earlier than expected from the linear 507	

ocean model analysis. This can be explained by the non-linearities and damping terms from 508	

the ocean-atmosphere interactions, which were absent in the linear ocean model.  509	

The computation of LOP in a fully coupled system would be very challenging. Indeed, 510	

computing the LOP in the forced ocean context enable to avoid atmospheric small-scale 511	

baroclinic instabilities and atmospheric convective instabilities. Within the linear framework 512	

used for computing LOP, such instabilities would not saturate and would dominate the 513	

solution. These small-scale instabilities would contaminate the large-scale response, 514	

preventing us to determine the climatically relevant large-scale solutions that we are aiming 515	

for. Still, despite the LOP based on the linear forced ocean model has a maximal signature at 516	

intermediate depths, it induces a strong SST change, hence leads to a significant impact on 517	

atmospheric surface temperature, precipitations, and to a lesser degree SLP at 5-10-year 518	

average forecast range. Even though our experimental design is idealized, these results have 519	

strong implications in terms of decadal predictability of the climate. Indeed, they highlight 520	

that anomalies in the deep ocean could have significant consequences for the upper ocean and 521	

surface atmosphere on timescales from interannual to decadal.  522	

The impact of LOP on the oceanic heat content is rather linear, whereas the response 523	

of the SST and atmospheric variables are strongly asymmetric. Regarding the AMOC, its 524	

response exhibits a weak asymmetry. Although not significant in our case, this asymmetry has 525	

already been observed in the non-linear ocean forced model as a response to SSS optimal 526	

perturbations (Sévellec et al., 2008). As explained in Sévellec et al. (2008), this asymmetry 527	

may arise from the feedback of density anomalies on the vertical mixing. Indeed, a positive 528	

density anomaly will enhance the vertical mixing and therefore the deep-water formation, 529	

resulting in a stronger AMOC. On the other hand, a negative anomaly will reduce the vertical 530	



mixing and the deep-water formation, resulting in a weaker AMOC. Depending on the 531	

stratification before perturbation, the positive and negative perturbations will have a different 532	

impact that may induce the asymmetry. Besides, even though we selected the initial state from 533	

a neutral period regarding the NAMT and AMOC variability (cf. section 2), perfect neutrality 534	

is elusive. Therefore, the asymmetry found in the response might result from the initial state 535	

being closer to one sign version of the LOP than the other. Evaluating the impact of a peculiar 536	

initial state on the AMOC response would require to test the LOP on several initial dates and 537	

will be the object of future work. Likewise, even though an asymmetrical response of the 538	

system to the LOP may arise from non-linear feedbacks or more generally from the non-linear 539	

interaction of the stimulated linear response with other modes of variability or through non-540	

linear atmospheric and air-sea-ice interaction feedbacks, we cannot reach strong conclusions 541	

from our experiments on that aspect. 542	

The SST response to the positive LOP resembles a horseshoe pattern identified in both 543	

the IPSL-CM5A-LR model and the observations by Gastineau et al. (2013) as influencing the 544	

North Atlantic Oscillation (NAO) during the winter. It also resembles the North Atlantic 545	

Multidecadal variability (AMV) pattern as identified in our coupled system (Gastineau et al., 546	

2013). The AMV, also known as the Atlantic Multidecadal Oscillation (AMO; Delworth et 547	

al., 2007; Solomon et al., 2011), is known to influence the climate in the North Atlantic 548	

region and in particular hurricanes activity (Goldenberg et al., 2011), and precipitations over 549	

North America, Europe, and Sahel (Sutton and Hodson, 2005; Knight et al., 2006). A large 550	

part of its influence over the Euro-Atlantic region seems to be related to its tropical 551	

component with a weaker influence of the extratropical SST anomalies (Davini et al. 2015; 552	

Peing et al., 2015). However, Gastineau et al. (2016) found a large oceanic influence of the 553	

subpolar SST anomaly on the NAO in the IPSL-CM5A-LR model. While the SST pattern 554	

associated with the LOP strongly resembles the SST anomaly pattern associated with a 555	

negative NAO-like response in Gastineau et al. (2016), we could not identify a clear impact of 556	

the LOP onto the NAO. This could come from a signal to noise ratio issue as 75-member 557	

ensemble were used in their analysis, while we are using here 10 members at the most. This 558	

highlights the complexity of the influence of the North Atlantic SST on the surrounding 559	

climate. However, our results suggest that density anomalies in the deep North Atlantic could 560	

be an oceanic decadal precursor for the AMV and its climatic consequences. This highlights 561	

the potential of correct initialization of the full 3D oceanic state to improve climate 562	

prediction.  563	



Indeed, detecting such anomalies in the real deep ocean could provide a considerable 564	

source of predictability, under the assumption that the modelled response in the atmosphere 565	

presented here is representative of the real climate dynamics. The validity of this latter 566	

assumption remains unclear given, for instance, that the response to an AMV-like pattern is 567	

believed to be poorly simulated (Hodson et al. 2009). Upcoming CMIP6/DCPP simulations 568	

(Boer et al. 2016) will allow to better evaluate the skill of new generation climate models to 569	

represent such teleconnections between the Atlantic SST variations and the atmospheric 570	

dynamics. Given the large impacts of the AMV inferred from statistical analysis of the 571	

observations, it is possible that a better representation of these teleconnections in future 572	

climate models could further enhance the potential climate impact and utility of a precise-573	

enough measurements of deep ocean anomalies. 574	

A comparison of the LOP with an estimation of the oceanic state uncertainties based 575	

on oceanic reanalyses and Argo float data reveals that even the largest magnitudes used here 576	

cannot be detected by current monitoring systems in the upper ocean, where the perturbation 577	

is the weakest. In contrast, in intermediate and deepest layers, the largest magnitudes (i.e. N20 578	

and P20) stand out of the uncertainty range assessed by Argo float and reanalyses dataset, 579	

suggesting that they could be detected by these observations and therefore initialized in 580	

climate predictions. The fact that the largest amplitudes of the perturbation are found in the 581	

deep ocean can be related with the larger persistence of such anomalies in the deeper ocean, 582	

where they remain isolated from mean- and self-advection, as well as from the large mixing 583	

induced by interactions with the atmosphere such as in the mixed layer. These anomalies are 584	

able to persist over a sufficiently long time, maintaining meridional flow and amplifying the 585	

transient change of the AMOC, which may explain why they are detected as optimal 586	

perturbation for this circulation (cf. Sévellec and Fedorov 2015). 587	

Our results also suggest that a climate prediction starting from an initial state 588	

corresponding to an extreme event regarding the density anomaly in the deep North-Atlantic 589	

would benefit from the initialization of the optimal structure determined in the ocean-only 590	

model, therefore potentially increasing the prediction skill compared to the average skill in the 591	

North-Atlantic region. On the other hand, if similar density anomalies are not detected in the 592	

observations, they would become a substantial source of uncertainties that need to be taken 593	

into account in climate prediction systems.  594	

 595	
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Appendix I: Estimates of oceanic state uncertainties from reanalyses 613	

 614	

 This estimation is based on GLORYS2V3 and ORAS4 (Balmaseda et al., 2013) 615	

reanalyses. We computed the yearly NAMT and its layer components from both datasets over 616	

the common period 1993-2014.  Both reanalyses have been re-gridded on the ORCA2 grid to 617	

share the exact same spatial and vertical domain for temperature average. These two time 618	

series are then normalized and rescaled by CTL variability. Finally, the error estimation is 619	

given by the root mean square error between these two time series. 620	

This estimation is very likely to depend on the chosen reanalyses. The main objective is here 621	

to give an order of magnitude of the differences between two state-of-the-art ocean 622	

reanalyses.  623	

 624	

Appendix II: Estimates of oceanic state uncertainties from ARGO floats data 625	

 626	

We have used a 2° horizontal resolution x 20 db vertical resolution gridded 627	

temperature and temperature error field based on the optimal interpolation of Argo float data. 628	

The interpolation procedure is fully described in Desbruyères et al. (2016).  This dataset 629	

covers the 2000-2015 period, but we have restricted our analysis to the 2004-2015 period due 630	

to non-representative poor sampling during the first years. We have computed the NAMT 631	

index of the temperature field on raw data (Figure Ia: black line) and its annual mean (Figure 632	

Ib: black line). The NAMT index computation can be written as: 633	

                                         𝑁𝐴𝑀𝑇 =	 𝑤(𝑇((          (1) 634	



Where 𝑇( is the temperature in the grid cell i, and 𝑤( is the weight related to the volume of the 635	

grid cell i. The computation of the error on this index is based on the propagation of 636	

uncertainties as described in Taylor et al. (1997). As the local errors 𝛿𝑇( cannot be considered 637	

as independent, these local uncertainties induce further uncertainties on the NAMT index: 638	

                                     𝛿𝑁𝐴𝑀𝑇 ≤	 𝑤(𝛿𝑇((         (2) 639	

This error is shown in figure Ia as gray shading. This error estimation considers all grid cells 640	

as dependant and therefore gives an upper bound of the error that is likely to overestimate the 641	

real uncertainty. 642	

When considering the annual means, the same propagation of error could be used. 643	

However, this is very likely to strongly overestimate this uncertainty as the resulting error is 644	

found to be larger than the variability of the NAMT index (Figure Ib: gray shading). In the 645	

aim of giving more realistic error estimation, we have considered each realization as 646	

independent for the computation of the annual mean. In that case, still following the 647	

propagation of uncertainties described by Taylor et al. (1997), the error on the annual mean 648	

NAMT can be written: 649	

                                   𝛿𝑁𝐴𝑀𝑇 =	 +
,-

𝛿𝑁𝐴𝑀𝑇.
/

.           (3) 650	

 651	

Where 𝑁.  is the number of values in a given year. This more restrictive estimation is 652	

highlighted in Figure Ib in red shading. In that case, considering each time step as 653	

independent in a given year is a strong assumption that is likely to give an underestimation of 654	

the uncertainties. This highlights the complexity of assessing the uncertainty on a regional 655	

mean temperature from in situ measurement and the large remaining uncertainty on this 656	

estimation. As this paper is not dedicated to the estimation of in situ measurement errors we 657	

use the red shading estimation in the main paper, which appears as a reasonable assumption.  658	

Finally, to compare the error estimation to the LOP in the context of the IPSL-CM5A-LR 659	

variability we rescale this estimation by the variability in CTL. Therefore, the ARGO error 660	

value used in Figure 2 is given by the following equation: 661	

 662	

                      	𝜎1234 = 	
5617(9:,;<=>)
@.A(,;<=BCDE)

	×	𝑠𝑡𝑑(𝑁𝐴𝑀𝑇J=K)             (4)  663	

 664	



Where 𝑁𝐴𝑀𝑇J=K and 𝑁𝐴𝑀𝑇1234 are the annual time series of the NAMT index from CTL 665	

and ARGO floats data respectively; < 𝛿𝑁𝐴𝑀𝑇 > is the error on 𝑁𝐴𝑀𝑇1234 (Figure Ib: red 666	

shading). 667	

 668	

Table I: Error on the layer components of NAMT from ARGO float dataset. The first column 669	

corresponds to 𝑚𝑒𝑎𝑛(< 𝛿𝑁𝐴𝑀𝑇 >) in equation (4), while the second column corresponds to 670	
5617(9:,;<=>)
@.A(,;<=BCDE)

	 in (4). 671	

 Raw error (in  °C) Normalized error 

0-300m 0.036 0.32 

300-1000m 0.038 0.53 

1000-2000m 0.021 0.61 

 672	

 673	
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 929	
Table 1: Summary of the characteristics of the ensembles. 930	
 Oceanic 

perturbation 
factor 

Number 
of 
members 

Start date Length 

ATM 0 10 1st of January 1991 20 years 
P01 1 5 - - 
P05 5 5 - - 
P10 10 5 - - 
P20 20 10 - - 
N10 -10 5 - - 
N20 -20 10 - - 
 931	

  932	



Figure 1 933	

Colours shading: The spatial structure of the imposed linear optimal temperature 934	

perturbations (LOP, in °C) at the ocean surface (top left panel), and at 217 m (top right 935	

panel), 1033 m (bottom left panel) and 2768 m (bottom right panel). The amplitudes shown 936	

here correspond to the original LOP, i.e. scaled by a factor of 1 (see text for details). Black 937	

contours indicate interannual standard deviation of local ocean temperature in the 1000-year 938	

long CTL simulation at these depths. The contours are spaced by 0.4°C within the range from 939	

0.4 to 2°C at the surface and at 217 m depth, by 0.1°C from 0.1 to 0.5°C at 1033 m, and by 940	

0.02°C from 0.02°C to 0.12°C at 2768 m. 941	

  942	

 943	

 944	
 945	

  946	



Figure 2 947	

Left and middle panels: The response of NAMT (top) and AMOC (bottom) to the imposed 948	

perturbation for different LOPs’ amplitudes (colours). The time evolution of the ensemble 949	

mean for all the experiments are shown on the left panel while the middle panel highlights the 950	

99% confidence interval of the ensemble mean for P20 (red line), N20 (blue line), and ATM 951	

(grey line). The vertical black line in middle panel highlights the date at which the magnitude 952	

of the response has been assessed to draw the right panels. It corresponds to a 10-year forecast 953	

for the NAMT (top) and 5-year forecast for the AMOC (bottom). Time axes refer to model 954	

years. Right panels: Magnitude of the NAMT (top) and AMOC (bottom) response as a 955	

function of the magnitude of the perturbation at 10- and 5-year forecast range, respectively. 956	

Error bars correspond to the ensemble mean 99%-level confident interval. The solid black line 957	

shows the best linear fit. The gray shading in the top panel indicates the response magnitude 958	

as expected from the linear model as described by Sévellec and Fedorov (2017). 959	
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Figure 3 963	

Left top panel: Ensemble mean time evolution of the NAMT300 for P20 (red), N20 (blue), 964	

and ATM (gray) ensembles. The Shading highlights the confident interval on the ensemble 965	

mean according to a t-test at the 99% level. Time axis refers to model years. The black curve 966	

corresponds to the time series of this index in CTL simulation with black dashed lines 967	

indicating ± 1 standard deviation. The black vertical bars indicate the selected years mapped 968	

in middle and right panels. 969	

Left bottom panel: Correlation map between annual T300 at each grid point and the AMOC 970	

index in the CTL simulation. Black dots highlight correlations significant at the 95% level. 971	

Middle and right panels: T300 differences (in colour) between P20 ensemble mean and ATM 972	

ensemble mean at 1-year (top middle panel), 5-year (top right panel), 10-year (bottom middle 973	

panel), and 15-year (bottom right panel) forecast range. Differences are expressed in °C. The 974	

background T300 climatology field in CTL is represented in black contours. The line contour 975	

interval is 2.5°C. Horizontal red lines highlight the 30 and 70°N latitude, i.e. the zonal 976	

boundaries of the NAMT index. Black dots highlight the areas where the plotted ensemble 977	

mean is significantly different from ATM ensemble mean at 95% level. 978	
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Figure 4 982	

SST differences of N20 (left panels) and P20 (right panels) ensemble mean with respect to 983	

ATM ensemble mean averaged over 5-year to 10-year forecast range. Differences are drawn 984	

for annual mean SST in °C (1st row), annual mean T2M in °C (2nd row), summer seasonal 985	

mean (June to August) precipitation in kg s-1 m-2 (3rd row panels) and winter (January to 986	

March) sea level pressure in hPa (4th row). Black dots highlight the areas where N20 or P20 987	

ensemble means are significantly different from ATM ensemble mean at the 95% level. 988	
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Figure 5 994	

T2M differences of P20 ensemble mean with respect to ATM ensemble mean for 5-year to 995	

10-year forecast range. Differences are drawn for winter (January to March, left panels) and 996	

summer (June to August, right panels) mean surface air temperature in °C. Black dots 997	

highlight the areas where P20 ensemble mean is significantly different from ATM ensemble 998	

mean at the 95% level. 999	
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Figure 6 1002	

(a) NAMT and its vertical contributions within layers (b) 0-300 m, (c) 300-1000 m, (d) 1000-1003	

2000 m, and (e) below 2000 m of: the LOPs (LOP, color points and black crosses), 10-day 1004	

lagged perturbation patterns (LAG; range in yellow bars), an uncertainty estimation based on 1005	

reanalyses (REA; range in coral bars), and an Argo float uncertainty (ARGO; light green 1006	

bars). Note that there is no ARGO estimation in (e), as ARGO floats only sample the water 1007	

column above 2000 m. Gray shadings indicate ±1, ±2, and ±3 interannual standard deviations 1008	

of the same indices in CTL.  1009	

 1010	
 1011	

 1012	

 1013	

 1014	

 1015	

 1016	

 1017	

 1018	

 1019	

 1020	

 1021	

−0
.1

0
−0

.0
5

0.
00

0.
05

0.
10

(a) NAMT (whole column)

de
gC

●

●

●

●

●

●

LOP LAG REA ARGO

−0
.4

−0
.2

0.
0

0.
2

0.
4

(b) 0−300m

●●●●●●

LOP LAG REA ARGO

−0
.3

−0
.2

−0
.1

0.
0

0.
1

0.
2

0.
3

(c) 300−1000m

●●
●
●

●
●

LOP LAG REA ARGO

−0
.1

5
−0

.0
5

0.
05

0.
15

(d) 1000−2000m

de
gC

●

●

●

●

●

●

LOP LAG REA ARGO

−0
.1

0
−0

.0
5

0.
00

0.
05

0.
10

(e) 2000m−bottom

●

●

●

●

●

●

LOP LAG REA ARGO

0

●

●

●

●

●

●

N20
N10
P01
P05
P10
P20
P20MSK

10−day LAG
Reanalysis
ARGO



Figure I 1022	

NAMT index based on Argo float dataset (surface to 2000m) from (a) 10-day average data 1023	

and (b) annual means. The gray shading gives the upper bound of the error based on Taylor et 1024	

al. (1997). The red shading gives the annual mean error estimation of the error when 1025	

considering the time-steps within a year as independent.  1026	
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